0 Informatik, Informationswissenschaft, allgemeine Werke
Refine
Year of publication
Document Type
- Article (70)
- conference proceeding (article) (63)
- conference proceeding (presentation, abstract) (12)
- conference proceeding (volume) (5)
- Preprint (3)
- Book (2)
- Doctoral Thesis (1)
- Part of Periodical (1)
Is part of the Bibliography
- no (157)
Keywords
- Bildgebendes Verfahren (19)
- Betriebliches Informationssystem (14)
- Maschinelles Lernen (13)
- Diagnose (12)
- Offshoring (12)
- Deep Learning (11)
- Literaturbericht (11)
- Gehirn (10)
- Informationstechnik (10)
- Kernspintomografie (9)
Institute
- Fakultät Informatik und Mathematik (154)
- Regensburg Medical Image Computing (ReMIC) (101)
- Regensburg Strategic IT Management (ReSITM) (47)
- Regensburg Center of Biomedical Engineering - RCBE (30)
- Regensburg Center of Health Sciences and Technology - RCHST (15)
- Fakultät Bauingenieurwesen (1)
- Fakultät Elektro- und Informationstechnik (1)
- Fakultät Maschinenbau (1)
- FuE-Anwenderzentrum Informations- und Kommunikationstechnologien (IKT) (1)
- Hochschulleitung (1)
Begutachtungsstatus
- peer-reviewed (75)
Internal transport systems are an essential part of intralogistics in production and distribution facilities. These are characterized by a variety of technologies as well as a multitude of interactions with other processes, such as warehouse, picking, and production processes. Therefore, resource planning and control of these systems is complex, especially for discontinuous conveyors. In this task, users can be supported by Digital Twins for decision-making, as they are suitable for investigating both future system states and possible actions. However, relevant use cases that are generally applicable across sectors as well as a generic system architecture for Digital Twins for resource planning and process control of in-plant transport systems have not yet been sufficiently investigated. In this paper, use cases are presented, relevant functions defined, and, finally, a generic functional and a logical reference architecture described. This is conducted with the design science in information systems research method together with a Systems Engineering approach. The use cases are determined at industrial partners of the research project TwInTraSys, which explores Digital Twins for the planning and control of internal transport systems. They are generalized and, thus, also applicable to other production and distribution facilities in different sectors. Further, the reference architecture can provide a basis for the successful implementation of the Digital Twin.
Background:
Reliable, time- and cost-effective, and clinician-friendly diagnostic tools are cornerstones in facial palsy (FP) patient management. Different automated FP grading systems have been developed but revealed persisting downsides such as insufficient accuracy and cost-intensive hardware. We aimed to overcome these barriers and programmed an automated grading system for FP patients utilizing the House and Brackmann scale (HBS).
Methods:
Image datasets of 86 patients seen at the Department of Plastic, Hand, and Reconstructive Surgery at the University Hospital Regensburg, Germany, between June 2017 and May 2021, were used to train the neural network and evaluate its accuracy. Nine facial poses per patient were analyzed by the algorithm.
Results:
The algorithm showed an accuracy of 100%. Oversampling did not result in altered outcomes, while the direct form displayed superior accuracy levels when compared to the modular classification form (n = 86; 100% vs. 99%). The Early Fusion technique was linked to improved accuracy outcomes in comparison to the Late Fusion and sequential method (n = 86; 100% vs. 96% vs. 97%).
Conclusions:
Our automated FP grading system combines high-level accuracy with cost- and time-effectiveness. Our algorithm may accelerate the grading process in FP patients and facilitate the FP surgeon’s workflow.
As use of digital fabrication increases in architecture, engineering and construction, the industry seeks appropriate management and processes to enable the adoption during the design/planning phase. Many enablers have been identified across various studies; however, a comprehensive synthesis defining the enablers of design for digital fabrication does not yet exist. This work conducts a systematic literature review of 59 journal articles published in the past decade and identifies 140 enablers under eight categories: actors, resources, conditions, attributes, processes, artefacts, values and risks. The enablers’ frequency network is illustrated using an adjacency matrix. Through the lens of actor-network theory, the work creates a relational ontology to demonstrate the linkages between different enablers. Three examples are presented using onion diagrams: circular construction focus, business model focus and digital twin in industrialisation focus. Finally, this work discusses the intersection of relational ontology with process modelling to design future digital fabrication work routines.
The transition towards services has been imperative for manufacturing firms for years. The change from a productoriented to a more service-dominant business model affects the organizational structure of firms. However, literature provides limited insights into how manufacturing firms organize themselves in this transition. Even though digital technologies are critical for the transition, it is unclear how to orchestrate digital and traditional Information Technology (IT) resources in manufacturing firms accordingly. We analyze the case of a typical manufacturing firm that has adjusted its structure to reorganize for solution offerings based on product, service, and digital components. Our results describe a hybrid organizational structure that splits front- and back-end units. The back-end units are split along solution components. Digital IT resources are internalized and governed decentrally, with traditional IT resources being outsourced and steered centrally. Our findings contribute to digital servitization research by clarifying the overarching as well as the digital and traditional IT-related organization for manufacturing firms.
Despite the relevance and maturity of the Chief Information Officer (CIO) research field, no studies exist that exhaustively summarize the current body of knowledge, focusing on the development of the field over its entire timespan. The paper at hand addresses this research gap and presents an exhaustive literature review on the CIO research field using main path analysis. We identify the central papers in CIO research and eight main research streams by quantitatively and qualitatively analyzing 466 papers. We find that established research streams, e.g., ‘Evolving role of the CIO’ and ‘CIO hierarchical position and relationships’ as well as recently emerging research streams, e.g., ‘CIO as business enabler’ and ‘CIOs and IT security,’ draw growing attention. Based on our findings, we develop promising further avenues for research in the CIO field.
In 2015 we began a sub-challenge at the EndoVis workshop at MICCAI in Munich using endoscope images of exvivo tissue with automatically generated annotations from robot forward kinematics and instrument CAD models. However, the limited background variation and simple motion rendered the dataset uninformative in learning about which techniques would be suitable for segmentation in real surgery. In 2017, at the same workshop in Quebec we introduced the robotic instrument segmentation dataset with 10 teams participating in the challenge to perform binary, articulating parts and type segmentation of da Vinci instruments. This challenge included realistic instrument motion and more complex porcine tissue as background and was widely addressed with modfications on U-Nets and other popular CNN architectures [1].
In 2018 we added to the complexity by introducing a set of anatomical objects and medical devices to the segmented classes. To avoid over-complicating the challenge, we continued with porcine data which is dramatically simpler than human tissue due to the lack of fatty tissue occluding many organs.
The endoscopic features associated with eosinophilic esophagitis (EoE) may be missed during routine endoscopy. We aimed to develop and evaluate an Artificial Intelligence (AI) algorithm for detecting and quantifying the endoscopic features of EoE in white light images, supplemented by the EoE Endoscopic Reference Score (EREFS). An AI algorithm (AI-EoE) was constructed and trained to differentiate between EoE and normal esophagus using endoscopic white light images extracted from the database of the University Hospital Augsburg. In addition to binary classification, a second algorithm was trained with specific auxiliary branches for each EREFS feature (AI-EoE-EREFS). The AI algorithms were evaluated on an external data set from the University of North Carolina, Chapel Hill (UNC), and compared with the performance of human endoscopists with varying levels of experience. The overall sensitivity, specificity, and accuracy of AI-EoE were 0.93 for all measures, while the AUC was 0.986. With additional auxiliary branches for the EREFS categories, the AI algorithm (AI-EoEEREFS) performance improved to 0.96, 0.94, 0.95, and 0.992 for sensitivity, specificity, accuracy, and AUC, respectively. AI-EoE and AI-EoE-EREFS performed significantly better than endoscopy beginners and senior fellows on the same set of images. An AI algorithm can be trained to detect and quantify endoscopic features of EoE with excellent performance scores. The addition of the EREFS criteria improved the performance of the AI algorithm, which performed significantly better than endoscopists with a lower or medium experience level.
Introduction
We present a clinical case showing the real-time detection, characterization and delineation of an early Barrett’s cancer using AI.
Patients and methods
A 70-year old patient with a long-segment Barrett’s esophagus (C5M7) was assessed with an AI algorithm.
Results
The AI system detected a 10 mm focal lesion and AI characterization predicted cancer with a probability of >90%. After ESD resection, histopathology showed mucosal adenocarcinoma (T1a (m), R0) confirming AI diagnosis.
Conclusion
We demonstrate the real-time AI detection, characterization and delineation of a small and early mucosal Barrett’s cancer.
Within many real-world networks, the links between pairs of nodes change over time. Thus, there has been a recent boom in studying temporal graphs. Recognizing patterns in temporal graphs requires a proximity measure to compare different temporal graphs. To this end, we propose to study dynamic time warping on temporal graphs. We define the dynamic tem- poral graph warping (dtgw) distance to determine the dissimilarity of two temporal graphs. Our novel measure is flexible and can be applied in various application domains. We show that computing the dtgw-distance is a challenging (in general) NP-hard optimization problem and identify some polynomial-time solvable special cases. Moreover, we develop a quadratic programming formulation and an efficient heuristic. In experiments on real-world data, we show that the heuristic performs very well and that our dtgw-distance performs favorably in de-anonymizing networks compared to other approaches.
ARTIFICIAL INTELLIGENCE (AI) – ASSISTED VESSEL AND TISSUE RECOGNITION IN THIRD-SPACE ENDOSCOPY
(2022)
Aims
Third-space endoscopy procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex interventions with elevated risk of operator-dependent adverse events, such as intra-procedural bleeding and perforation. We aimed to design an artificial intelligence clinical decision support solution (AI-CDSS, “Smart ESD”) for the detection and delineation of vessels, tissue structures, and instruments during third-space endoscopy procedures.
Methods
Twelve full-length third-space endoscopy videos were extracted from the Augsburg University Hospital database. 1686 frames were annotated for the following categories: Submucosal layer, blood vessels, electrosurgical knife and endoscopic instrument. A DeepLabv3+neural network with a 101-layer ResNet backbone was trained and validated internally. Finally, the ability of the AI system to detect visible vessels during ESD and POEM was determined on 24 separate video clips of 7 to 46 seconds duration and showing 33 predefined vessels. These video clips were also assessed by an expert in third-space endoscopy.
Results
Smart ESD showed a vessel detection rate (VDR) of 93.94%, while an average of 1.87 false positive signals were recorded per minute. VDR of the expert endoscopist was 90.1% with no false positive findings. On the internal validation data set using still images, the AI system demonstrated an Intersection over Union (IoU), mean Dice score and pixel accuracy of 63.47%, 76.18% and 86.61%, respectively.
Conclusions
This is the first AI-CDSS aiming to mitigate operator-dependent limitations during third-space endoscopy. Further clinical trials are underway to better understand the role of AI in such procedures.