Early Esophageal Cancer and the Generalizability of Artificial Intelligence

  • Aims Artificial Intelligence (AI) systems in gastrointestinal endoscopy are narrow because they are trained to solve only one specific task. Unlike Narrow-AI, general AI systems may be able to solve multiple and unrelated tasks. We aimed to understand whether an AI system trained to detect, characterize, and segment early Barrett’s neoplasia (Barrett’s AI) is only capable of detecting this pathology or can also detect and segment other diseases like early squamous cell cancer (SCC). Methods 120 white light (WL) and narrow-band endoscopic images (NBI) from 60 patients (1 WL and 1 NBI image per patient) were extracted from the endoscopic database of the University Hospital Augsburg. Images were annotated by three expert endoscopists with extensive experience in the diagnosis and endoscopic resection of early esophageal neoplasias. An AI system based on DeepLabV3+architecture dedicated to early Barrett’s neoplasia was tested on these images. The AI system was neither trained with SCC images nor had it seen the test images prior to evaluation. The overlap between the three expert annotations („expert-agreement“) was the ground truth for evaluating AI performance. Results Barrett’s AI detected early SCC with a mean intersection over reference (IoR) of 92% when at least 1 pixel of the AI prediction overlapped with the expert-agreement. When the threshold was increased to 5%, 10%, and 20% overlap with the expert-agreement, the IoR was 88%, 85% and 82%, respectively. The mean Intersection Over Union (IoU) – a metric according to segmentation quality between the AI prediction and the expert-agreement – was 0.45. The mean expert IoU as a measure of agreement between the three experts was 0.60. Conclusions In the context of this pilot study, the predictions of SCC by a Barrett’s dedicated AI showed some overlap to the expert-agreement. Therefore, features learned from Barrett’s cancer-related training might be helpful also for SCC prediction. Our results allow different possible explanations. On the one hand, some Barrett’s cancer features generalize toward the related task of assessing early SCC. On the other hand, the Barrett’s AI is less specific to Barrett’s cancer than a general predictor of pathological tissue. However, we expect to enhance the detection quality significantly by extending the training to SCC-specific data. The insight of this study opens the way towards a transfer learning approach for more efficient training of AI to solve tasks in other domains.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Alanna Ebigbo, David Rauber, Mousa Ayoub, Lisa Birzle, Tomoaki Matsumura, Andreas Probst, Ingo Steinbrück, Sandra Nagl, Christoph Römmele, Michael Meinikheim, Markus W. Scheppach, Christoph PalmORCiDGND, Helmut Messmann
DOI:https://doi.org/10.1055/s-0044-1783775
Parent Title (English):Endoscopy
Publisher:Thieme
Place of publication:Stuttgart
Document Type:conference proceeding (presentation, abstract)
Language:English
Year of first Publication:2024
Release Date:2024/05/15
Volume:56
Issue:S 02
First Page:S428
Konferenzangabe:ESGE Days 2024
Institutes:Fakultät Informatik und Mathematik
Fakultät Informatik und Mathematik / Regensburg Medical Image Computing (ReMIC)
Begutachtungsstatus:peer-reviewed
research focus:Lebenswissenschaften und Ethik
Licence (German):Keine Lizenz - Es gilt das deutsche Urheberrecht: § 53 UrhG