Intraprozedurale Strukturerkennung bei Third-Space Endoskopie mithilfe eines Deep-Learning Algorithmus
- Einleitung Third-Space Interventionen wie die endoskopische Submukosadissektion (ESD) und die perorale endoskopische Myotomie (POEM) sind technisch anspruchsvoll und mit einem erhöhten Risiko für intraprozedurale Komplikationen wie Blutung oder Perforation assoziiert. Moderne Computerprogramme zur Unterstützung bei diagnostischen Entscheidungen werden unter Einsatz von künstlicher Intelligenz (KI) in der Endoskopie bereits erfolgreich eingesetzt. Ziel der vorliegenden Arbeit war es, relevante anatomische Strukturen mithilfe eines Deep-Learning Algorithmus zu detektieren und segmentieren, um die Sicherheit und Anwendbarkeit von ESD und POEM zu erhöhen. Methoden Zwölf Videoaufnahmen in voller Länge von Third-Space Endoskopien wurden aus der Datenbank des Universitätsklinikums Augsburg extrahiert. 1686 Einzelbilder wurden für die Kategorien Submukosa, Blutgefäß, Dissektionsmesser und endoskopisches Instrument annotiert und segmentiert. Mit diesem Datensatz wurde ein DeepLabv3+neuronales Netzwerk auf der Basis eines ResNet mit 101 Schichten trainiert und intern anhand der Parameter Intersection over Union (IoU), Dice Score und Pixel Accuracy validiert. Die Fähigkeit des Algorithmus zur Gefäßdetektion wurde anhand von 24 Videoclips mit einer Spieldauer von 7 bis 46 Sekunden mit 33 vordefinierten Gefäßen evaluiert. Anhand dieses Tests wurde auch die Gefäßdetektionsrate eines Experten in der Third-Space Endoskopie ermittelt. Ergebnisse Der Algorithmus zeigte eine Gefäßdetektionsrate von 93,94% mit einer mittleren Rate an falsch positiven Signalen von 1,87 pro Minute. Die Gefäßdetektionsrate des Experten lag bei 90,1% ohne falsch positive Ergebnisse. In der internen Validierung an Einzelbildern wurde eine IoU von 63,47%, ein mittlerer Dice Score von 76,18% und eine Pixel Accuracy von 86,61% ermittelt. Zusammenfassung Dies ist der erste KI-Algorithmus, der für den Einsatz in der therapeutischen Endoskopie entwickelt wurde. Präliminäre Ergebnisse deuten auf eine mit Experten vergleichbare Detektion von Gefäßen während der Untersuchung hin. Weitere Untersuchungen sind nötig, um die Leistung des Algorithmus im Vergleich zum Experten genauer zu eruieren sowie einen möglichen klinischen Nutzen zu ermitteln.
Author: | Markus W. ScheppachORCiD, Robert MendelORCiD, Andreas Probst, Michael Meinikheim, Christoph PalmORCiDGND, Helmut Messmann, Alanna EbigboORCiD |
---|---|
DOI: | https://doi.org/10.1055/s-0042-1745652 |
Parent Title (German): | Zeitschrift für Gastroenterologie |
Publisher: | Thieme |
Place of publication: | Stuttgart |
Document Type: | conference proceeding (presentation, abstract) |
Language: | German |
Year of first Publication: | 2022 |
Release Date: | 2022/04/11 |
Tag: | Deep Learning; Third-Space Endoscopy |
Volume: | 60 |
Issue: | 04 |
Pagenumber: | e250-e251 |
Konferenzangabe: | 49. Jahrestagung der Gesellschaft für Gastroenterologie in Bayern e.V., Freising |
Institutes: | Fakultät Informatik und Mathematik |
Fakultät Informatik und Mathematik / Regensburg Medical Image Computing (ReMIC) | |
Begutachtungsstatus: | peer-reviewed |
research focus: | Lebenswissenschaften und Ethik |
Licence (German): | Keine Lizenz - Es gilt das deutsche Urheberrecht: § 53 UrhG |