• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ
  • Institutes

Labor Biomechanik - LBM

Refine

Author

  • Dendorfer, Sebastian (114)
  • Renkawitz, Tobias (25)
  • Süß, Franz (25)
  • Verkerke, Gijsbertus Jacob (18)
  • Weber, Tim (17)
  • Grifka, Joachim (16)
  • Kubowitsch, Simone (15)
  • Rasmussen, John (14)
  • Aurbach, Maximilian (9)
  • Putzer, Michael (9)
+ more

Year of publication

  • 2020 (12)
  • 2019 (10)
  • 2018 (9)
  • 2017 (9)
  • 2016 (10)
  • 2015 (17)
  • 2014 (7)
  • 2013 (6)
  • 2012 (8)
  • 2011 (12)
+ more

Document Type

  • conference proceeding (article) (76)
  • Article (38)
  • Part of a Book (2)
  • Book (1)

Language

  • English (100)
  • German (17)

Has Fulltext

  • no (117)

Is part of the Bibliography

  • no (117)

Keywords

  • Biomechanik (9)
  • Hüftgelenkprothese (8)
  • Biomechanics (7)
  • Simulation (7)
  • Biomechanische Analyse (6)
  • Bewegungsapparat (4)
  • Spongiosa (4)
  • AnyBody (3)
  • Computerunterstütztes Verfahren (3)
  • Gait analysis (3)
+ more

Institute

  • Fakultät Maschinenbau (117)
  • Labor Biomechanik - LBM (117)
  • Regensburg Center of Biomedical Engineering - RCBE (99)

117 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • XML
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
EMG-based validation of musculoskeletal models considering crosstalk (2018)
Aurbach, Maximilian ; Jungtäubl, Dominik ; Spicka, Jan ; Dendorfer, Sebastian
BACKGROUND: Validation and verification of multibody musculoskeletal models sEMG is a difficult process because of the reliability of sEMG data and the complex relationship of muscle force and sEMG. OBJECTIVE: This work aims at comparing experimentally recorded and simulated muscle activities considering a numerical model for crosstalk. METHODS: For providing an experimentally derived reference data set, subjects were performing elevations of the arm, where the activities of the contemplated muscle groups were measured by sEMG sensors. Computed muscle activities were further processed and transformed into an artificial electromyographical signal, which includes a numerical crosstalk model. In order to determine whether the crosstalk model provides a better agreement with the measured muscle activities, the Pearson correlation coefficient has been computed as a qualitative way of assessing the curve progression of the data sets. RESULTS: The results show an improvement in the correlation coefficient between the experimental data and the simulated muscle activities when taking crosstalk into account. CONCLUSIONS: Although the correlation coefficient increased when the crosstalk model was utilized, it is questionable if the discretization of both, the crosstalk and the musculoskeletal model, is accurate enough.
A new musculoskeletal AnyBody™ detailed hand model (2020)
Engelhardt, Lucas ; Melzner, Maximilian ; Havelkova, Linda ; Fiala, Pavel ; Christen, Patrik ; Dendorfer, Sebastian ; Simon, Ulrich
Musculoskeletal research questions regarding the prevention or rehabilitation of the hand can be addressed using inverse dynamics simulations when experiments are not possible. To date, no complete human hand model implemented in a holistic human body model has been fully developed. The aim of this work was to develop, implement, and validate a fully detailed hand model using the AnyBody Modelling System (AMS) (AnyBody, Aalborg, Denmark). To achieve this, a consistent multiple cadaver dataset, including all extrinsic and intrinsic muscles, served as a basis. Various obstacle methods were implemented to obtain with the correct alignment of the muscle paths together with the full range of motion of the fingers. These included tori, cylinders, and spherical ellipsoids. The origin points of the lumbrical muscles within the tendon of the flexor digitorum profundus added a unique feature to the model. Furthermore, the possibility of an entire patient-specific scaling based on the hand length and width were implemented in the model. For model validation, experimental datasets from the literature were used, which included the comparison of numerically calculated moment arms of the wrist, thumb, and index finger muscles. In general, the results displayed good comparability of the model and experimental data. However, the extrinsic muscles showed higher accordance than the intrinsic ones. Nevertheless, the results showed, that the proposed developed inverse dynamics hand model offers opportunities in a broad field of applications, where the muscles and joint forces of the forearm play a crucial role.
Mental stress reduces performance and changes musculoskeletal loading in football-related movements (2020)
Auer, Simon ; Kurbowitsch, Simone ; Süß, Franz ; Renkawitz, Tobias ; Krutsch, Werner ; Dendorfer, Sebastian
Purpose: Football players have a high risk of leg muscle injuries, especially when exposed to mental stress. Hence, this study investigated the musculoskeletal response of elite youth football players during highly dynamic movements under stress. The hypothesis is that mental stress reduces performance and changes the muscular forces exerted. Materials & methods: Twelve elite youth football players were subjected to mental stress while performing sports-specific change-of-direction movements. A modified version of the d2 attention test was used as stressor. The kinetics are computed using inverse dynamics. Running times and exerted forces of injury-prone muscles were analysed. Results: The stressor runs were rated more mentally demanding by the players (p = 0.006, rs = 0.37) with unchanged physical demand (p = 0.777, rs = 0.45). This resulted in 10% longer running times under stress (p < 0.001, d = −1.62). The musculoskeletal analysis revealed higher peak muscle forces under mental stress for some players but not for others. Discussion: The study shows that motion capture combined with musculoskeletal computation is suitable to analyse the effects of stress on athletes in highly dynamic movements. For the first time in football medicine, our data quantifies an association between mental stress with reduced football players’ performance and changes in muscle force.
Validation of a detailed lower extremity model based on the Klein Horsman data set (2009)
Andersen, Michael Skipper ; de Zee, Mark ; Dendorfer, Sebastian ; MacWilliams, Bruce ; Rasmussen, John
The influence of in-vivo muscle forces on the stress distribution in a vertebral body during activities of daily living (2009)
Dendorfer, Sebastian ; Rasmussen, John
Forces on a clavicles midshaft fracture and influence of fracture type (2009)
Dendorfer, Sebastian ; Englert, Carsten
The influence of muscle forces on biomechanical fracture fixation simulations – from in-vivo forces to tissue strains (2009)
Dendorfer, Sebastian ; Carbes, S. ; Rasmussen, John
Herniation Induces 55% Increase in Load of Key Stabilizing Muscle – Impact on Herniation Treatment Devices? (2010)
Robie, Bruce ; Rasmussen, John ; Christensen, Soeren Toerholm ; Dendorfer, Sebastian
The Effect of Spinal Disc Herniation on Multifidus Muscles (2010)
Dendorfer, Sebastian ; Rasmussen, John ; Christensen, Soeren Toerholm ; Robie, Bruce
Einfluss der Muskelkräfte, des Bewegungsausmaßes und der Bruchform auf die Kraftübertragung des Implantat-Knochenverbundes am Beispiel der Claviculafraktur im mittleren Drittel (2010)
Englert, Carsten ; Müller, F. ; Dendorfer, Sebastian
Fragestellung Es soll in dieser Computersimulationsstudie untersucht werden, wie der Osteosyntheseverbund Platte mit Schrauben im Verbund mit einer im mittleren Drittel gebrochenen Clavicula durch das Bewegungsausmaß in vivo belastet ist. Was sind die grundlegenden Kräfte die auf Clavicula und Implantat wirken und welchen Einfl uss hat die Bruchform. Methodik Die Muskel- und Gelenkkräfte sowie die Belastung des Implantatverbundes wurden mit einer muskuloskelletalen Simulationssoftware (AnyBody Technology, V.4) berechnet. Hierfür wurden mit einem komplexen Model des menschlichen Körpers folgende Bewegungen analysiert: eine Flexion von 160° und Abduktion 160° mit einem Gewicht von 2 kg in der Hand. Aus CT-Patientendaten wurden zwei dreidimensionale Modelle des Clavicula-Implantat Verbundes gebildet, die sich in der Frakturform unterscheiden (Querfraktur und vertikale Fraktur). In beiden Modellen wurde eine Claviculaosteosynthese in superiorer Position mit einer 6 Loch LCP mit 2 Schrauben pro Hauptfragment verwendet. Die Materialeigenschaften wurden aus der Dichte des Materials sowie aus Literaturdaten verwendet. Die Muskel- und Gelenkkräfte aus der muskuloskelletalen Berechnung wurden auf das Finite Elemente Modell übertragen und die Spannungen und Dehnungen des Implantat-Knochenverbundes wurden berechnet. Ergebnisse Es zeigte sich, dass die simulierte in vivo Belastung stark abhängig vom Flexionswinkel ist. Das Implantat ist in der superioren Lage auf Biegung belastet, welche maximale Werte im Überschulterniveau erreicht. Die Bruchform mit anatomischer Reposition und Kontakt der Hauptfragmente zueinander führt zu einer deutlichen Entlastung des Osteosyntheseverbundes im Vergleich zu einer Bruchform mit vertikaler Fraktur. Schlussfolgerung Aus den Analysen ist eine Positionierung der Plattenosteosynthese für die im mittleren Drittel frakturierte Clavicula in anterior-superiorer Lage wünschenswert. Die anatomische Reposition entlastet den Osteosyntheseverbund und sollte möglichst erreicht werden. Die Nachbehandlung sollte ein Bewegungsausmaß für den Arm für 4 Wochen für einfache Bruchformen auf 70° Flexion und Abduktion limitieren und für komplexe Bruchformen diese Limitierung ausgedehnt werden.
  • 1 to 10

OPUS4 Logo

  • Contact
  • Imprint and Datasecure
  • Sitelinks