Refine
Document Type
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
Begutachtungsstatus
- peer-reviewed (2)
Identifying different functional regions during a brain surgery is a challenging task usually performed by highly specialized neurophysiologists. Progress in this field may be used to improve in situ brain navigation and will serve as an important building block to minimize the number of animals in preclinical brain research required by properly positioning implants intraoperatively. The study at hand aims to correlate recorded extracellular signals with the volume of origin by deep learning methods. Our work establishes connections between the position in the brain and recorded high-density neural signals. This was achieved by evaluating the performance of BLSTM, BGRU, QRNN and CNN neural network architectures on multisite electrophysiological data sets. All networks were able to successfully distinguish cortical and thalamic brain regions according to their respective neural signals. The BGRU provides the best results with an accuracy of 88.6 % and demonstrates that this classification task might be solved in higher detail while minimizing complex preprocessing steps.
Advanced silicon electrode arrays facilitate the recording of thousands of neurons, generating extensive neural data that imposes a significant burden on researchers and processing algorithms. Thus, real-time analysis pipelines are gaining increasing value, while at the same time having to deal with non-stationary and noisy data. We intend to apply Machine Learning (ML) algorithms to a dense set of recordings from rat brains in order to prepare a functional atlas, correlating neuronal signals with anatomical position. While doing so, we needed to decide on a rational way which recording snippet length would best represent the original, longer source sequence and thus suffices to be further processed for anatomical correlation. We implemented an algorithm to evaluate the spectral information of systematically length varied records based on similarity to the original record. For our dataset a recording duration of 3 seconds satisfied moderate requirements across all channels, thus allowing us to reduce computational load for ongoing ML classification of microprobe sourced electrophysiologic signals.