Refine
Document Type
Is part of the Bibliography
- no (25)
Keywords
- Artificial Intelligence (5)
- Deep Learning (4)
- Endoscopy (4)
- Künstliche Intelligenz (2)
- Medical Image Computing (2)
- Adenocarcinoma (1)
- Barrett’s cancer (1)
- Barrett’s esophagus detection (1)
- Celiac Disease (1)
- Convolutional neural networks (1)
Institute
Begutachtungsstatus
- peer-reviewed (20)
Pixel-level classification is an essential part of computer vision. For learning from labeled data, many powerful deep learning models have been developed recently. In this work, we augment such supervised segmentation models by allowing them to learn from unlabeled data. Our semi-supervised approach, termed Error-Correcting Supervision, leverages a collaborative strategy. Apart from the supervised training on the labeled data, the segmentation network is judged by an additional network.
Background and aims
Celiac disease with its endoscopic manifestation of villous atrophy is underdiagnosed worldwide. The application of artificial intelligence (AI) for the macroscopic detection of villous atrophy at routine esophagogastroduodenoscopy may improve diagnostic performance.
Methods
A dataset of 858 endoscopic images of 182 patients with villous atrophy and 846 images from 323 patients with normal duodenal mucosa was collected and used to train a ResNet 18 deep learning model to detect villous atrophy. An external data set was used to test the algorithm, in addition to six fellows and four board certified gastroenterologists. Fellows could consult the AI algorithm’s result during the test. From their consultation distribution, a stratification of test images into “easy” and “difficult” was performed and used for classified performance measurement.
Results
External validation of the AI algorithm yielded values of 90 %, 76 %, and 84 % for sensitivity, specificity, and accuracy, respectively. Fellows scored values of 63 %, 72 % and 67 %, while the corresponding values in experts were 72 %, 69 % and 71 %, respectively. AI consultation significantly improved all trainee performance statistics. While fellows and experts showed significantly lower performance for “difficult” images, the performance of the AI algorithm was stable.
Conclusion
In this study, an AI algorithm outperformed endoscopy fellows and experts in the detection of villous atrophy on endoscopic still images. AI decision support significantly improved the performance of non-expert endoscopists. The stable performance on “difficult” images suggests a further positive add-on effect in challenging cases.
We investigate contrastive learning in a multi-task learning setting classifying and segmenting early Barrett’s cancer. How can contrastive learning be applied in a domain with few classes and low inter-class and inter-sample variance, potentially enabling image retrieval or image attribution? We introduce a data sampling strategy that mines per-lesion data for positive samples and keeps a queue of the recent projections as negative samples. We propose a masking strategy for the NT-Xent loss that keeps the negative set pure and removes samples from the same lesion. We show cohesion and uniqueness improvements of the proposed method in feature space. The introduction of the auxiliary objective does not affect the performance but adds the ability to indicate similarity between lesions. Therefore, the approach could enable downstream auto-documentation tasks on homogeneous medical image data.
Einleitung Die Endoskopische Retrograde Cholangiopankreatikographie (ERCP) ist der Goldstandard in der Diagnostik und Therapie von Erkrankungen des pankreatobiliären Trakts. Jedoch ist sie technisch sehr anspruchsvoll und weist eine vergleichsweise hohe Komplikationsrate auf.
Ziele
In der vorliegenden Machbarkeitsstudie soll geprüft werden, ob mithilfe eines Deep-learning-Algorithmus die Papille und das Ostium zuverlässig detektiert werden können und somit für Endoskopiker mit geringer Erfahrung ein geeignetes Hilfsmittel, insbesondere für die Ausbildungssituation, darstellen könnten.
Methodik
Wir betrachteten insgesamt 606 Bilddatensätze von 65 Patienten. In diesen wurde sowohl die Papilla duodeni major als auch das Ostium segmentiert. Anschließend wurde eine neuronales Netz mittels eines Deep-learning-Algorithmus trainiert. Außerdem erfolgte eine 5-fache Kreuzvaldierung.
Ergebnisse
Bei einer 5-fachen Kreuzvaldierung auf den 606 gelabelten Daten konnte für die Klasse Papille eine F1-Wert von 0,7908, eine Sensitivität von 0,7943 und eine Spezifität von 0,9785 erreicht werden, für die Klasse Ostium eine F1-Wert von 0,5538, eine Sensitivität von 0,5094 und eine Spezifität von 0,9970 (vgl. [Tab. 1]). Unabhängig von der Klasse zeigte sich gemittelt (Klasse Papille und Klasse Ostium) ein F1-Wert von 0,6673, eine Sensitivität von 0,6519 und eine Spezifität von 0,9877 (vgl. [Tab. 2]).
Schlussfolgerung
In vorliegende Machbarkeitsstudie konnte das neuronale Netz die Papilla duodeni major mit einer hohen Sensitivität und sehr hohen Spezifität identifizieren. Bei der Detektion des Ostiums war die Sensitivität deutlich geringer. Zukünftig soll das das neuronale Netz mit mehr Daten trainiert werden. Außerdem ist geplant, den Algorithmus auch auf Videos anzuwenden. Somit könnte langfristig ein geeignetes Hilfsmittel für die ERCP etabliert werden.
Aims
VA is an endoscopic finding of celiac disease (CD), which can easily be missed if pretest probability is low. In this study, we aimed to develop an artificial intelligence (AI) algorithm for the detection of villous atrophy on endoscopic images.
Methods
858 images from 182 patients with VA and 846 images from 323 patients with normal duodenal mucosa were used for training and internal validation of an AI algorithm (ResNet18). A separate dataset was used for external validation, as well as determination of detection performance of experts, trainees and trainees with AI support. According to the AI consultation distribution, images were stratified into “easy” and “difficult”.
Results
Internal validation showed 82%, 85% and 84% for sensitivity, specificity and accuracy. External validation showed 90%, 76% and 84%. The algorithm was significantly more sensitive and accurate than trainees, trainees with AI support and experts in endoscopy. AI support in trainees was associated with significantly improved performance. While all endoscopists showed significantly lower detection for “difficult” images, AI performance remained stable.
Conclusions
The algorithm outperformed trainees and experts in sensitivity and accuracy for VA detection. The significant improvement with AI support suggests a potential clinical benefit. Stable performance of the algorithm in “easy” and “difficult” test images may indicate an advantage in macroscopically challenging cases.
Aims
Human-computer interactions (HCI) may have a relevant impact on the performance of Artificial Intelligence (AI). Studies show that although endoscopists assessing Barrett’s esophagus (BE) with AI improve their performance significantly, they do not achieve the level of the stand-alone performance of AI. One aspect of HCI is the impact of AI on the degree of certainty and confidence displayed by the endoscopist. Indirectly, diagnostic confidence when using AI may be linked to trust and acceptance of AI. In a BE video study, we aimed to understand the impact of AI on the diagnostic confidence of endoscopists and the possible correlation with diagnostic performance.
Methods
22 endoscopists from 12 centers with varying levels of BE experience reviewed ninety-six standardized endoscopy videos. Endoscopists were categorized into experts and non-experts and randomly assigned to assess the videos with and without AI. Participants were randomized in two arms: Arm A assessed videos first without AI and then with AI, while Arm B assessed videos in the opposite order. Evaluators were tasked with identifying BE-related neoplasia and rating their confidence with and without AI on a scale from 0 to 9.
Results
The utilization of AI in Arm A (without AI first, with AI second) significantly elevated confidence levels for experts and non-experts (7.1 to 8.0 and 6.1 to 6.6, respectively). Only non-experts benefitted from AI with a significant increase in accuracy (68.6% to 75.5%). Interestingly, while the confidence levels of experts without AI were higher than those of non-experts with AI, there was no significant difference in accuracy between these two groups (71.3% vs. 75.5%). In Arm B (with AI first, without AI second), experts and non-experts experienced a significant reduction in confidence (7.6 to 7.1 and 6.4 to 6.2, respectively), while maintaining consistent accuracy levels (71.8% to 71.8% and 67.5% to 67.1%, respectively).
Conclusions
AI significantly enhanced confidence levels for both expert and non-expert endoscopists. Endoscopists felt significantly more uncertain in their assessments without AI. Furthermore, experts with or without AI consistently displayed higher confidence levels than non-experts with AI, irrespective of comparable outcomes. These findings underscore the possible role of AI in improving diagnostic confidence during endoscopic assessment.
Effect of AI on performance of endoscopists to detect Barrett neoplasia: A Randomized Tandem Trial
()
Background and study aims
To evaluate the effect of an AI-based clinical decision support system (AI) on the performance and diagnostic confidence of endoscopists during the assessment of Barrett's esophagus (BE).
Patients and Methods
Ninety-six standardized endoscopy videos were assessed by 22 endoscopists from 12 different centers with varying degrees of BE experience.
The assessment was randomized into two video sets: Group A (review first without AI and second with AI) and group B (review first with AI and second without AI). Endoscopists were required to evaluate each video for the presence of Barrett's esophagus-related neoplasia (BERN) and then decide on a spot for a targeted biopsy. After the second assessment, they were allowed to change their clinical decision and confidence level.
Results
AI had a standalone sensitivity, specificity, and accuracy of 92.2%, 68.9%, and 81.6%, respectively. Without AI, BE experts had an overall sensitivity, specificity, and accuracy of 83.3%, 58.1 and 71.5%, respectively. With AI, BE nonexperts showed a significant improvement in sensitivity and specificity when videos were assessed a second time with AI (sensitivity 69.7% (95% CI, 65.2% - 74.2%) to 78.0% (95% CI, 74.0% - 82.0%); specificity 67.3% (95% CI, 62.5% - 72.2%) to 72.7% (95 CI, 68.2% - 77.3%). In addition, the diagnostic confidence of BE nonexperts improved significantly with AI.
Conclusion
BE nonexperts benefitted significantly from the additional AI. BE experts and nonexperts remained below the standalone performance of AI, suggesting that there may be other factors influencing endoscopists to follow or discard AI advice.
The endoscopic features associated with eosinophilic esophagitis (EoE) may be missed during routine endoscopy. We aimed to develop and evaluate an Artificial Intelligence (AI) algorithm for detecting and quantifying the endoscopic features of EoE in white light images, supplemented by the EoE Endoscopic Reference Score (EREFS). An AI algorithm (AI-EoE) was constructed and trained to differentiate between EoE and normal esophagus using endoscopic white light images extracted from the database of the University Hospital Augsburg. In addition to binary classification, a second algorithm was trained with specific auxiliary branches for each EREFS feature (AI-EoE-EREFS). The AI algorithms were evaluated on an external data set from the University of North Carolina, Chapel Hill (UNC), and compared with the performance of human endoscopists with varying levels of experience. The overall sensitivity, specificity, and accuracy of AI-EoE were 0.93 for all measures, while the AUC was 0.986. With additional auxiliary branches for the EREFS categories, the AI algorithm (AI-EoEEREFS) performance improved to 0.96, 0.94, 0.95, and 0.992 for sensitivity, specificity, accuracy, and AUC, respectively. AI-EoE and AI-EoE-EREFS performed significantly better than endoscopy beginners and senior fellows on the same set of images. An AI algorithm can be trained to detect and quantify endoscopic features of EoE with excellent performance scores. The addition of the EREFS criteria improved the performance of the AI algorithm, which performed significantly better than endoscopists with a lower or medium experience level.
Aims
Eosinophilic esophagitis (EoE) is easily missed during endoscopy, either because physicians are not familiar with its endoscopic features or the morphologic changes are too subtle. In this preliminary paper, we present the first attempt to detect EoE in endoscopic white light (WL) images using a deep learning network (EoE-AI).
Methods
401 WL images of eosinophilic esophagitis and 871 WL images of normal esophageal mucosa were evaluated. All images were assessed for the Endoscopic Reference score (EREFS) (edema, rings, exudates, furrows, strictures). Images with strictures were excluded. EoE was defined as the presence of at least 15 eosinophils per high power field on biopsy. A convolutional neural network based on the ResNet architecture with several five-fold cross-validation runs was used. Adding auxiliary EREFS-classification branches to the neural network allowed the inclusion of the scores as optimization criteria during training. EoE-AI was evaluated for sensitivity, specificity, and F1-score. In addition, two human endoscopists evaluated the images.
Results
EoE-AI showed a mean sensitivity, specificity, and F1 of 0.759, 0.976, and 0.834 respectively, averaged over the five distinct cross-validation runs. With the EREFS-augmented architecture, a mean sensitivity, specificity, and F1-score of 0.848, 0.945, and 0.861 could be demonstrated respectively. In comparison, the two human endoscopists had an average sensitivity, specificity, and F1-score of 0.718, 0.958, and 0.793.
Conclusions
To the best of our knowledge, this is the first application of deep learning to endoscopic images of EoE which were also assessed after augmentation with the EREFS-score. The next step is the evaluation of EoE-AI using an external dataset. We then plan to assess the EoE-AI tool on endoscopic videos, and also in real-time. This preliminary work is encouraging regarding the ability for AI to enhance physician detection of EoE, and potentially to do a true “optical biopsy” but more work is needed.