@inproceedings{SchmidtWongYeap2007, author = {Schmidt, Jochen and Wong, C.K. and Yeap, W.K.}, title = {Spatial Information Extraction for Cognitive Mapping with a Mobile Robot.}, series = {Conference on Spatial Information Theory: COSIT'07, Melbourne, Australia. Volume 4736 of Lecture Notes in Computer Science}, booktitle = {Conference on Spatial Information Theory: COSIT'07, Melbourne, Australia. Volume 4736 of Lecture Notes in Computer Science}, year = {2007}, abstract = {When animals (including humans) first explore a new environment, what they remember is fragmentary knowledge about the places visited. Yet, they have to use such fragmentary knowledge to find their way home. Humans naturally use more powerful heuristics while lower animals have shown to develop a variety of methods that tend to utilize two key pieces of information, namely distance and orientation information. Their methods differ depending on how they sense their environment. Could a mobile robot be used to investigate the nature of such a process, commonly referred to in the psychological literature as cognitive mapping? What might be computed in the initial explorations and how is the resulting "cognitive map" be used for localization? In this paper, we present an approach using a mobile robot to generate a "cognitive map", the main focus being on experiments conducted in large spaces that the robot cannot apprehend at once due to the very limited range of its sensors. The robot computes a "cognitive map" and uses distance and orientation information for localization.}, language = {en} } @inproceedings{WongYeapSchmidt2007, author = {Wong, C.K. and Yeap, W.K. and Schmidt, Jochen}, title = {Using a Mobile Robot for Cognitive Mapping}, series = {International Joint Conference on Artificial Intelligence (IJCAI), pages 2243-2248, Hyderabad, India, 2007}, booktitle = {International Joint Conference on Artificial Intelligence (IJCAI), pages 2243-2248, Hyderabad, India, 2007}, year = {2007}, abstract = {When animals (including humans) first explore a new environment, what they remember is fragmentary knowledge about the places visited. Yet, they have to use such fragmentary knowledge to find their way home. Humans naturally use more powerful heuristics while lower animals have shown to developa varietyof methodsthat tend to utilize two key pieces of information,namely distance and orientation information. Their methods differ depending on how they sense their environment. Could a mobile robot be used to investigate the nature of such a process, commonly referred to in the psychological literature as cognitive mapping? What might be computed in the initial explorations and how is the resulting "cognitive map" be used to return home? In this paper, we presented a novel approach using a mobile robot to do cognitive mapping. Our robot computes a "cognitive map" and uses distance and orientation information to find its way home. The process developed provides interesting insights into the nature of cognitive mapping and encourages us to use a mobile robot to do cognitive mapping in the future, as opposed to its popular use in robot mapping.}, language = {en} } @inproceedings{WongYeapSchmidt2009, author = {Wong, C.K. and Yeap, W.K. and Schmidt, Jochen}, title = {Our Next Generation of Robotics Researchers? Teaching Robotics at Primary School Level.}, series = {Readings in Technology and Education: Proceedings of International Conference on Information Communication Technologies in Education}, booktitle = {Readings in Technology and Education: Proceedings of International Conference on Information Communication Technologies in Education}, year = {2009}, abstract = {In this paper, we present our experience in designing and teaching of our first robotics course for students at primary school level. The course was carried out over a comparatively short period of time, namely 6 weeks, 2 hours per week. In contrast to many other projects, we use robots that researchers used to conduct their research and discuss problems faced by these researchers. Thus, this is not a behavioural study but a hands-on learning experience for the students. The aim is to highlight the development of autonomous robots and artificial intelligence as well as to promote science and robotics in schools.}, language = {de} }