Refine
Document Type
- conference proceeding (article) (3)
- Article (2)
- Part of Periodical (2)
Is part of the Bibliography
- no (7)
Keywords
- Biomechanics (1)
- Einflussgröße (1)
- Head trauma (1)
- Kicks (1)
- Kopfverletzung (1)
- Schädel-Hirn-Trauma (1)
Institute
Begutachtungsstatus
- peer-reviewed (1)
BACKGROUND:
Construct stiffness affects healing of bones fixed with locking plates. However, variable construct stiffness reported in the literature may be attributable to differing test configurations and direct comparisons may clarify these differences.
QUESTIONS/PURPOSES:
We therefore asked whether different distal femur locking plate systems and constructs will lead to different (1) axial and rotational stiffness and (2) fatigue under cyclic loading.
METHODS:
We investigated four plate systems for distal femur fixation (AxSOS, LCP, PERI-LOC, POLYAX) of differing designs and materials using bone substitutes in a distal femur fracture model (OTA/AO 33-A3). We created six constructs of each of the four plating systems. Stiffness under static and cyclic loading and fatigue under cyclic loading were measured.
RESULTS:
Mean construct stiffness under axial loading was highest for AxSOS (100.8 N/mm) followed by PERI-LOC (80.8 N/mm) and LCP (62.6 N/mm). POLYAX construct stiffness testing showed the lowest stiffness (51.7 N/mm) with 50% stiffness of AxSOS construct testing. Mean construct stiffness under torsional loading was similar in the group of AxSOS and PERI-LOC (3.40 Nm/degree versus 3.15 Nm/degree) and in the group of LCP and POLYAX (2.63 Nm/degree versus 2.56 Nm/degree). The fourth load level of > 75,000 cycles was reached by three of six AxSOS, three of six POLYAX, and two of six PERI-LOC constructs. All others including all LCP constructs failed earlier.
CONCLUSIONS:
Implant design and material of new-generation distal femur locking plate systems leads to a wide range of differences in construct stiffness.
CLINICAL RELEVANCE:
Assuming construct stiffness affects fracture healing, these data may influence surgical decision-making in choosing an implant system.
In the last few years, increasingly kicks to the head were observed as a criminal offense. This study examined the
influence of age, shoe type and kicking direction on the severity of head trauma.
Male test persons were divided into two groups “Old” and “Young”. Both groups were equipped with light
sneakers and combat boots. A standard laboratory crash dummy was used to simulate the victim’s body. First, the
dummy’s head, free floating above the ground, was kicked vertically. Second, the dummy’s head was kicked
horizontally. Established injury criteria were used to quantify the injury risk.
No influence concerning the type of foot wear and no difference between the groups “Old” and “Young” could be
found. For all analyses, kicking vertically generally lead to a higher risk for the subject compared to kicking
horizontally.
In this study, only the integral effect of the kicks could be analyzed. A detailed injury pattern cannot directly be
derived from the data. Nevertheless, the presented data show the massive potential of injuries associated with head
kicks.
Forschungsbericht 2016
(2016)
Forschungsbericht 2012
(2012)