• search hit 5 of 24
Back to Result List

Monitoring of a Particulate Filter for Gasoline Direct Injection Engines with a Radio-Frequency-Sensor

  • In order to comply with future emission regulations, the use of particulate filters in vehicles with direct injection gasoline engines is essential. The current amount of soot and ash in the filter is calculated by a soot load model in the electronic control unit in combination with a differential pressure sensor determining the pressure drop over the particulate filter. Active regeneration is initiated if the calculated amount of soot or the measured differential pressure is too high. This is associated with additional fuel consumption. An on-board diagnosis for the particulate filter is currently not part of the Euro 6d emission standard. For future exhaust emission standards, on-board diagnosis or active monitoring of the particulate filter is conceivable. One of the benefits of monitoring is the fact that unnecessary active regenerations can be avoided. As a result, there is no additional fuel consumption due to misinterpretations of the amount of soot in the filter. For active monitoring of the particulate filter, a radiofrequency (RF-) sensor, that detects the soot loading of the filter with electromagnetic waves directly, can be used. Such a system has the advantage that by utilizing the filter as a sensor more precise information about the current state of the filter, e.g. a possible damage, can be provided. Worst-case considerations of filter damages, tested at an engine test bench show the advantages which are entailed by a system like that. By means of partial regeneration of the particulate filter it is demonstrated how the remaining amount of soot in the filter can be detected in a better way in comparison to the differential pressure sensor by using the RF-sensor.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Peter SchwanzerORCiD, Johann Mieslinger, Hans-Peter Rabl, Markus Dietrich, Gerhard Haft, Stefanie Walter, Gunter Hagen, Ralf Moos, Matthias GadererORCiD
URL / DOI:https://eref.uni-bayreuth.de/54655/
Parent Title (English):11th International Exhaust Gas and Particulate Emissions Forum, 3.-4.3.2020, Ludwigsburg, Germany
Document Type:conference talk
Language:English
Year of first Publication:2020
Release Date:2022/04/11
Note:
Projekttitel: Load Sensor for GPF; Projekt-ID: AZ-1288-17
Institutes:Fakultät Maschinenbau
Fakultät Maschinenbau / Combustion Engines and Emissions Control Laboratory (CEEC)
research focus:Energie und Mobilität