Refine
Year of publication
- 2025 (1)
Document Type
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
- Aphasie (1)
- Automatische Spracherkennung (1)
- Sprachdialogsystem (1)
In addressing the particular linguistic challenges posed by patients suffering from aphasia, a language disorder, this paper proposes a fine-tuning approach to enhance the speech recognition capabilities of existing models. The available aphasic research data in German is highly limited. To address this constraint, we propose a cross-lingual transfer approach to utilize English data to improve performance in German. This advancement aims to support the development of a therapy platform tailored for patients with aphasia. For the base speech recognition model, we choose to use OpenAI’s Whisper model, and for fine-tuning, we make use of TalkBank’s AphasiaBank. The experimental findings demonstrate that the transcription of aphasic audio with Whisper is less successful than non-aphasic audio. However, fine-tuning the transcription in the respective language resulted in an enhancement of its quality. In contrast, fine-tuning the transcription in another language and expecting a transfer of the learned aphasic speech properties led to a deterioration in its quality.