Refine
Is part of the Bibliography
- no (3)
Keywords
- Angewandte Wissenschaften (1)
- Elektrotechnik (1)
- Energietechnik (1)
- Informationstechnik (1)
- Literaturrecherche (1)
Institute
Dieser Bericht entstand im Rahmen der Lehrveranstaltung „Forschungsmethoden und Seminar (FMS)“ im Wintersemester 2021/22 auf Initiative der Studierenden des Masterstudiengangs „Elektro- und Informationstechnik (MEI)“.
Diese Lehrveranstaltung hat das Ziel, systematisch an das wissenschaftliche Arbeiten, speziell die Wissenschaftskommunikation, heranzuführen. Daher war geeignete Literatur zu einem individuellen Thema zu recherchieren, Veröffentlichungen auf ihre Relevanz hin zu beurteilen und letztendlich eine eigene Ausarbeitung basierend auf der Literaturrecherche zu erarbeiten und diese in einem Vortrag zu präsentieren. Parallel dazu erfolgte im Theorieteil die entsprechende Hinführung zu den verschiedenen Elementen der Wissenschaftskommunikation:
• Bedeutung der Wissenschaftskommunikation für die Arbeit der Ingenieure in Forschung und Entwicklung
• Literaturrecherche, Suchmaschinen, Sichtung und Analyse vorhandener Publikationen, Bewertung der Qualität aufgefundener Fachliteratur, Auswahl geeigneter Materialien für die eigene Arbeit
• Aufbereitung und Darstellung der recherchierten technischer Inhalte in Form einer seitenanzahlbegrenzten wissenschaftlichen Ausarbeitung
• Einhalten formaler Randbedingungen bzgl. Strukturierung, einschl. Bildnachweise und Zitationsstile
• Peer-review-Prozess bei wertschätzender Beurteilung der Leistung anderer
• Publikumsangepasstes Aufbereiten komplexer fachlicher Inhalte mit hochschulöffentlicher Präsentation der Ergebnisse
• Führen mündlicher wissenschaftlicher Diskurse
Nachdem die Masterstudierenden in der Regel über noch keine eigene wissenschaftliche Forschungserfahrung bzw. -inhalte verfügen, lag der wählbare Schwerpunkt der Literatursuche auf der Bearbeitung von vorgegeben aktuellen technischen oder gesellschaftspolitischen Forschungsthemen.
We investigate the mechanical and microstructural properties of a diamond-like carbon coating (DLC) which is deposited by plasma enhanced chemical vapor deposition (PECVD) onto an alumina/aluminosilicate glass composite used for biomedical applications. Ball-on-ring tests yield a fracture strength that is essentially influenced by the surface topology/roughness. The surface topology of the coating is investigated by atomic force microscopy (AFM). Tribology tests and nanoindentation represent the wear resistance and hardness; these are properties that are mainly influenced by the microstructural properties of the DLC coating. This microstructure is investigated by transmission electron microscopy (TEM) and analyzed by parallel electron energy loss spectroscopy (PEELS). For the general applicability of the coated composite, the interfacial adhesion of the DLC coating on the comparably rough substrate (roughness amplitudes and wavelengths are in the micrometer range) is important. Therefore, we focus on TEM investigations that show the interface to be free of gaps and pores that we, together with a characteristic microstructure adjacent to the interface, relate to the excellent adhesion. The interlayer consists of a high density of SiC grains, part of them directly bound to the substrate, and part of them bound to other SiC grains. This interlayer is followed by an essentially different region of the coating as concerns the microstructure; this region consists of nanocrystalline diamond particles embedded in an amorphous carbon matrix. It is this heterogeneous microstructure to which we attribute (i) the good adhesion based upon the interface stabilizing SiC grains, and (ii) the high hardness and wear resistance based upon the diamond nanocrystals in the coating.
We investigate the mechanical and microstructural properties of a diamond-like carbon coating (DLC) which is deposited by plasma enhanced chemical vapor deposition (PECVD) onto an alumina/aluminosilicate glass composite used for biomedical applications. Ball-on-ring tests yield a fracture strength that is essentially influenced by the surface topology/roughness. The surface topology of the coating is investigated by atomic force microscopy (AFM). Tribology tests and nanoindentation represent the wear resistance and hardness; these are properties that are mainly influenced by the microstructural properties of the DLC coating. This microstructure is investigated by transmission electron microscopy (TEM) and analyzed by parallel electron energy loss spectroscopy (PEELS). For the general applicability of the coated composite, the interfacial adhesion of the DLC coating on the comparably rough substrate (roughness amplitudes and wavelengths are in the micrometer range) is important. Therefore, we focus on TEM investigations that show the interface to be free of gaps and pores that we, together with a characteristic microstructure adjacent to the interface, relate to the excellent adhesion. The interlayer consists of a high density of SiC grains, part of them directly bound to the substrate, and part of them bound to other SiC grains. This interlayer is followed by an essentially different region of the coating as concerns the microstructure; this region consists of nanocrystalline diamond particles embedded in an amorphous carbon matrix. It is this heterogeneous microstructure to which we attribute (i) the good adhesion based upon the interface stabilizing SiC grains, and (ii) the high hardness and wear resistance based upon the diamond nanocrystals in the coating.