Real-time use of artificial intelligence in the evaluation of cancer in Barrett’s oesophagus

  • Based on previous work by our group with manual annotation of visible Barrett oesophagus (BE) cancer images, a real-time deep learning artificial intelligence (AI) system was developed. While an expert endoscopist conducts the endoscopic assessment of BE, our AI system captures random images from the real-time camera livestream and provides a global prediction (classification), as well as a dense prediction (segmentation) differentiating accurately between normal BE and early oesophageal adenocarcinoma (EAC). The AI system showed an accuracy of 89.9% on 14 cases with neoplastic BE.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Author:Alanna EbigboORCiD, Robert MendelORCiD, Andreas Probst, Johannes Manzeneder, Friederike Prinz, Luis Antonio de Souza Jr.ORCiD, João Paulo PapaORCiD, Christoph PalmORCiDGND, Helmut Messmann
Parent Title (English):Gut
Place of publication:London
Document Type:Article
Year of first Publication:2020
Release Date:2020/04/30
Tag:Barrett's esophagus; Deep learning; real-time
GND Keyword:Speiseröhrenkrankheit; Diagnose; Maschinelles Lernen
First Page:615
Last Page:616
Institutes:Fakultät Informatik und Mathematik
Regensburg Center of Health Sciences and Technology - RCHST
Fakultät Informatik und Mathematik / Regensburg Medical Image Computing (ReMIC)
OpenAccess Publikationsweg:Gold Open Access- Erstveröffentlichung in einem/als Open-Access-Medium
research focus:Lebenswissenschaften und Ethik
Licence (German):Creative Commons - CC BY - Namensnennung 4.0 International