Refine
Language
- English (21)
Is part of the Bibliography
- no (21)
Keywords
- 3D volumetry (3)
- Breast augmentation (2)
- Breast imaging (2)
- Digital anthropometry (2)
- Lipofilling (2)
- Mammoplastik (2)
- Non-rigid surface registration (2)
- Surgical outcome simulation (2)
- stem cells (2)
- surgery (2)
Institute
- Fakultät Informatik und Mathematik (9)
- Fakultät Maschinenbau (9)
- Regensburg Medical Image Computing (ReMIC) (9)
- Regensburg Center of Biomedical Engineering - RCBE (8)
- Fakultät Sozial- und Gesundheitswissenschaften (3)
- Labor Biomechanik (LBM) (3)
- Labor Medizinprodukte (2)
- Regensburg Center of Health Sciences and Technology - RCHST (1)
Begutachtungsstatus
- peer-reviewed (19)
BACKGROUND: Autologous fat grafting (AFG) has been established over the past two decades as an additive technique during and after breast reconstruction. Complete reconstruction of the breast mound with AFG alone represents an exceptional technique that has been published mostly in case reports or in studies with limited cases.The purpose of this study is to investigate the influence of three different techniques for breast reconstruction on the recovery of skin sensitivity at the reconstructed breast.
METHODS: The study included 30 patients after mastectomy following breast cancer. Three groups were examined: A) breast reconstruction by autologous fat grafting (AFG), B) breast reconstruction by deep inferior epigastric artery perforator flap (DIEP) and C) breast reconstruction by expander/implant (TE).Biometric data were compared; sensitivity tests were performed using Semmes-Weinstein monofilaments.The non-operated, healthy contralateral breasts of the patients were used as a reference.
RESULTS: While the traditional reconstruction techniques by microsurgical anastomosed perforator flap or expander/implant showed a strongly decreased or completely missing sensitivity of the skin, the tests after reconstruction by AFG represented high values of sensory recovery, which came close to the reference group of non-operated breasts.
CONCLUSION: To our knowledge, this is the first study to compare skin sensitivity after AFG-based reconstruction to established techniques for breast reconstruction. We could demonstrate in a limited group of patients, that breast reconstruction by autologous fat grafting can achieve higher values of skin sensitivity compared to traditional techniques.
The good availability and the large content of adult stem cells in adipose tissue has made it one of the most interesting tissues in regenerative medicine. Although lipofilling is one of the most frequent procedures in plastic surgery, the method still struggles with high absorption rates and volume losses of up to 70%. Therefore, many efforts have been made to optimize liposuction and to process the harvested tissue in order to increase fat graft retention. Because of their immunomodulatory properties, their cytokine secretory activity, and their differentiation potential, enrichment with adipose tissue-derived stem cells was identified as a promising tool to promote transplant survival. Here, we review the important parameters for lipofilling optimization. Finally, we present a new method for the enrichment of lipoaspirate with adipose tissue-derived stem cells and discuss the parameters that contribute to fat graft survival.
Meniscal tears in the avascular zone have a poor self-healing potential, however partial meniscectomy predisposes the knee for early osteoarthritis. Tissue engineering with mesenchymal stem cells and a hyaluronan collagen based scaffold is a promising approach to repair meniscal tears in the avascular zone. 4 mm longitudinal meniscal tears in the avascular zone of lateral menisci of New Zealand White Rabbits were performed. The defect was left empty, sutured with a 5-0 suture or filled with a hyaluronan/collagen composite matrix without cells, with platelet rich plasma or with autologous mesenchymal stem cells. Matrices with stem cells were in part precultured in chondrogenic medium for 14 days prior to the implantation. Menisci were harvested at 6 and 12 weeks. The developed repair tissue was analyzed macroscopically, histologically and biomechanically. Untreated defects, defects treated with suture alone, with cell-free or with platelet rich plasma seeded implants showed a muted fibrous healing response. The implantation of stem cell-matrix constructs initiated fibrocartilage-like repair tissue, with better integration and biomechanical properties in the precultured stem cell-matrix group. A hyaluronan-collagen based composite scaffold seeded with mesenchymal stem cells is more effective in the repair avascular meniscal tear with stable meniscus-like tissue and to restore the native meniscus.
Vitamin C is an essential nutrient for humans and is involved in a plethora of health-related functions. Several studies have shown a connection between vitamin C intake and an improved resistance to infections that involves the immune system. However, the body cannot store vitamin C and both the elevated oral intake, and the intravenous application have certain disadvantages. In this study, we wanted to show a new formulation for the liposomal packaging of vitamin C. Using freeze etching electron microscopy, we show the formed liposomes. With a novel approach of post-processing procedures of real-time sonography that combines enhancement effects by contrast-like ultrasound with a transducer, we wanted to demonstrate the elevated intestinal vitamin C resorption on four participants. With the method presented in this study, it is possible to make use of the liposomal packaging of vitamin C with simple household materials and equipment for intake elevation. For the first time, we show the enhanced resorption of ingested liposomes using microbubble enhanced ultrasound imaging.
PURPOSE:
The purpose of this study was to find a suitable method of labelling cartilage samples for the measurement of distraction distances in biomechanical testing.
METHODS:
Samples of bovine cartilage were labelled using five different methods: hydroquinone and silver nitrate (AgNO3), potassium permanganate (KMnO4) with sodium thiosulphate (Na2S2O3), India ink, heat, and laser energy. After the labelling, we analysed the cartilage samples with regard to cytotoxity by histochemical staining with ethidiumbromide homodimer (EthD-1) and calcein AM. Furthermore, we tested cartilages labelled with India ink and heat in a T-peel test configuration to analyse possible changes in the mechanical behaviour between marked and unlabelled samples.
RESULTS:
Only the labelling methods with Indian ink or a heated needle showed acceptable results in the cytotoxity test with regard to labelling persistence, accuracy, and the influence on consistency and viability of the chondrocytes. In the biomechanical T-peel configuration, heat-labelled samples collapsed significantly earlier than unlabelled samples.
CONCLUSION:
Labelling bovine cartilage samples with Indian ink in biomechanical testing is a reliable, accurate, inexpensive, and easy-to-perform method. This labelling method influenced neither the biomechanical behaviour nor the viability of the tissue compared to untreated bovine cartilage.
Background:
Lipofilling is one of the most often performed surgical procedures in plastic and reconstructive surgery. Lipoaspirates provide a ready source of stem cells and secreted factors that contribute to neoangiogenesis and fat graft survival. However, the regulations about the enrichment of these beneficial cells and factors are ambiguous. In this study, the authors tested whether a combination of centrifugation and homogenization allowed the enrichment of viable stem cells in lipoaspirates through the selective removal of tumescent solution, blood, and released lipids without significantly affecting the cell secretome.
Methods:
Human lipoaspirate was harvested from six different patients using water jet–assisted liposuction. Lipoaspirate was homogenized by first centrifugation (3584 rpm for 2 minutes), shear strain (10 times intersyringe processing), and second centrifugation (3584 rpm for 2 minutes). Stem cell enrichment was shown by cell counting after stem cell isolation. Lipoaspirate from different processing steps (unprocessed, after first centrifugation, after homogenization, after second centrifugation) was incubated in serum-free cell culture medium for mass spectrometric analysis of secreted proteins.
Results:
Lipoaspirate homogenization leads to a significant 2.6 ± 1.75-fold enrichment attributable to volume reduction without reducing the viability of the stem cells. Protein composition of the secretome did not change significantly after tissue homogenization. Considering the enrichment effects, there were no significant differences in the protein concentration of the 83 proteins found in all processing steps.
Conclusions:
Stem cells can be enriched mechanically without significantly affecting the composition of secreted proteins. Shear-assisted enrichment of lipoaspirate constitutes no substantial manipulation of the cells’ secretome.
Autologous lipotransfer is a promising method for tissue regeneration, because white adipose tissue contains a heterogeneous cell population, including mesenchymal stem cells, endothelial cells, immune cells, and adipocytes. In order to improve the outcome, adipose tissue can be processed before application. In this study, we investigated changes caused by mechanical processing.
Lipoaspirates were processed using sedimentation, first-time centrifugation, shear-force homogenization, and second-time centrifugation. The average adipocyte size, stromal vascular cell count, and adipocyte depot size were examined histologically at every processing step. In addition, the adipose derived stem cells (ADSCs) were isolated and differentiated osteogenically and adipogenically. While homogenization causes a disruption of adipocyte depots, the shape of the remaining adipocytes is not changed. On average, these adipocytes are smaller than the depot adipocytes, they are surrounded by the ECM, and therefore mechanically more stable. The volume loss of adipocyte depots leads to a significant enrichment of stromal vascular cells such as ADSCs. However, the mechanical processing does not change the potential of the ADSCs to differentiate adipogenically or steogenically. It thus appears that mechanically processed lipoaspirates are promising for the reparation of even mechanically stressed tissue as that found in nasolabial folds. The changes resulting from the processing correspond more to a filtration of mechanically less stable components than to a manipulation of the tissue.
"Topographic Shift": a new digital approach to evaluating topographic changes of the female breast
(2021)
Purpose
To assess precise topographic changes of the breast, objective documentation and evaluation of pre- and postoperative results are crucial. New technologies for mapping the body using digital, three-dimensional surface measurements have offered novel ways to numerically assess the female breast. Due to the lack of clear demarcation points of the breast contour, the selection of landmarks on the breast is highly dependent on the examiner, and, therefore, is prone to error when conducting before-after comparisons of the same breast. This study describes an alternative to volumetric measurements, focusing on topographic changes of the female breast, based on three-dimensional scans.
Method
The study was designed as an interventional prospective study of 10 female volunteers who had planned on having aesthetic breast augmentation with anatomical, textured implants. Three dimensional scans of the breasts were performed intraoperatively, first without and then with breast implants. The topographic change was determined as the mean distance between two three-dimensional layers before and after augmentation. This mean distance is defined as the Topographic Shift. Results The mean implant volume was 283 cc (SD = 68.6 cc, range = 210-395 cc). The mean Topographic Shift was 7.4 mm (SD = 1.9 mm, range = 4.8-10.7 mm). The mean Topographic Shifts per quadrant were: I: 8.0 mm (SD = 3.3 mm); II: 9.2 mm (SD = 3.1 mm); III: 6.9 mm (SD = 3.5 mm); IV: 1.9 mm (SD = 4.3 mm).
Conclusion
The Topographic Shift, describing the mean distance between two three-dimensional layers (for example before and after a volume changing therapy), is a new approach that can be used for assessing topographic changes of a body area. It was found that anatomical, textured breast implants cause a topographic change, particularly on the upper breast, in quadrant II, the decollete.
Three-dimensional Medical Printing and Associated Legal Issues in Plastic Surgery: A Scoping Review
(2023)
Three-dimensional printing (3DP) represents an emerging field of surgery. 3DP can facilitate the plastic surgeon’s workflow, including preoperative planning, intraoperative assistance, and postoperative follow-up. The broad clinical application spectrum stands in contrast to the paucity of research on the legal framework of 3DP. This imbalance poses a potential risk for medical malpractice lawsuits. To address this knowledge gap, we aimed to summarize the current body of legal literature on medical 3DP in the US legal system. By combining the promising clinical use of 3DP with its current legal regulations, plastic surgeons can enhance patient safety and outcomes.
Purpose
Lipofilling has been established as a standard technique for contour enhancement following breast reconstruction. However, there is a paucity in current literature regarding the use of this technique for complete reconstruction of the female breast as an alternative to conventional techniques, such as expander or flap-based procedures. In particular, the influence of pre-operative irradiation for successful reconstruction has rarely been examined in published studies. Here, the authors describe their experience with successful fat injection in pre-radiated breasts in comparison with non-pre-radiated patients.
Methods
In this retrospective study, we examined a total of 95 lipofilling treatments on 26 patients (28 breasts). All of them experienced mastectomy following breast cancer; local breast defects after partial resection of the gland were not included in this study. In total, 47 lipofilling procedures in 12 non-irradiated patients (14 breasts) and 48 procedures in 14 irradiated women (also 14 breasts) were performed. Per session, approximately 297 +/- 112 cc of adipose tissue was grafted in group A (no radiotherapy) and approximately 259 +/- 93 cc was grafted in group B (radiotherapy).
Results
Among the group of women without pre-operative radiation, 71% of breast reconstructions limited to lipofilling only showed constant engraftment of fat tissue with a successful reconstructive result, whereas only 21% of the patients with pre-radiated breasts showed complete reconstruction of the breast with a permanent fat in-growth.
Conclusion
Preoperative radiotherapy significantly impedes successful completion of breast reconstructions planned only by autologous fat transfer. Patients should be selected individually and carefully for complete breast reconstruction using lipofilling only.