• search hit 41 of 253
Back to Result List

The Effects of Shear Force-Based Processing of Lipoaspirates on White Adipose Tissue and the Differentiation Potential of Adipose Derived Stem Cells

  • Autologous lipotransfer is a promising method for tissue regeneration, because white adipose tissue contains a heterogeneous cell population, including mesenchymal stem cells, endothelial cells, immune cells, and adipocytes. In order to improve the outcome, adipose tissue can be processed before application. In this study, we investigated changes caused by mechanical processing. Lipoaspirates were processed using sedimentation, first-time centrifugation, shear-force homogenization, and second-time centrifugation. The average adipocyte size, stromal vascular cell count, and adipocyte depot size were examined histologically at every processing step. In addition, the adipose derived stem cells (ADSCs) were isolated and differentiated osteogenically and adipogenically. While homogenization causes a disruption of adipocyte depots, the shape of the remaining adipocytes is not changed. On average, these adipocytes are smaller than the depot adipocytes, they are surrounded by the ECM, and therefore mechanically more stable. The volume loss of adipocyte depots leads to a significant enrichment of stromal vascular cells such as ADSCs. However, the mechanical processing does not change the potential of the ADSCs to differentiate adipogenically or steogenically. It thus appears that mechanically processed lipoaspirates are promising for the reparation of even mechanically stressed tissue as that found in nasolabial folds. The changes resulting from the processing correspond more to a filtration of mechanically less stable components than to a manipulation of the tissue.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Andreas EigenbergerORCiD, Oliver FelthausORCiD, Thomas SchratzenstallerORCiD, Silke Haerteis, Kirsten Utpatel, Lukas PrantlORCiD
DOI:https://doi.org/10.3390/cells11162543
Parent Title (German):cells
Publisher:MDPI
Place of publication:Basel
Document Type:Article
Language:English
Year of first Publication:2022
Release Date:2022/09/13
Tag:CELT; cell-enriched lipotransfer; fat grafting; lipoaspirate; lipograft; stem cells; surgery; white adipose tissue
Volume:11
Issue:16
Article Number:2543
Pagenumber:13
Institutes:Fakultät Maschinenbau
Regensburg Center of Biomedical Engineering - RCBE
Regensburg Center of Health Sciences and Technology - RCHST
Fakultät Maschinenbau / Labor Medizinprodukte
Begutachtungsstatus:peer-reviewed
OpenAccess Publikationsweg:Gold Open Access- Erstveröffentlichung in einem/als Open-Access-Medium
research focus:Lebenswissenschaften und Ethik
Licence (German):Creative Commons - CC BY - Namensnennung 4.0 International