@article{SigruenerHueskenPirskawetzetal.2023, author = {Sigr{\"u}ner, Michael and H{\"u}sken, G{\"o}tz and Pirskawetz, Stephan and Herz, Jonas and Muscat, Dirk and Str{\"u}bbe, Nicole}, title = {Pull-out behavior of polymer fibers in concrete}, series = {Journal of Polymer Science}, volume = {61}, journal = {Journal of Polymer Science}, number = {21}, doi = {10.1002/pol.20230264}, pages = {2708 -- 2720}, year = {2023}, abstract = {The bond between polymer fibers and the surrounding cementitious matrix is essential for the development of concrete reinforcement. The single fiber pull-out test (SFPT) is the standard characterization technique for testing the bond strength. However, the different phases of debonding cannot be distinguished by the SFPT. This study investigates the debonding of different polymer fibers from the surrounding cementitious matrix with a modified SFPT and proposes methods to change the SFPT setup to generate more valuable information on the debonding mechanism. The SFPT was equipped with linear variable differential transformers (LVDT), digital image correlation (DIC) and acoustic emission (AE) analysis. The results demonstrate that the modified SFPT allows a better understanding of the different phases of debonding during fiber pull-out. Furthermore, bond strength values calculated by different methods reveal that the chemical bond of the investigated polymers is not different as reported by previous studies. Deformation measurements performed using LVDTs and DIC are suitable measuring techniques to characterize the debonding mechanism in SFPT. A correlation between recorded AE and debonding phases was not found.}, language = {en} }