Refine
Document Type
Language
- English (8)
Is part of the Bibliography
- no (8)
Keywords
- CFD (2)
- Flow visualisation (2)
- Nasal airflow (2)
- Tomographic PIV (2)
- Aerodynamics (1)
- Aerosols (1)
- Breathing cycle (1)
- Dragonfly (1)
- Fluid Mechanics (1)
- Generic-Trachea Flows (1)
Institute
Begutachtungsstatus
- begutachtet (3)
- peer-reviewed (3)
Vortex-Generator Pairs for Vortex-Induced Heat-Transfer Enhancement in Heat-Exchanger Channels
(2010)
The objective of the presented work is to investigate possibilities for increasing the heattransfer in heat-exchanger channels for aircraft applications by using flow-manipulating devices. Focal point of the investigation are different arrangements of vortex-generator pairs within a generic heat-exchanger channel. The DLR URANS CFD solver THETA has been used to carry out numerical simulations of the laminar flow within a rectangular channel with integrated vortex generators. In particular, the analysis of the interaction of generated vortices with the stratified thermal boundary layer, the impact of vortical flow structures on heated walls and the enforced mixed-convection flow is of special interest. The final goal is the evaluation of the applicability of oppositely arranged vortex-generator pairs for the enhancement of vortex-induced heat-transfer.
The special wing geometry of dragonflies consisting of veins and a membrane forming a corrugated profile leads to special aerodynamic characteristics. To capture the governing flow regimes of a dragonfly wing in detail, a realistic wing model has to be investigated. Therefore, this study aimed to analyze the aerodynamic characteristics of a 3D dragonfly wing reconstructed from a high-resolution micro-CT scan. Afterwards, a spatially high discretized mesh was generated using the mesh generator CENTAUR™ 14.5.0.2 (CentaurSoft, Austin, TX, US) to finally conduct Computational Fluid Dynamics (CFD) investigations in Fluent® 2020 R2 (ANSYS, Inc., Canonsburg, PA, US). Due to the small dimensions of the wing membrane, only the vein structure of a Camacinia Gigantea was captured at a micro-CT voxel size of 7 microns. The membrane was adapted and connected to the vein structure using a Boolean union operation. Occurring nconsistencies after combining the veins and the membrane were corrected using an adapted pymesh script [1]. As an initial study, only one quarter of the wing (outer wing section) was investigated to reduce the required computational effort. The resulting hybrid mesh consisting of 10 pseudo-structured prism layers along the wing surface and tetrahedra in the farfield area has 43 mio. nodes. The flow around the wing was considered to be incompressible and laminar using transient calculations. When the flow passes the vein structures, steady vortices occur in the corrugation valleys leading to recirculation zones. Therefore, the dragonfly wing resembles the profile of an airfoil. This leads to comparable lift coefficients of dragonfly wings and airfoil profiles at significantly reduced structural weight. The reconstructed geometry also included naturally occurring triangular prismlike serrated structures at the leading edge of the wing, which have comparable effects to micro vortex generators and might stabilize the recirculation zones. Further work aims to investigate the aerodynamic properties of a complete dragonfly wing during wing flapping.
The high frequency oscillation artificial respiration technique is often the last hope for patients to survive highly damaged lung tissue. The mortality can significantly be reduced. In
comparison to conventional artificial respiration the applied volume flow rate and pressure is significantly lowered in order to avoid further damaging of lung tissue and remaining intact alveolae. However, the physical mechanism of transport of oxygen to the aeriols under high frequency oscillation is not well understood. In the upper part of the lung convection is dominant, in contrast, the gas exchange in the lower parts of the lung is mainly driven by diffusion. It is not clear how associated gradients of concentrations of different molecular species are then achieved. Highly oscillating fluid flows has been a long research topic in fluid dynamics. It is known that oscillating pressure fluctuations are able to induce secondary flows, in particular, in curved ducts and pipes. The question is, whether the trachea enforces the generation of secondary flow by its kidney like cross section geometry. The influence of molecular species of different densities onto the formation of secondary flows and the convectional transport within the trachea is investigated. In order to clarify the physical mechanisms behind flow simulations have been conducted by using state of the art CFD techniques.
High Spatial Resolution Tomo-PIV of the Nasopharynx Focussing on the Physiological Breathing Cycle
(2022)
Investigations of complex patient-specific flow in the nasopharynx requires high resolution numerical calculations validated by reliable experiments. When building the validation base and the benchmark
of computational fluid dynamics, an experimental setup of the nasal airways was developed. The applied optical measurement technique of tomo-PIV supplies information on the governing flow field in three dimensions. This paper presents tomo-PIV measurements of the highly complex patient-specific geometry of the human trachea. A computertomographic scan of a person’s head builds the basis of the experimental silicone model of the nasal airways. An optimised approach for precise refractive index matching avoids optical distortions even in highly complex non-free-of-sight 3D geometries. A linear-motor-driven pump generates breathing scenarios, based on measured breathing cycles. Adjusting of the CCD cameras‘ double-frame-rate PIV-Δt enables the detailed analysis of flow structures during different cycle phases. Merging regions of interest enables high spatial resolution acquisition of the flow field.
Surgical smoke has been a little discussed topic in the context of the current pandemic. Surgical smoke is generated during the cauterization of tissue with heat-generating devices and consists of 95% water
vapor and 5% cellular debris in the form of particulate matter. In-vivo investigations are performed during tracheotomies where surgical smoke is produced during tissue electrocautery. Furthermore, in-vitro parametric studies to investigate the particle number and size distribution and the spatial distribution of surgical smoke with laser light sheet technique are conducted. The higher the power of the high-frequency-device the larger the particles in size and the higher the resulting particle counts. The images taken show the densest smoke at 40W with artificial saliva. The resulting characteristic size distribution, which may include viruses and bacterial components, confirms that the risk arising from surgical smoke should be considered. Furthermore, the experiments will provide the database for further numerical investigations.
Surgical Smoke is generated during the cauterization of tissue with high-frequency (HF) devices and consists of 95% water vapor and 5% cellular debris. When the coagulation tweezers, which are supplied with HF voltage by the HF device, touch tissue, the electric circuit is closed, and smoke is generated by the heat. In-vivo investigations are performed during tracheotomies where surgical smoke is produced during coagulation of tissue. Furthermore, in-vitro parametric studies to investigate the particle number and size distribution and the spatial distribution of surgical smoke with laser light sheet technique are conducted. With higher power of the HF device, the particles generated are larger in size and the total number of particles generated is also higher. Adding artificial saliva to the tissue shows even higher particle counts. The study by laser light sheet also confirms this. The resulting characteristic size distribution, which may include viruses and bacterial components, confirms considering the risk arising from surgical smoke. Furthermore, the experiments will provide the database for further numerical investigations.
High Spatial Resolution Tomo-PIV of the Trachea Focussing on the Physiological Breathing Cycle
(2023)
Investigations of complex patient-specific flow in the nasopharynx requires high resolution numerical calculations validated by reliable experiments. When building the validation base and the benchmark of computational fluid dynamics, an experimental setup of the nasal airways was developed. The applied optical measurement technique of tomo-PIV supplies information on the governing flow field in three dimensions.
This paper presents tomo-PIV measurements of the highly complex patient-specific geometry of the human trachea. A computertomographic scan of a person’s head builds the basis of the experimental silicone model of the nasal airways. An optimised approach for precise refractive index matching avoids optical distortions even in highly complex non-free-of-sight 3D geometries. A linear-motor-driven pump generates breathing scenarios, based on measured breathing cycles. Adjusting of the CCD cameras‘ double-frame-rate PIV-Δt enables the detailed analysis of flow structures during different cycle phases. Merging regions of interest enables high spatial resolution acquisition of the flow field.
The human nose serves as the primary gateway for air entering the respiratory system and plays a vital role in breathing. Nasal breathing difficulties are a significant health concern, leading to substantial healthcare costs for patients. Understanding nasal airflow dynamics is crucial for comprehending respiratory mechanisms. This article presents a detailed study using tomo-Particle Image Velocimetry (PIV) to investigate nasal airflow dynamics while addressing its accuracy. Embedded in the OpenNose project, the work described aims to provide a validation basis for different numerical approaches to upper airway flow. The study includes the manufacturing of a transparent silicone model based on a clinical CT scan, refractive index matching to minimize optical distortions, and precise flow rate adjustments based on physiological breathing cycles. This method allows for spatial high-resolution investigations in different regions of interest within the nasopharynx during various phases of the breathing cycle. The results demonstrate the accuracy of the investigations, enabling detailed analysis of flow structures and gradients. This spatial high-resolution tomo-PIV approach provides valuable insights into the complex flow phenomena occurring during the physiological breathing cycle in the nasopharynx. The study's findings contribute to advancements in non-free-of-sight experimental flow investigation of complex cavities under nearly realistic conditions. Furthermore, reliable and accurate experimental data is crucial for properly validating numerical approaches that compute this patient-specific flow for clinical purposes.