Refine
Document Type
Is part of the Bibliography
- no (3)
Keywords
- Bildverarbeitung (2)
- Medizin (2)
- Hochschuldidaktik (1)
Institute
Begutachtungsstatus
- peer-reviewed (1)
Die Lehre der medizinischen Bildverarbeitung vermittelt Kenntnisse mit einem breiten Methodenspektrum. Neben den Grundlagen der Verfahren soll ein Gefühl für eine geeignete Ausführungsreihenfolge und ihrer Wirkung auf medizinische Bilddaten entwickelt werden. Die Komplexität der Methoden erfordert vertiefte Programmierkenntnisse, sodass bereits einfache Operationen mit großem Programmieraufwand verbunden sind. Die Software GraphMIC stellt Bildverarbeitungsoperationen in Form interaktiver Knoten zur Verfügung und erlaubt das Arrangieren, Parametrisieren und Ausführen komplexer Verarbeitungssequenzen in einem Graphen. Durch den Fokus auf das Design einer Pipeline, weg von sprach- und frameworkspezifischen Implementierungsdetails, lassen sich grundlegende Prinzipien der Bildverarbeitung anschaulich erlernen. In diesem Beitrag stellen wir die visuelle Programmierung mit GraphMIC der nativen Implementierung äquivalenter Funktionen gegenüber. Die in C++ entwickelte Applikation basiert auf Qt, ITK, OpenCV, VTK und MITK.
GraphMIC is a cross-platform image processing application utilizing the libraries ITK and OpenCV. The abstract structure of image processing pipelines is visually represented by user interface components based on modern QtQuick technology and allows users to focus on arrangement and parameterization of operations rather than implementing the equivalent functionality natively in C++. The application's central goal is to improve and simplify the typical workflow by providing various high level features and functions like multi threading, image sequence processing and advanced error handling. A built-in python interpreter allows the creation of custom nodes, where user defined algorithms can be integrated to extend basic functionality. An embedded 2d/3d visual-izer gives feedback of the resulting image of an operation or the whole pipeline. User inputs like seed points, contours or regions are forwarded to the processing pipeline as parameters to offer semi-automatic image computing. We report the main concept of the application and introduce several features and their implementation. Finally, the current state of development as well as future perspectives of GraphMIC are discussed
Forschungsbericht 2016
(2016)