Refine
Document Type
- conference proceeding (article) (15)
- Article (4)
Has Fulltext
- no (19)
Is part of the Bibliography
- no (19)
Keywords
- Farbkonstanz (4)
- Laryngoskopie (4)
- Dichromatisches Reflexionsmodell (2)
- Konturverfolgung (2)
- Snakes (2)
- dichromatisches Reflexionsmodell (2)
- Aktives Konturmodell (1)
- Balloon Model (1)
- Bewegungsanalyse (1)
- Bewegungsschatzung (1)
Institute
Begutachtungsstatus
- peer-reviewed (1)
Whilst considerable progress has been made in enhancing the quality of indirect laryngoscopy and image processing, the evaluation of clinical findings is still based on the clinician's judgement. The aim of this paper was to examine the feasibility of an objective computer-based method for evaluating laryngeal disease. Digitally recorded images obtained by 90 degree- and 70 degree-angled indirect rod laryngoscopy using standardized white balance values were made of 16 patients and 19 healthy subjects. The digital images were evaluated manually by the clinician based on a standardized questionnaire, and suspect lesions were marked and classified on the image. Following colour separation, normal vocal cord areas as well as suspect lesions were analyzed automatically using co-occurrence matrices, which compare colour differences between neighbouring pixels over a predefined distance. Whilst colour histograms did not provide sufficient information for distinguishing between healthy and diseased tissues, consideration of the blue content of neighbouring pixels enabled a correct classification in 81.4% of cases. If all colour channels (red, green and blue) were regarded simultaneously, the best classification correctness obtained was 77.1%. Although only a very basic classification differentiating between healthy and diseased tissue was attempted, the results showed progress compared to grey-scale histograms, which have been evaluated before. The results document a first step towards an objective, machine-based classification of laryngeal images, which could provide the basis for further development of an expert system for use in indirect laryngoscopy.
The estimation of illuminant color is mandatory for many applications in the field of color image quantification. However, it is an unresolved problem if no additional heuristics or restrictive assumptions apply. Assuming uniformly colored and roundly shaped objects, Lee has presented a theory and a method for computing the scene-illuminant chromaticity from specular highlights [H. C. Lee, J. Opt. Soc. Am. A 3, 1694 (1986)]. However, Lee’s method, called image path search, is less robust to noise and is limited in the handling of microtextured surfaces. We introduce a novel approach to estimate the color of a single illuminant for noisy and microtextured images, which frequently occur in real-world scenes. Using dichromatic regions of different colored surfaces, our approach, named color line search, reverses Lee’s strategy of image path search. Reliable color lines are determined directly in the domain of the color diagrams by three steps. First, regions of interest are automatically detected around specular highlights, and local color diagrams are computed. Second, color lines are determined according to the dichromatic reflection model by Hough transform of the color diagrams. Third, a consistency check is applied by a corresponding path search in the image domain. Our method is evaluated on 40 natural images of fruit and vegetables. In comparison with those of Lee’s method, accuracy and stability are substantially improved. In addition, the color line search approach can easily be extended to scenes of objects with macrotextured surfaces.
Local gray level dependencies of natural images can be modelled by means of co-occurrence matrices containing joint probabilities of gray-level pairs. Texture, however, is a resolution-dependent phenomenon and hence, classification depends on the chosen scale. Since there is no optimal scale for all textures we employ a multiscale approach that acquires textural features at several scales. Thus linear and nonlinear scale-spaces are analyzed by multiscale co-occurrence matrices that describe the statistical behavior of a texture in scale-space. Classification is then performed on the basis of texture features taken from the individual scale with the highest discriminatory power. By considering cross-scale occurrences of gray level pairs, the impact of filters on the feature is described and used for classification of natural textures. This novel method was found to improve classification rates of the common co-occurrence matrix approach on standard textures significantly.
A method for automated segmentation of vocal cords in stroboscopic video sequences is presented.
In contrast to earlier approaches, the inner and outer contours of the vocal cords are independently delineated. Automatic segmentation of the low contrasted images is carried out by connecting the shape constraint of a point distribution model to a multi-channel regionbased balloon model. This enables us to robustly compute a vibration profile that is used as a new diagnostic tool to visualize several vibration parameters in only one graphic. The vibration profiles are studied in two cases: one physiological vibration and one functional pathology.
Zur Lösung komplexer Segmentierungsprobleme wird eine hierarchische und farbbasierte Wasserscheidentransformation vorgestellt. Geringe Modifikationen bezüglich Startpunktwahl und Flutungsprozess resultieren in signifikanten Verbesserungen der Segmentierung. Das Verfahren wurde zur Lippendetektion in Farbbildsequenzen eingesetzt, die zur quantitativen Beschreibung von Sprechbewegungsabläufen automatisch ausgewertet werden. Die Experimente mit 245 Bildern aus 6 Sequenzen zeigten eine Fehlerrate von 13%.
Color Texture Analysis of Moving Vocal Cords Using Approaches from Statistics and Signal Theory
(2000)
Textural features are applied for detection of morphological pathologies of vocal cords. Cooccurrence matrices as statistical features are presented as well as filter bank analysis by Gabor filters. Both methods are extended to handle color images. Their robustness against camera movement and vibration of vocal cords is evaluated. Classification results due to three in vivo sequences are in between 94.4 % and 98.9%. The classification errors decrease if color features are used instead of grayscale features for both statistical and Fourier features
Objective:
Complex hue/saturation images as a new approach for color texture classification using Gabor filters are introduced and compared with common techniques.
Method:
The interpretation of hue and saturationas polar coordinates allows direct use of the HSV-colorspace for Fourier transform. This technique is applied for Gabor feature extraction of color textures. In contrast to other color features based on the RGB-colorspace [1] the combination of color bands is done previous to the filtering.
Results:
The performance of the new HS-featuresis compared with that of RGB based as well as grayscale Gabor features by evaluating the classifi-cation of 30 natural textures. The new HS-featuresshow same results like the best RGB features but allow a more compact representation. On the averagethe color features improve the results of grayscale features.
Conclusion:
The consideration of the color information enhances the classification of color texture. The choice of colorspace cannot be adjudged finally, but the introduced features suggest the use of the HSV-colorspace with less features than RGB.