Refine
Document Type
Has Fulltext
- no (24)
Is part of the Bibliography
- no (24)
Keywords
- Bildgebendes Verfahren (10)
- Gehirn (7)
- Registrierung <Bildverarbeitung> (7)
- Schnittdarstellung (7)
- Kernspintomografie (6)
- Polarisiertes Licht (5)
- Dreidimensionale Bildverarbeitung (4)
- Histologie (4)
- Positronen-Emissions-Tomografie (4)
- Schwächung (4)
Institute
Begutachtungsstatus
- peer-reviewed (4)
Time-Dependent Joint Probability Speed Function for Level-Set Segmentation of Rat-Brain Slices
(2008)
The segmentation of rat brain slices suffers from illumination inhomogeneities and staining effects. State-of-the-art level-set methods model slice and background with intensity mixture densities defining the speed function as difference between the respective probabilites. Nevertheless, the overlap of these distributions causes an inaccurate stopping at the slice border. In this work, we propose the characterisation of the border area with intensity pairs for inside and outside estimating joint intensity probabilities. Method - In contrast to global object and background models, we focus on the object border characterised by a joint mixture density. This specifies the probability of the occurance of an inside and an outside value in direct adjacency. These values are not known beforehand, because inside and outside depend on the level-set evolution and change during time. Therefore, the speed function is computed time-dependently at the position of the current zero level-set. Along this zero level-set curve, the inside and outside values are derived as mean along the curvature normal directing inside and outside the object. Advantage of the joint probability distribution is to resolve the distribution overlaps, because these are assumed to be not located at the same border position. Results - The novel time-dependent joint probability based speed function is compared expermimentally with single probability based speed functions. Two rat brains with about 40 slices are segmented and the results analysed using manual segmentations and the Tanimoto overlap measure. Improved results are recognised for both data sets.
Reduktion von Rissartefakten durch nicht-lineare Registrierung in histologischen Schnittbildern
(2009)
In dieser Arbeit wird ein Verfahren vorgestellt, das Rissartefakte, die in histologischen Rattenhirnschnitten vorkommen können, durch nicht-lineare Registrierung reduziert. Um die Optimierung in der Rissregion zu leiten, wird der Curvature Registrierungsansatz um eine Metrik basierend auf der Segmentierung der Bilder erweitert. Dabei erzielten Registrierungen mit der ausschließlichen Segmentierung des Risses bessere Ergebnisse als Registrierungen mit einer Segmentierung des gesamten Hirnschnitts. Insgesamt zeigt sich eine deutliche Verbesserung in der Rissregion, wobei der verbleibende reduzierte Riss auf die Glattheitsbedingungen des Regularisierers zurückzuführen ist.
In dieser Arbeit wird die Segmentierung von Gehirngewebe aus Kopfaufnahmen von Ratten mittels Level-Set-Methoden vorgeschlagen. Dazu wird ein zweidimensionaler, kontrastbasierter Ansatz zu einem dreidimensionalen, lokal an die Bildintensität adaptierten Segmentierer erweitert. Es wird gezeigt, dass mit diesem echten 3D-Ansatz die lokalen Bildstrukturen besser berücksichtigt werden können. Insbesondere Magnet-Resonanz-Tomographien (MRTs) mit globalen Helligkeitsgradienten, beispielsweise bedingt durch Oberflächenspulen, können auf diese Weise zuverlässiger und ohne weitere Vorverarbeitungsschritte segmentiert werden. Die Leistungsfähigkeit des Algorithmus wird experimentell an Hand dreier Rattenhirn-MRTs demonstriert.
Presenting images from different modalities seems to be a trivial task considering the challenges to obtain registered images as a pre-requisite for image fusion. In combined tomographs like PET/CT, image registration is intrinsic. However, informative image fusion mandates careful preparation owing to the large amount of information that is presented to the observer. In complex imaging situations it is required to provide tools that are easy to handle and still powerful enough to help the observer discriminating important details from background patterns. We investigated several options for color tables applied to brain and non-brain images obtained with PET, MRI and CT.
Fusion of histology and MRI is frequently demanded in biomedical research to study in vitro tissue properties in an in vivo reference space. Distortions and artifacts caused by cutting and staining of histological slices as well as differences in spatial resolution make even the rigid fusion a difficult task. State-of- the-art methods start with a mono-modal restacking yielding a histological pseudo-3D volume. The 3D information of the MRI reference is considered subsequently. However, consistency of the histology volume and consistency due to the corresponding MRI seem to be diametral goals. Therefore, we propose a novel fusion framework optimizing histology/histology and histology/MRI consistency at the same time finding a balance between both goals. Method - Direct slice-to-slice correspondence even in irregularly-spaced cutting sequences is achieved by registration-based interpolation of the MRI. Introducing a weighted multi-image mutual information metric (WI), adjacent histology and corresponding MRI are taken into account at the same time. Therefore, the reconstruction of the histological volume as well as the fusion with the MRI is done in a single step. Results - Based on two data sets with more than 110 single registrations in all, the results are evaluated quantitatively based on Tanimoto overlap measures and qualitatively showing the fused volumes. In comparison to other multi-image metrics, the reconstruction based on WI is significantly improved. We evaluated different parameter settings with emphasis on the weighting term steering the balance between intra- and inter-modality consistency.
Polarised light imaging (PLI) utilises the birefringence of the myelin sheaths in order to visualise the orientation of nerve fibres in microtome sections of adult human post-mortem brains at ultra-high spatial resolution. The preparation of post-mortem brains for PLI involves fixation, freezing and cutting into 100-μm-thick sections. Hence, geometrical distortions of histological sections are inevitable and have to be removed for 3D reconstruction and subsequent fibre tracking. We here present a processing pipeline for 3D reconstruction of these sections using PLI derived multimodal images of post-mortem brains. Blockface images of the brains were obtained during cutting; they serve as reference data for alignment and elimination of distortion artefacts. In addition to the spatial image transformation, fibre orientation vectors were reoriented using the transformation fields, which consider both affine and subsequent non-linear registration. The application of this registration and reorientation approach results in a smooth fibre vector field, which reflects brain morphology. PLI combined with 3D reconstruction and fibre tracking is a powerful tool for human brain mapping. It can also serve as an independent method for evaluating in vivo fibre tractography.
Quantification of growth in experimental F98 and C6 rat brain tumours was performed on 51 rat brains, 17 of which have been further assessed by 3D tumour reconstruction. Brains were cryosliced and radio-labelled with a ligand of the peripheral type benzodiazepine-receptor (pBR), 3H-Pk11195 [(1-(2-chlorophenyl)-N-methyl-N-(1-methyl-propylene)-3-isoquinoline-carboxamide)] by receptor autoradiography. Manually segmented and automatically registered tumours have been 3D-reconstructed for volumetric comparison on the basis of 3H-Pk11195-based tumour recognition. Furthermore automatically computed areas of −300 μm inner (marginal) zone as well as 300 μm and 600 μm outer tumour space were quantified. These three different regions were transferred onto other adjacent slices that had been labelled by receptor autoradiography with the A1 Adenosine receptor (A1AR)-ligand 3H-CPFPX (3H-8-cyclopentyl-3-(3-fluorpropyl)-1-propylxanthine) for quantitative assessment of A1AR in the three different tumour zones. Hence, a method is described for quantifying various receptor protein systems in the tumour as well as in the marginal invasive zones around experimentally implanted rat brain tumours and their representation in the tumour microenvironment as well as in 3D space. Furthermore, a tool for automatically reading out radio-labelled rat brain slices from auto radiographic films was developed, reconstructed into a consistent 3D-tumour model and the zones around the tumour were visualized. A1AR expression was found to depend upon the tumour volume in C6 animals, but is independent on the time of tumour development. In F98 animals, a significant increase in A1AR receptor protein was found in the Peritumoural zone as a function of time of tumour development and tumour volume.
Volumetric representations of autoradiographic and histological images gain ever more interest as a base to interpret data obtained with /spl mu/-imaging devices like microPET. Beyond supporting spatial orientation within rat brains especially autoradiographic images may serve as a base to quantitatively evaluate the complex uptake patterns of microPET studies with receptor ligands or tumor tracers. They may also serve for the development of rat brain atlases or data models, which can be explored during further image analysis or simulation studies. In all cases a consistent spatial representation of the rat brain, i.e. its anatomy and the corresponding quantitative uptake pattern, is required. This includes both, a restacking of the individual two-dimensional images and the exact registration of the respective volumes. We propose strategies how these volumes can be created in a consistent way and trying to limit the requirements on the circumstances during data acquisition, i.e. being independent from other sources like video imaging of the block face prior to cutting or high resolution micro-X-ray CT or micro MRI.
Whole-body PET/CT imaging
(2008)
Aim
Combined whole-body (WB) PET/CT imaging provides better overall co-registration compared to separate CT and PET. However, in clinical routine local PET-CT mis-registration cannot be avoided. Thus, the reconstructed PET tracer distribution may be biased when using the misaligned CT transmission data for CT-based attenuation correction (CT-AC). We investigate the feasibility of retrospective co-registration techniques to align CT and PET images prior to CT-AC, thus improving potentially the quality of combined PET/CT imaging in clinical routine.
Methods
First, using a commercial software registration package CT images were aligned to the uncorrected PET data by rigid and non-rigid registration methods. Co-registration accuracy of both alignment approaches was assessed by reviewing the PET tracer uptake patterns (visual, linked cursor display) following attenuation correction based on the original and co-registered CT. Second, we investigated non-rigid registration based on a prototype ITK implementation of the B-spline algorithm on a similar targeted MR-CT registration task, there showing promising results.
Results
Manual rigid, landmark-based co-registration introduced unacceptable misalignment, in particular in peripheral areas of the whole-body images. Manual, non-rigid landmark-based co-registration prior to CT-AC was successful with minor loco-regional distortions. Nevertheless, neither rigid nor non-rigid automatic co-registration based on the Mutual Information image to image metric succeeded in co-registering the CT and noAC-PET images. In contrast to widely available commercial software registration our implementation of an alternative automated, non-rigid B-spline co-registration technique yielded promising results in this setting with MR-CT data.
Conclusion
In clinical PET/CT imaging, retrospective registration of CT and uncorrected PET images may improve the quality of the AC-PET images. As of today no validated and clinically viable commercial registration software is in routine use. This has triggered our efforts in pursuing new approaches to a validated, non-rigid co-registration algorithm applicable to whole-body PET/CT imaging of which first results are presented here. This approach appears suitable for applications in retrospective WB-PET/CT alignment.
Ziel
Kombinierte PET/CT-Bildgebung ermöglicht verbesserte Koregistrierung von PET- und CT-Daten gegenüber separat akquirierten Bildern. Trotzdem entstehen in der klinischen Anwendung lokale Fehlregistrierungen, die zu Fehlern in der rekonstruierten PET- Tracerverteilung führen können, falls die unregistrierten CT-Daten zur Schwächungskorrektur (AC) der Emissionsdaten verwendet werden. Wir untersuchen daher die Anwendung von Bildregistrierungsalgorithmen vor der CT-basierten AC zur Verbesserung der PET-Aufnahmen.
Methoden
Mittels einer kommerziellen Registrierungssoftware wurden die CT-Daten eines PET/CT- Tomographen durch landmarken- und intensitätsbasierte rigide (starre) und nicht-rigide Registrierungsverfahren räumlich an die unkorrigierten PET-Emissionsdaten angepasst und zur AC verwendet. Zur Bewertung wurden die Tracerverteilungen in den PET-Bildern (vor AC, CT-AC, CT-AC nach Koregistrierung) visuell und mit Hilfe korrelierter Fadenkreuze verglichen. Zusätzlich untersuchten wir die ITK-Implementierung der bekannten B-spline basierten, nicht-rigiden Registrierungsansätze im Hinblick auf ihre Verwendbarkeit für die multimodale PET/CT-Ganzkörperregistrierung.
Ergebnisse
Mittels landmarkenbasierter, nicht-rigider Registrierung konnte die Tracerverteilung in den PET-Daten lokal verbessert werden. Landmarkenbasierte rigide Registrierung führte zu starker Fehlregistrierung in entfernten Körperregionen. Automatische rigide und nicht-rigide Registrierung unter Verwendung der Mutual-Information-Ähnlichkeitsmetrik versagte auf allen verwendeten Datensätzen. Die automatische Registrierung mit B-spline-Funktionen zeigte vielversprechende Resultate in der Anwendung auf einem ähnlich gelagerten CT–MR-Registrierungsproblem.
Fazit
Retrospektive, nicht-rigide Registrierung unkorrigierter PET- und CT-Aufnahmen aus kombinierten Aufnahmensystemen vor der AC kann die Qualität von PET-Aufnahmen im klinischen Einsatz verbessern. Trotzdem steht bis heute im klinischen Alltag keine validierte, automatische Registrierungssoftware zur Verfügung. Wir verfolgen dazu Ansätze für validierte, nicht-rigide Bildregistrierung für den klinischen Einsatz und präsentieren erste Ergebnisse.