Real-Time Diagnosis of an Early Barrett's Carcinoma using Artificial Intelligence (AI) - Video Case Demonstration
- Introduction We present a clinical case showing the real-time detection, characterization and delineation of an early Barrett’s cancer using AI. Patients and methods A 70-year old patient with a long-segment Barrett’s esophagus (C5M7) was assessed with an AI algorithm. Results The AI system detected a 10 mm focal lesion and AI characterization predicted cancer with a probability of >90%. After ESD resection, histopathology showed mucosal adenocarcinoma (T1a (m), R0) confirming AI diagnosis. Conclusion We demonstrate the real-time AI detection, characterization and delineation of a small and early mucosal Barrett’s cancer.
Author: | Alanna EbigboORCiD, Robert MendelORCiD, Georgios Tziatzios, Andreas Probst, Christoph PalmORCiDGND, Helmut Messmann |
---|---|
DOI: | https://doi.org/10.1055/s-0040-1704075 |
Parent Title (English): | Endoscopy |
Publisher: | Thieme |
Document Type: | conference proceeding (presentation, abstract) |
Language: | English |
Year of first Publication: | 2020 |
Release Date: | 2022/05/30 |
Tag: | Artificial Intelligence; Barrett's Carcinoma |
GND Keyword: | Speiseröhrenkrebs; Künstliche Intelligenz; Diagnose |
Volume: | 52 |
Issue: | S 01 |
Pagenumber: | S23 |
Konferenzangabe: | ESGE Days 2020 |
Institutes: | Fakultät Informatik und Mathematik |
Fakultät Informatik und Mathematik / Regensburg Medical Image Computing (ReMIC) | |
Begutachtungsstatus: | peer-reviewed |
research focus: | Lebenswissenschaften und Ethik |
Licence (German): | Keine Lizenz - Es gilt das deutsche Urheberrecht: § 53 UrhG |