• search hit 26 of 60
Back to Result List

On the Development of Thermochemical Hydrogen Storage: An Experimental Study of the Kinetics of the Redox Reactions under Different Operating Conditions

  • This work aims at investigating the reduction/oxidation (redox) reaction kinetics on iron oxide pellets under different operating conditions of thermochemical hydrogen storage. In order to reduce the iron oxide pellets (90% Fe2O3, 10% stabilizing cement), hydrogen (H2) is applied in different concentrations with nitrogen (N2), as a carrier gas, at temperatures between between 700 ∘C and 900 ∘C, thus simulating the charging phase. The discharge phase is triggered by the flow of a mixture out of steam (H2O) and N2 at different concentrations in the same temperature range, resulting in the oxidizing of the previously reduced pellets. All investigations were carried out in a thermo-gravimetric analyzer (TGA) with a flow rate of 250mL/min. To describe the obtained kinetic results, a simplified analytical model, based on the linear driving force model, was developed. The investigated iron oxide pellets showed a stable redox performance of 23.8% weight reduction/gain, which corresponds to a volumetric storage density of 2.8kWh/(L bulk), also after the 29 performed redox cycles. Recalling that there is no H2 stored during the storage phase but iron, the introduced hydrogen storage technology is deemed very promising for applications in urban areas as day-night or seasonal storage for green hydrogen.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Bernd GamischORCiD, Matthias GadererORCiD, Belal DawoudORCiDGND
DOI:https://doi.org/10.3390/app11041623
Parent Title (English):Applied Sciences
Publisher:MDPI
Place of publication:Basel
Document Type:Article
Language:English
Year of first Publication:2021
Release Date:2022/01/31
Tag:hydrogen storage; iron/iron oxide; reaction kinetics; redox reactions
Volume:11
Issue:4
Article Number:1623
First Page:1
Last Page:15
Note:
Corresponding author: Belal Dawoud
Institutes:Fakultät Maschinenbau
Begutachtungsstatus:peer-reviewed
OpenAccess Publikationsweg:Gold Open Access- Erstveröffentlichung in einem/als Open-Access-Medium
Corresponding author der OTH Regensburg
research focus:Energie und Mobilität
Licence (German):Creative Commons - CC BY - Namensnennung 4.0 International