• Treffer 1 von 1
Zurück zur Trefferliste

The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading

  • Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Rather than evaluate the predictions of a single simulation approach, the Sandia Fracture Challenge relies on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5-68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti-6Al-4V sheet under both quasi-static and modest-rate dynamic loading (failure in 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. Additional shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the 'state-of-the-art' in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods.

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Verfasserangaben:Brad L. BoyceORCiD, Sharlotte L. B. KramerORCiD, T. R. Bosiljevac, Edmundo Corona, J. A. Moore, Khalil ElkhodaryORCiD, C. Hari Manoj Simha, Bruce W. WilliamsORCiD, Albert R. Cerrone, Aida NonnORCiDGND, Jacob D. HochhalterORCiD, Geoffrey F. BomaritoORCiD, James E. Warner, Bruce J. CarterORCiD, Derek H. Warner, Anthony R. IngraffeaORCiD, T. Zhang, X. Fang, Jim Lua, Vincent ChiaruttiniORCiD, Matthieu MaziereORCiD, Sylvia Feld-PayetORCiD, Vladislav A. YastrebovORCiD, Jacques BessonORCiD, Jean Louis Chaboche, J. Lian, Y. Di, Bei Wu, Denis Novokshanov, Napat VajraguptaORCiD, Pawel Kucharczyk, Viktoria Brinnel, Benedikt Doebereiner, Sebastian MuenstermannORCiD, Michael K. NeilsenORCiD, Kristin Dion, Kyle N. Karlson, James Wesley FoulkORCiD, Arthur A. Brown, Michael G. Veilleux, John L. Bignell, Scott E. Sanborn, Chris A. Jones, Patrick D. Mattie, Keunhwan Pack, Tomasz Wierzbicki, Sheng-Wei ChiORCiD, S.-P. Lin, Ashkan Mahdavi, Jozef Predan, Janko Zadravec, Andrew J. Gross, KRISHNASWAMY Ravi-Chandar, Liang Xue
DOI:https://doi.org/10.1007/s10704-016-0089-7
Titel des übergeordneten Werkes (Englisch):International journal of fracture
Verlag:Springer
Dokumentart:Artikel aus einer Zeitschrift/Zeitung
Sprache der Veröffentlichung:Englisch
Jahr der Veröffentlichung:2016
Datum der Freischaltung:24.05.2022
Freies Schlagwort / Tag:Alloy; BEHAVIOR; CRACK-PROPAGATION; DAMAGE; Deformation; Fracture; HIGH-STRAIN-RATE; KERNEL PARTICLE METHODS; MODEL; Metal; Modeling; POLYCRYSTALLINE AL 6061-T6; PREDICTION; Plasticity; ROOM-TEMPERATURE; Rupture; STRENGTH STEEL SHEETS; Tearing; simulation
Ausgabe / Heft:198, 1-2
Erste Seite:5
Letzte Seite:100
Fakultäten / Institute / Einrichtungen:Fakultät Maschinenbau
Fakultät Maschinenbau / Computational Mechanics and Materials Lab (CMM)
Begutachtungsstatus:peer-reviewed
Forschungsschwerpunkt:Produktion und Systeme
OpenAccess Publikationsweg:Hybrid Open Access - OA-Veröffentlichung in einer Subskriptionszeitschrift/-medium
Lizenz (Deutsch):Creative Commons - CC BY - Namensnennung 4.0 International