Refine
Document Type
Is part of the Bibliography
- no (6)
Keywords
- Artificial Intelligence (3)
- Endoscopy (2)
- Adenocarcinoma (1)
- Autonomie (1)
- Barrett’s cancer (1)
- Deep Learning (1)
- Diagnose (1)
- Digitalisierung (1)
- Eosinophilic Esophagitis (1)
- Kognitiver Operationsaal (1)
Institute
Begutachtungsstatus
- peer-reviewed (5)
Hintergrund: Die Entwicklung assistiver Technologien wird in den kommenden Jahren nicht nur in der Chirurgie von zunehmender Bedeutung sein. Die Wahrnehmung der Istsituation stellt hierbei die Grundlage jeder autonomen Handlung dar. Hierfür können unterschiedliche Sensorsysteme genutzt werden, wobei videobasierte Systeme ein besonderes Potenzial aufweisen.
Methode: Anhand von Literaturangaben und auf Basis eigener Forschungsarbeiten werden zentrale Aspekte bildbasierter Unterstützungssysteme für die Chirurgie dargestellt. Hierbei wird deren Potenzial, aber auch die Limitationen der Methoden erläutert.
Ergebnisse: Eine etablierte Anwendung stellt die Phasendetektion chirurgischer Eingriffe dar, für die Operationsvideos mittels neuronaler Netzwerke analysiert werden. Durch eine zeitlich gestützte und transformative Analyse konnten die Ergebnisse der Prädiktion jüngst deutlich verbessert werden. Aber auch robotische Kameraführungssysteme nutzen Bilddaten, um das Laparoskop zukünftig autonom zu navigieren. Um die Zuverlässigkeit an die hohen Anforderungen in der Chirurgie anzugleichen, müssen diese jedoch durch zusätzliche Informationen ergänzt werden. Ein vergleichbarer multimodaler Ansatz wurde bereits für die Navigation und Lokalisation bei laparoskopischen Eingriffen umgesetzt. Hierzu werden Videodaten mittels verschiedener Methoden analysiert und diese Ergebnisse mit anderen Sensormodalitäten fusioniert.
Diskussion: Bildbasierte Unterstützungsmethoden sind bereits für diverse Aufgaben verfügbar und stellen einen wichtigen Aspekt für die Chirurgie der Zukunft dar. Um hier jedoch zuverlässig und für autonome Funktionen eingesetzt werden zu können, müssen sie zukünftig in multimodale Ansätze eingebettet werden, um die erforderliche Sicherheit bieten zu können.
The endoscopic features associated with eosinophilic esophagitis (EoE) may be missed during routine endoscopy. We aimed to develop and evaluate an Artificial Intelligence (AI) algorithm for detecting and quantifying the endoscopic features of EoE in white light images, supplemented by the EoE Endoscopic Reference Score (EREFS). An AI algorithm (AI-EoE) was constructed and trained to differentiate between EoE and normal esophagus using endoscopic white light images extracted from the database of the University Hospital Augsburg. In addition to binary classification, a second algorithm was trained with specific auxiliary branches for each EREFS feature (AI-EoE-EREFS). The AI algorithms were evaluated on an external data set from the University of North Carolina, Chapel Hill (UNC), and compared with the performance of human endoscopists with varying levels of experience. The overall sensitivity, specificity, and accuracy of AI-EoE were 0.93 for all measures, while the AUC was 0.986. With additional auxiliary branches for the EREFS categories, the AI algorithm (AI-EoEEREFS) performance improved to 0.96, 0.94, 0.95, and 0.992 for sensitivity, specificity, accuracy, and AUC, respectively. AI-EoE and AI-EoE-EREFS performed significantly better than endoscopy beginners and senior fellows on the same set of images. An AI algorithm can be trained to detect and quantify endoscopic features of EoE with excellent performance scores. The addition of the EREFS criteria improved the performance of the AI algorithm, which performed significantly better than endoscopists with a lower or medium experience level.
Background and aims: The accurate differentiation between T1a and T1b Barrett’s cancer has both therapeutic and prognostic implications but is challenging even for experienced physicians. We trained an Artificial Intelligence (AI) system on the basis of deep artificial neural networks (deep learning) to differentiate between T1a and T1b Barrett’s cancer white-light images.
Methods: Endoscopic images from three tertiary care centres in Germany were collected retrospectively. A deep learning system was trained and tested using the principles of cross-validation. A total of 230 white-light endoscopic images (108 T1a and 122 T1b) was evaluated with the AI-system. For comparison, the images were also classified by experts specialized in endoscopic diagnosis and treatment of Barrett’s cancer.
Results: The sensitivity, specificity, F1 and accuracy of the AI-system in the differentiation between T1a and T1b cancer lesions was 0.77, 0.64, 0.73 and 0.71, respectively. There was no statistically significant difference between the performance of the AI-system and that of human experts with sensitivity, specificity, F1 and accuracy of 0.63, 0.78, 0.67 and 0.70 respectively.
Conclusion: This pilot study demonstrates the first multicenter application of an AI-based system in the prediction of submucosal invasion in endoscopic images of Barrett’s cancer. AI scored equal to international experts in the field, but more work is necessary to improve the system and apply it to video sequences and in a real-life setting. Nevertheless, the correct prediction of submucosal invasion in Barret´s cancer remains challenging for both experts and AI.
Aims
Eosinophilic esophagitis (EoE) is easily missed during endoscopy, either because physicians are not familiar with its endoscopic features or the morphologic changes are too subtle. In this preliminary paper, we present the first attempt to detect EoE in endoscopic white light (WL) images using a deep learning network (EoE-AI).
Methods
401 WL images of eosinophilic esophagitis and 871 WL images of normal esophageal mucosa were evaluated. All images were assessed for the Endoscopic Reference score (EREFS) (edema, rings, exudates, furrows, strictures). Images with strictures were excluded. EoE was defined as the presence of at least 15 eosinophils per high power field on biopsy. A convolutional neural network based on the ResNet architecture with several five-fold cross-validation runs was used. Adding auxiliary EREFS-classification branches to the neural network allowed the inclusion of the scores as optimization criteria during training. EoE-AI was evaluated for sensitivity, specificity, and F1-score. In addition, two human endoscopists evaluated the images.
Results
EoE-AI showed a mean sensitivity, specificity, and F1 of 0.759, 0.976, and 0.834 respectively, averaged over the five distinct cross-validation runs. With the EREFS-augmented architecture, a mean sensitivity, specificity, and F1-score of 0.848, 0.945, and 0.861 could be demonstrated respectively. In comparison, the two human endoscopists had an average sensitivity, specificity, and F1-score of 0.718, 0.958, and 0.793.
Conclusions
To the best of our knowledge, this is the first application of deep learning to endoscopic images of EoE which were also assessed after augmentation with the EREFS-score. The next step is the evaluation of EoE-AI using an external dataset. We then plan to assess the EoE-AI tool on endoscopic videos, and also in real-time. This preliminary work is encouraging regarding the ability for AI to enhance physician detection of EoE, and potentially to do a true “optical biopsy” but more work is needed.
In this study, we aimed to develop an artificial intelligence clinical decision support solution to mitigate operator-dependent limitations during complex endoscopic procedures such as endoscopic submucosal dissection and peroral endoscopic myotomy, for example, bleeding and perforation. A DeepLabv3-based model was trained to delineate vessels, tissue structures and instruments on endoscopic still images from such procedures. The mean cross-validated Intersection over Union and Dice Score were 63% and 76%, respectively. Applied to standardised video clips from third-space endoscopic procedures, the algorithm showed a mean vessel detection rate of 85% with a false-positive rate of 0.75/min. These performance statistics suggest a potential clinical benefit for procedure safety, time and also training.