Refine
Document Type
Language
- English (5)
Has Fulltext
- no (5)
Is part of the Bibliography
- no (5)
Keywords
- AI (1)
- Algorithms (1)
- BIM (1)
- Charging (1)
- Deep Learning (1)
- Interference (1)
- Latency (1)
- Localization (1)
- Magnetic Resonance Imaging (1)
- Network Construction (1)
Institute
Begutachtungsstatus
- peer-reviewed (3)
Considering the ongoing growth of Wireless Sensor Networks (WSNs) and the challenges they pose due to their hardware limitations as well as the intrinsic complexity of their interactions, specialized algorithms
have the potential to help solving these challenges. We present a survey on recent developments regarding algorithmic problems which have applications in wireless systems and WSNs in particular. Focusing on the intersection between WSNs and algorithms, we give an overview of recent results inside this intersection, concerning topics such as routing, interference minimization, latency reduction, localization among others. Progress on solving these problems could be potentially beneficial for the industry as a whole by increasing network throughput, reducing latency or making systems more energy-efficient. We summarize and structure these recent developments and list interesting open problems to be investigated in future works.
Vascular malformations (VMs) are a rare condition. They can be categorized into high-flow and low-flow VMs, which is a challenging task for radiologists. In this work, a very heterogeneous set of MRI images with only rough annotations are used for classification with a convolutional neural network. The main focus is to describe the challenging data set and strategies to deal with such data in terms of preprocessing, annotation usage and choice of the network architecture. We achieved a classification result of 89.47 % F1-score with a 3D ResNet 18.
BACKGROUND
Differentiation of high-flow from low-flow vascular malformations (VMs) is crucial for therapeutic management of this orphan disease.
OBJECTIVE
A convolutional neural network (CNN) was evaluated for differentiation of peripheral vascular malformations (VMs) on T2-weighted short tau inversion recovery (STIR) MRI.
METHODS
527 MRIs (386 low-flow and 141 high-flow VMs) were randomly divided into training, validation and test set for this single-center study. 1) Results of the CNN's diagnostic performance were compared with that of two expert and four junior radiologists. 2) The influence of CNN's prediction on the radiologists' performance and diagnostic certainty was evaluated. 3) Junior radiologists' performance after self-training was compared with that of the CNN.
RESULTS
Compared with the expert radiologists the CNN achieved similar accuracy (92% vs. 97%, p = 0.11), sensitivity (80% vs. 93%, p = 0.16) and specificity (97% vs. 100%, p = 0.50). In comparison to the junior radiologists, the CNN had a higher specificity and accuracy (97% vs. 80%, p < 0.001; 92% vs. 77%, p < 0.001). CNN assistance had no significant influence on their diagnostic performance and certainty. After self-training, the junior radiologists' specificity and accuracy improved and were comparable to that of the CNN.
CONCLUSIONS
Diagnostic performance of the CNN for differentiating high-flow from low-flow VM was comparable to that of expert radiologists. CNN did not significantly improve the simulated daily practice of junior radiologists, self-training was more effective.
In the engineering domain, representing real-world objects using a body of data, called a digital twin, which is frequently updated by “live” measurements, has shown various advantages over tradi- tional modelling and simulation techniques. Consequently, urban planners have a strong interest in digital twin technology, since it provides them with a laboratory for experimenting with data before making far-reaching decisions. Realizing these decisions involves the work of professionals in the architecture, engineering and construction (AEC) domain who nowadays collaborate via the methodology of building information modeling (BIM). At the same time, the citizen plays an integral role both in the data acquisition phase, while also being a beneficiary of the improved resource management strategies. In this paper, we present a prototype for a “digital energy twin” platform we designed in cooperation with the city of Regensburg. We show how our extensible platform de- sign can satisfy the various requirements of multiple user groups through a series of data processing solutions and visualizations, in- dicating valuable design and implementation guidelines for future projects. In particular, we focus on two example use cases concern- ing building electricity monitoring and BIM. By implementing a flexible data processing architecture we can involve citizens in the data acquisition process, meeting the demands of modern users regarding maximum transparency in the handling of their data.
Aims
Recent evidence suggests the possibility of intraprocedural phase recognition in surgical operations as well as endoscopic interventions such as peroral endoscopic myotomy and endoscopic submucosal dissection (ESD) by AI-algorithms. The intricate measurement of intraprocedural phase distribution may deepen the understanding of the procedure. Furthermore, real-time quality assessment as well as automation of reporting may become possible. Therefore, we aimed to develop an AI-algorithm for intraprocedural phase recognition during ESD.
Methods
A training dataset of 364385 single images from 9 full-length ESD videos was compiled. Each frame was classified into one procedural phase. Phases included scope manipulation, marking, injection, application of electrical current and bleeding. Allocation of each frame was only possible to one category. This training dataset was used to train a Video Swin transformer to recognize the phases. Temporal information was included via logarithmic frame sampling. Validation was performed using two separate ESD videos with 29801 single frames.
Results
The validation yielded sensitivities of 97.81%, 97.83%, 95.53%, 85.01% and 87.55% for scope manipulation, marking, injection, electric application and bleeding, respectively. Specificities of 77.78%, 90.91%, 95.91%, 93.65% and 84.76% were measured for the same parameters.
Conclusions
The developed algorithm was able to classify full-length ESD videos on a frame-by-frame basis into the predefined classes with high sensitivities and specificities. Future research will aim at the development of quality metrics based on single-operator phase distribution.