
A Parallel Hybrid Genetic Search for the

Capacitated VRP with Pickup and Delivery ⋆

Timo Stadler1, Spyro Nita2, and Jan Dünnweber1

1 OTH Regensburg, 93053 Regensburg, Germany
2 EPCC, Edinburgh EH8 9BT, United Kingdom

Abstract. In the realm of parallel computing, optimization plays a
pivotal role in achieving e�cient and scalable solutions. In this work,
we present the parallelization of a hybrid genetic search for solving
the Capacitated Vehicle Routing Problem with Pickup and Delivery
(CVRPPD). The hybrid algorithm combines a customized version of lo-
cal search with a genetic algorithm to compute an e�ective solution.
Our implementation makes use of the Message Passing Interface (MPI)
for data distribution and parallel execution. In addition, we run multi-
threaded processes on NVIDIA graphical processors using the CUDA
technology, which further increases the computation speed and conse-
quently minimizes the runtime. Parallelization also allows the best im-
provement strategy to be used instead of the �rst-improvement strategy
while maintaining the same runtime. We store the resulting routes in a
bus route database which we created as the basis of an extensive library
of optimal routes for our speci�c use case of optimizing bus routes in
a rural area. The experimental results on real road data show that the
parallel implementation of the Hybrid Genetic Search (HGS) achieves
signi�cant improvements in runtime over the sequential implementation
above a certain problem size. We believe that our implementation of the
parallel hybrid genetic search method can have a great in�uence on op-
timization strategies in parallel computing and can also be applied to
other subproblems of the VRP.

1 INTRODUCTION

The traveling salesman problem can only be solved using heuristics for larger
numbers of points as they are present in any real-world transportation system.
As with most NP-hard problems, approximate solutions are computed which
require a lot of computation time until the results are acceptable, especially
when dealing with large problem instances. However, approximate methods are
inevitable, especially for managing resources like drivers and vehicles, where an
increase in e�ciency quickly leads to considerably reduced costs.

⋆ The work has been performed under the Project HPC-EUROPA3 (INFRAIA-2016-
1-730897), with the support of the EC Research Innovation Action under the H2020
Programme; in particular, the author gratefully acknowledges the support of Adrian
Jackson from the EPCC and the computer resources and technical support provided
by EPCC

2 T. Stadler et al.

In our preceding research, we found out that a Hybrid Genetic Search (HGS)
is suitable for solving a speci�c instance of VRP, the Capacitated Vehicle Routing
Problem with Pickup and Delivery (CVRPPD) [1]. The CVRPPD adds two
constraints to the VRP that need to be considered. The �rst constraint is that
each vehicle used only has a certain passenger limit and cannot accommodate
more. It should also be noted that each vehicle can have a di�erent size. The
second constraint extending the classic VRP is that the CVRPPD divides stops
into pickup and delivery points for passengers. Passengers are not arbitrary goods
delivered to interchangeable destinations from a common depot, but they have
individual starting points and destinations. Therefore, the pickup and delivery
constraint has multiple implications. On the one hand, the order in which a
person is picked up and dropped o� by a vehicle must be in the correct order. In
addition, the delivery must be performed by the same vehicle as the pickups. In
our paper �A Hybrid Genetic Algorithm for Solving the VRP with Pickup and
Delivery in Rural Areas�, we introduced an adapated gene transfer limiting the
amount of possible mutations in each generation. This lead us to an algorithm
for solving the CVRPPD for the special case of more than 200 bus stops, as
typically found on the countryside.

Unlike common algorithms for solving the VRP or variations of it, we used
a hybrid genetic algorithm. This means that we combine the optimization tech-
niques of a genetic algorithm, such as crossover, mutation and selection with the
common local search method for solving the problem. In Local Search, a number
of metaheuristics in the form of so-called moves are used to determine the most
optimal route. In our case, the length of the route is used as an optimization
criterion. However, it is also possible to optimize for other parameters, such as
the shortest possible travel time for all vehicles, by making simple adjustments.
Even a Local Search can already be parallelized by using multiple initial solutions
and each thread computing an optimization for its initial solution. By adding
the extra layer of the genetic algorithm on top of the local search, the presented
algorithm can achieve an even better optimum. In contrast to a parallelization
of the local search, an exchange of the continuously optimizing solutions takes
place here due to the crossover.

The presented algorithm di�ers from the current methods for solving the
VRP in that it can �nd a solution to the CVRPPD through an evolutionary
approach without permanently generating solutions that are infeasible. Adjust-
ments were made to the execution of the Genetic Algorithm that allowed the
constraints of the CVRPPD to always be met, thus allowing the problem to be
solved by an HGS.

The use of a GA instead of heuristics allows us to parallelize the algorithm.
Moreover, GA �nds mutiple close-to optimal solutions simultaneously. If one of
the solutions no longer matches the real travel time due to the current tra�c
volume, another one can be chosen. Furthermore, less information is required
compared to using a heuristic and a lot less �netuning of parameters is required.

Despite of the fact, that countryside bus stops are less densely positioned
than in the city, it is di�cult to provide a reliable and frequent public transport

A Parallel HGS for the CVRPPD 3

system between them at a�ordable costs. Individual settlements can be placed
in the middle of wastelands or in villages with a very low population density,
where it is di�cult for public transport providers to operate economically. The
less-than-ideal solution is that means of transport run on �xed routes, only
irregularly or temporarily not at all. Some residential areas on the countryside
cannot even be reached by public transport due to their location. For many
residents, this means, that they need alternatives to public transports, which
are typically more expensive and not environmentally sustainable, such as cabs
or their own cars.

In an ongoing cooperation with the "Roding transportation services" and
other industry partners, we are currently establishing an on-demand transporta-
tion service with so-called �oating busses. With the help of dynamic route plan-
ning, these buses will be available wherever they are needed and transport people
to and from the existing �xed routes. In this way, the public transport system
can be expanded to meet people's demands. The dynamic routing can react
quickly to changing conditions, such as increased demand, road works or other
tra�c obstacles, and minimize the travel time for each passenger [2]. This system
should lead to a more often used public transport service for the countryside and
an increase in customer satisfaction. Our algorithm is responsible for repeatedly
calculating the required routes in the shortest possible time in order to take into
account all the passengers requests and provide them with the data for their
trips, such as travel time, departure time, and start and end stops, with minimal
delay.

The algorithm is subsequently tested on a dataset containing 2000 stop
points. While only a few of these locations have structural installations, such as
a waiting bench, the 2000 positions are without exception locations around Rod-
ing where our bus service stops on demand. Roding is a small town in Bavaria,
Germany with a bit more than 10000 inhabitants and an area of 113km2. We
also considered the signi�cantly less populated neighboring regions, covering an
area of 674km2, for the placement of the stops.

Due to the population size, our case study assumes that in a utopian scenario
all residents would want to use public transit at the same time and thus a
maximum of 10,000 pairs must be calculated. However, the problem is not limited
to this size on the part of Local Search and the Hybrid Approach and can be
extended to an even larger number for other case studies in the future. Thus,
all the ideas demonstrated in this paper can be applied to other case studies as
well. Thus, our hybrid algorithm is not only useful for solving the rural VRP,
but can be applied to any speci�c CVRPPD.

To prevent our route optimization software from falling into a local opti-
mum, a GA was used. This is based on the theory of evolution, whereby a pool
of solutions is optimized with each iteration and thus a set of optimized solu-
tions is generated, which naturally requires more computational power than the
creation of one single route suggestion. Therefore, we decided to parallelize the
algorithm. We show that the best performance is possible, when only parts of
the procedure run in parallel. It must be taken into account that data exchange

4 T. Stadler et al.

and coordination in parallel processes result in a corresponding overhead, which
in the case of arranging only a few bus stops along a route, can lead to a slowing
down of the program instead of an acceleration.

Using the Cirrus Cluster at EPCC in Edinburgh, we calculated all possible
combinations of routes between the individual stops. Thus, we were able to store
all possible tours and the combination of individual trips in a database table.
Thus, the online booking system which we provide to the population of Roding
and its surroundigs in cooperation with our industry partners, does not need
access to an HPC platform for �nding routes. The requested routes are instead
selected from our database, which we pre-�ll with optimized route suggestions.
We are currently making our implementation of the route optimization algorithm
available on our Github to make it available to other developers. Thus, ohter
tour databases for other areas than Roding can be build using our methods and
also other booking applications can retrieve pre-optimized routes quickly when
needed. In order to take current changes in road construction into account, the
algorithm must of course be re-executed at regular intervals.

By using an HGS, parallelizing it, and using CPU threads and GPU cores,
our algorithm enables a faster solution to the CVRPPD. Most importantly, by
using a best-improvement strategy, which takes as much time as the otherwise
common �rst-improvement strategy due to parallelization, our algorithm achieves
an optimum in less time than common approaches. Due to the Genetic Algorithm
it is also prevented that the found solution is a local optimum. Especially for very
large problems starting from a number of more than 400 points, which have to be
approached, our algorithm achieves a shorter runtime than common sequential
approaches. This is mainly due to the hardware used. For the experiments, the
Cirrus network of the EPCC was used [3].

Section 2 describes further possibilities for the e�cient solution of the CVRPPD,
and subsequently discusses bene�ts through the parallelization of a hybrid ge-
netic algorithm.

Section 3 describes the functionality of the HGS and deals in particular with
the parallelizable sections of the program. Section 4 describes our implementa-
tion using MPI and CUDA. In section 5 the results of the parallelized algorithm
are compared to those of the sequential algorithm for di�erent problem sizes and
evaluated. Finally, a summary of the results of this work is given.

2 RELATED WORK

There are di�erent approaches to solve the CVRPPD. In general, exact and
approximate methods are distinguished. Within the approximate methods, a
further distinction can be made between the heuristics and the meta-heuristics.
An example of a heuristic is the Clarke-Wright-Savings method, in which a
sorting of the travel distances takes place according to length and pairs with
the largest savings are combined to tours [4]. The Genetic Algorithm we use in
conjunction with local search is one of the meta-heuristics. Here, several heuristic

A Parallel HGS for the CVRPPD 5

methods are combined in an iterative process to �nd the most optimal solution
to the problem [5].

In addition to other possibilities for code optimization, such as algorithmic
improvements or memory caching, parallelization in particular can signi�cantly
reduce the runtime of a program. Simultaneous processing, by splitting the code
across multiple threads or processes, can achieve a signi�cant performance boost.
However, careful implementation is also necessary to prevent con�icts between
threads and to make the best use of the available resources [6]. The Cirrus Clus-
ter at EPCC has 38 GPU compute nodes each equipped with 4 NVIDIA V100
(Volta) GPUs. CUDA provides a runtime environment that allows applications
to run on the cores of a GPU [7]. For the parallelization of our algorithm, we de-
cided to use MPI for communication among the compute nodes and additionally,
the CUDA interface, for outsourcing computations to the GPUs.

Yelmewad and Talawar use a parallel version of the Local Search heuristic, for
solving the Capacitated Vehicle Routing Problem (CVRP) [8]. They also used
GPU-based parallel strategies to improve the runtime of the so-called individual
moves performed within a Local Search. However, their work deals with CVRP,
which has signi�cantly fewer constraints and can lead to a solution that is in-
feasible for our public transport problem. Also, only the parallelization of the
Local Search is done. By using the genetic algorithm, it can be prevented that
a local optimum is reached [9]. The authors state that 99% of the algorithm's
time is spent in improving the feasible solutions.

Our algorithm is called a Hybrid Algorithm because it is a combination
of Local Search and a Genetic Algorithm, and combines the strengths and ap-
proaches of both techniques to improve e�ciency and performance in solving the
optimization problem. Through this combination, the hybrid algorithm bene�ts
from the exploration capabilities of the genetic algorithm to �nd global optima
and the exploitation capabilities of local search to re�ne these solutions in their
vicinity. As a result, our hybrid algorithm can often �nd better solutions faster
than the individual components alone. This makes it a powerful technique for
solving complex optimization problems.

In "A Multi-GPU Parallel Genetic Algorithm For Large-Scale Vehicle Rout-
ing Problems" Abdelatti et al. consider solving VRPs using GAs on high-
performance computing (HPC) platforms with up to 8 GPUs. The authors focus
on VRPs with up to 20, 000 nodes. To achieve the maximum degree of paral-
lelism, each array of the algorithm is mapped to block threads to achieve high
throughput and low latency [10].

A large number of nodes must also be processed in our implementation of the
CVRPPD. Moreover, for our public transport problem, not only a single vehicle
has to be routed optimally, but multiple vehicles, each with a di�erent passanger
capacity. Taking into consideration that we deal with an online system, a high
number of �live�-requests for routes to be planned must be expected, even if most
of them are only requested and not booked eventually.

Another interesting way to improve the solution of the VRP is the use of
neural networks [11]. Local search and crossover of an HGA can bene�t from

6 T. Stadler et al.

machine learning algorithms. A graph neural network (GNN) representing a
heat map is used as a more e�cient alternative to random or greedy methods.
It was shown that the GNN is suitable for modelling route networks.

3 METHODOLOGY

This section describes the implementation of the HGS based on the Local Search
(LS) and the HGA. At this point, only the general functionality of these two
algorithms and their interaction with each other will be discussed.

Create Initial
Individuals Feasible Infeasible

Yes

No

Termination
Criterion met?

Return best
Solution

Parent Selection

CrossoverLS & Repair

Insertion in the
Population

Population

Fig. 1. Flow Chart for the sequential version of the HGS Algorithm

Figure 1 shows the �ow of the sequential algorithm. The �eld of Local Search
(LS) distinguishes the algorithm as hybrid and thus di�erentiates it from a purely
genetic algorithm. The main goal here is to achieve speedup in the LS and Popu-
lation domains. The basis for this algorithm is again the HGS for the CVRP [9].

At the beginning, an initial population is created and divided into the two
subpopulations, feasible and infeasible. A solution is called infeasible if it exceeds
the capacity of a vehicle or does not respect the order of pickup and delivery
points.

The iterative optimization of the algorithm then starts. In each iteration, two
individuals, the parents, are selected from the current population in order to gen-
erate a new individual, the so-called o�spring, by crossover. The subsequent LS
attempts to improve the o�spring and thus place it in the subpopulation of fea-
sible solutions. If the o�spring's solution is infeasible, there is a 50% chance that
repair will occur. This is a second LS performed with more stringent parameters.
After repair, the o�spring is placed back into one of the two subpopulations.

After each iteration, the size of one of the subpopulations is increased and it
must be checked whether the maximum size has been reached. If this is the case,

A Parallel HGS for the CVRPPD 7

Algorithm 1 HGS_CVRPPD

while termination_condition is not met do
parents = SelectParents()
offspring = SinglePointCrossover(Parents)
LS(offspring)
if offspring is infeasible AND rand_50() then

TryRepair(offspring)

InsertIntoSubPop(pop, offspring)
if subPopulation.size() > maxSubPopSize then

SurvivorSelection()

AdjustPenaltyCoe�cients()

bestSol = getBestFeasibleSolution()
return bestSol

survivors are selected according to the survival-of-the-�ttest paradigm, which
form the new population while the remaining individuals are eliminated.

In the last step, the penalty coe�cients are adjusted. This process is repeated
every iteration until the termination criterion is met. This can be a time limit
or the maximum number of iterations without an observable improvement. As
soon as the termination criterion is reached, the current best solution from the
population is delivered as the result of the algorithm.

The main parameters that can be passed to the algorithm are the populations
size µ and the generations size λ. Listing 1 describes the general �ow of the HGS-
CVRPPD. The further subsections deal in more detail with the individual steps
of the HGS-CVRPPD.

3.1 Fitness Evaluation of the Individuals

One of the most important points of a GA is the calculation of the �tness value for
each individual. Based on this value, decisions such as parent selection, selection
of survivors, or diversi�cation of the current population are made.

In our case, the individual is considered for the diversi�cation of the popu-
lation and not only the objective function as the goodness value. By not diver-
sifying the population, the iterations can converge very quickly and end up in a
local minimum instead of exploring more possibilities. To prevent this problem,
a Biased Fitness (BF) is introduced to evaluate each individual. For this, the fol-

lowing two quantities are needed: Fϕ
pop(I): Solution Quality Rank and Fϕ

Div(I):
Rank on the contribution of population diversi�cation

The diversi�cation contribution is calculated by the average broken-pairs dis-

tance to the n closest individuals that are the most similar to the considered
individual. The BF is calculated using the following equation:

fpop(I) = fϕ
pop(I) + (1− nel

|Pop|
) · fDiv

Pop (I) (1)

8 T. Stadler et al.

This equation puts more emphasis on solution quality than on diversi�cation.
Thus, we less likely lose the elite individuals during the solution search which
can happen due to the diversi�cation o�sets. By doing so, we more likely im-
prove the solution quality by retaining the best individuals and generating fewer
completely di�erent solutions.

3.2 Selection of Parents and Crossover

The goal of an iteration is to improve the existing population. For this purpose,
new solutions are generated by recombination. This process consists of two steps.
In the �rst step, two individuals P1 and P2 are selected. In the next step, the
crossover of P1 and P2 is done to generate a new individual as o�spring O.

The selection of the two individuals as parents is done by a so-called binary

tournament selection (BTS) [12]. First, the BF values of the two parents are up-
dated by the speci�ed formula. In the next step, two individuals are randomly
selected under a uniform distribution, which can be within the feasible or infea-
sible population. Finally, the individual with the better �tness value is selected
and the process is repeated for the second parent.

As a crossover operator, we implemented a special version of the one-point
crossover, which was shown to preserve the correct order of pickup and delivery
pairs.

3.3 Route Splitting

So far, the tour has been treated as a single large-scale route in our algorithm,
since this is advantageous in crossover. However, for the solution of the problem,
several di�erent vehicles are intended to be used. To achieve the division of the
large-scale tour into several sub-tours, which are improved in the LS, the split
algorithm was used.

In the later LS, moves within the route (intra-moves) as well as moves be-
tween two sub-routes (inter-moves) must be possible. A splitting algorithm,
which is commonly used for solving the capacited VRP, also serves as our basis
for partitioning the route [13]. Here the problem of �nding delimiters is reduced
to the shortest path problem and thus allows an optimal solution.

To apply this algorithm to the CVRPPD, an adjustment must be made.
Splitting the total route into sub-routes should only be allowed if a pair of pickup
and delivery is split into two di�erent routes, as it is done in the Bellman-Ford
algorithm [14].

Figure 2 shows the initial situation for a total route with �ve pairs of pickup
and delivery points. For our call bus application, we need to solve an asymmetric
problem, as it can be seen for the route to point s6, which is shorter than in the
reverse direction. Such asymmetries result from one-way streets or construction
sites, for example. Each node after which a delimiter can be set is also marked
with OK. After the iterative execution of our algorithm, it can be seen that the
following order is optimal for a split between two vehicles:

A Parallel HGS for the CVRPPD 9

ds1

s2

s3

s4
s5

s10

s9

s7

s8

s6

26

14

45

24

26
33

6

13

39

38

14

50

49

12

9
17

186

32

13

22

OK

OK

OK

OK

OK

Fig. 2. Giant tour for a CVRPPD

� vehicle1 : d → 1 → 6 → 2 → 7 → d
� vehicle2 : d → 3 → 8 → 4 → 9 → 5 → 10 → d

After the split algorithm is performed, the LS is executed on the individuals.

3.4 Local Search

After the route splitting, we attempt to improve the individuals by means of
LS. Here, an attempt is made to replace a solution with a better solution in
its designated neighborhood. A neighborhood contains all other possible routes
that can be created by prede�ned changes to the route, so called moves. Each
neighborhood is de�ned by the granular search parameter γ, which limits the
creation of the neighborhood to the γ nearest nodes depending on the current
node, resulting in a neighborhood size of O(γ × n).

In general, three di�erent categories of moves can be distinguished. These
categories are relocate-moves, swap-moves and 2Opt-moves. Each of these moves
generally consists of 3 phases. First, it must be checked if there is a violation
of the pickup and delivery order by the execution of the move. If this is not
the case, the costs (i.e. the new distance) incurred by the move are calculated.
If these are lower than the costs before the move, the move is executed [1]. In
our parallel implementation, all 9 moves from the three categories are always
executed simultaneously.

Especially in the LS phase, the performance of our algorithm can be opti-
mized. On the one hand, performance optimizations can be achieved by per-
forming precalculations and saving the results. Another optimization that we
implemented was the replacement of the �rst-improvement strategy by a parallel
neighborhood search: We execute all possible moves simultaneously and apply
the one that leads to the greatest improvement. Thereby, we save a signi�cant
amount of time when executing the moves. Fewer moves need to be performed on
an individual overall as well, since an optimum is achieved in larger increments.
However, it must also be noted that a local optimum is reached more quickly
due to the larger step size.

10 T. Stadler et al.

The best-improvement strategy and the �rst-improvement strategy are two
approaches to implementing local search algorithms, especially in conjunction
with metaheuristics such as simulated annealing or tabu search. Both strategies
have their own advantages and disadvantages, and the choice between them de-
pends on the speci�c requirements and nature of the optimization problem. The
best improvement strategy looks for the best available neighborhood solution be-
fore making a decision. This means that it evaluates all possible neighborhood
solutions and selects the one that improves the objective function the most. In
contrast, the First-Improvement strategy uses the �rst neighborhood solution
found that improves the objective function without checking all the others. The
best-improvement strategy has the potential to �nd better solutions because
it selects the best available neighborhood solution. Due to parallelization, the
best-improvement strategy can also be applied to larger neighborhoods, since no
additional e�ort is required to evaluate all neighborhood solutions. For convex
optimization problems, such as those encountered in VRP, the best-improvement
strategy helps �nd this minimum faster.

4 IMPLEMENTATION

In this section, our optimized implementation of the HGS using multiple pro-
cesses, each responsible for a CUDA block of its own, is shown. Within the LS,
we switched from the �rst-improvement strategy to a parallel best-improvement

strategy. Further parallelization is done by executing the algorithm simultane-
ously on multiple individuals by splitting it among di�erent processes. The �gure
also shows that a node can use multiple threads of a CPU. A GPU can be ac-
cessed by more than one node because su�cient resources are provided by the
GPU. In general, a GPU on average runs the LS for 128 nodes.

Technically, the parallelization is realized by executing the algorithm simul-
taneously on multiple individuals, each evaluated with a di�erent MPI process.
The overall procedure is illustrated in Figure 3. The main node handles the initial
creation of the population and the selection of the parents. Using MPI, we scat-
ter the according subroutes to di�erent processes. This is where the crossover,
split algorithm, repair, and �tness evaluation for the newly generated individuals
takes place.

Each of these processes in turn calls a CUDA kernel to execute all the moves
of the LS simultaneously on a GPU and subsequently copies the improved solu-
tion back into the host memory according to our best-improvement strategy.

With the help of the MPI library, the results of the processes for the opti-
mization of the individuals are gathered again and divided into the population
according to its feasibility. If the population becomes too large, the population is
adjusted based on the BF according to the survival of the �ttest concept. Since
the optimization is performed on newly created individuals, the processes do not
have to wait for each other and as soon as a process has �nished computing, it
can receive the next individual for optimization.

A Parallel HGS for the CVRPPD 11

Main
Node

Node
1

Kernel
1 ... Kernel

9

GPU

Node
2

Kernel
1 ... Kernel

9

MPI_Isend/MPI_Irecv

Kernel
1 ... Kernel

9

GPU

Node
3

Kernel
1 ... Kernel

9

GPU

Node
X

Thread
4

Thread
3

Thread
1

Thread
2

Thread
4

Fig. 3. Architecture of the system for the algorithm with multiple nodes and GPUs

We use MPI_Isend and MPI_Irecv for exchanging the results from the
CUDA-blocks asynchronously, i. e. all the communication in our parallel CVRPPD-
solver is non-blocking. We allow population accesses to overlap, thus avoiding
synchronization-related waiting times which further inceases the e�ciency of our
implementation.

Since the MPI library enables the communication via messages exchange
between processes with distributed memory, we can use it complementary to
CUDA, which enables the parallelization on a single node. We bene�t from the
combination of the two technologies in multiple ways: Our system can cope with
route optimization problems comprised of so many stops that they do not �t in
the memory of a single GPU. Particularly, in large-scale route optimization, as
they occur in practice when routes conncet distinct rural areas, computations
can also be disproportioanly long. Using a CUDA-aware MPI implementation,
we gather partial results using GPU-to-GPU commincation [15].

A CUDA kernel is used to implement the parallel execution of all moves.
Since each move should be executed by its own thread, a kernel with a 1x1x9
grid can be used. The variable threadIdx.x is used to assign one of the nine
possible moves to each thread. The return value is both the value obtained by
an improvement and a pointer to the modi�ed individual. Since the size of an
individual cannot be changed by the LS, the size is already known and there is
no need for dynamic allocation of memory. Back in the initiating process, the
result is copied to the host memory.

Here, the best result of all moves is determined and compared to the initial
solution. The greatest improvement is further used in the next phase of our

12 T. Stadler et al.

algorithm. If all moves produce a worse solution than the initial solution, it is
used for further computation.

 Feasible Infeasible

No

Termination
Criterion met?

Crossover

Insertion in the
Population

Population
Main Node

Return best
SolutionYes

1x Computational Node

Local Search

Repair

GPU

Parent Selection

Swap-moves

Relocate-
moves

2-Opt-moves

Execute best
Solution

Fig. 4. Flowchart for the parallelized algorithm

Figure 4 illustrates our parallel work�ow. The steps enclosed in square boxes
are each executed in parallel. Our parallelization made it possible to work with
multiple individuals from the population at the same time, instead of sequentially
handling one individual at a time. This is possible mainly due to the possibility
of asynchronous communication. Only the execution of the survival of the �ttest
operation and the creation of the initial population are inherently sequential. By
splitting moves among CUDA threads, a further optimization was gained saving
time within the CUDA blocks.

When combining code for parallelization with CUDA and MPI, some pitfalls
must be considered. Due to the di�erent runtimes and calling conventions, we
needed to link C++ code (CUDA) and C code together. We split the iterations of
the genetitc algorithm and the LS, such that we could keep all CUDA and all MPI
code independently in di�erent �les. Using the respective compilers (mpicc &
nvcc), all sources (*.c & *.cu) are �rst compiled to object �les. Afterwards, the
linking and the creation of the executable is done with the help of mpicc linking
the binaries against the CUDA library. To simplify this process, an automated
build was implemented using a make�le. The resulting executable �le is then run

A Parallel HGS for the CVRPPD 13

using mpiexec, con�gured for using the desired resources (processes and GPUs)
in a submission script passed to the SLURM scheduler used at EPCC [16].

5 EVALUATION AND RESULTS

The algorithm was tested for 4 benchmark problems selected by us. These prob-
lems di�er in the number of pickup and delivery pairs that are to be approached
within a route. The number of nodes ranges from 50-10000 nodes.Here, the 50-
pair problem is roughly equivalent to the normal deployment within a CVRPPD.
In our special case, where mainly rural areas are considered, the problem size
can increase signi�cantly. This happens on the one hand due to the long travel
distances with simultaneously high demand, whereby vehicles never become com-
pletely empty and no calculation of a fresh tour can take place. A problem size
of 200 is therefore quite realistic for our use case. The two other problem sizes
were chosen to explore the limits of our parallelization. A problem size of 10, 000
pairs can at most take place in the case of mail. However, this is reduced by
collection centers and so the problem size decreases here as well. The time for
execution is given in performed generations (i.e. number of optimizations) per
second. A number of 500 iterations without improvement was chosen as termi-
nation criterion. In addition, the total time needed to solve the problem is also
given. The same number of 9 threads is always used for the distribution to the
CUDA threads.

Table 1. Runtimes and Speedup in seconds for selected test instances

of Nodes Seq. 16 128 256 1080

Runtime in s

50 Pairs 1.937 2.381 2.595 2.764 3.181
200 Pairs 3.371 3.294 3.245 3.183 3.292
1,000 Pairs 34.07 27.18 25.19 22.18 20.22
10,000 Pairs 180.7 120.3 95.4 78.8 39.2

Speedup

50 Pairs 1x 0,81x 0,75x 0,70x 0,61x
200 Pairs 1x 1,02x 1,04x 1,06x 1,02x
1,000 Pairs 1x 1,25x 1,35x 1,54x 1,69x%
10,000 Pairs 1x 1,50x 1,89x 2,29x 4,61x

Table 1 shows the average runtime in ms for a parallelization with 16, 128,
256 and 1080 threads. In addition, the duration for the runtime of the sequential
algorithm is also given and the runtime of the open-source algorithm VROOM,
based on a tabu search for the solution of the CVRPPD [17].

The systems used for these calculations were run on a computer with two
AMD EPYC 64-core processors. The 1080 thread tests used the Cirrus UK
National Tier-2 HPC Service at EPCC [3]. Based on the table, we can see that
the runtime of the parallel algorithm is up to 1.6 times slower than the sequential
execution on a single thread due to the increased communication overhead for

14 T. Stadler et al.

the smallest instance. From a problem size of 200 pairs, the parallelization could
achieve better results and the solution of the large-scale problem with 10,000
pairs our parallelization reaches a speedup of almost 80%. Thus, as the number
of nodes increases, an optimal result can be achieved more quickly. It should be
noted, however, that the improvement in runtime is not linear with the number
of nodes, but decreases as the number of nodes increases.

The closeness of our solutions to the results of a local search with �rst-

improvement strategy are a �rst promising indication that our solutions are very
close to the global optimum. In addition, a comparison was made with the global
optimum of solutions, which was determined by us for certain problem instances
by trying out all possible solutions. Here, our algorithm achieved an average
deviation of 1.29% from the optimal solution. The selected problem instances
had a size between 20 and 100 pairs, because it would be impossible to calculate
an optimal solution for larger problems.

The proven algorithm has so far been applied as a case study for the Roding
transport authority and has achieved impressive results there. This suggests that
this algorithm has the potential to be applied to other problems as well. In the
speci�c use case, the algorithm achieved good results, but the parallelization
could not yet be fully exploited. By transferring it to other regions, such as
large cities with many more necessary stopping points, new insights could be
gained, e�ciencies could be improved, or further innovative solutions could be
found. This approach allows our case study to be used as a basis for solving more
diverse, similar challenges and to fully exploit the potential of the algorithm.

6 CONCLUSION

This work uses an HPC cluster comprising multiple GPU servers for solving a
real-world problem that directly impacts public transit optimization. A paral-
lel genetic algorithm was presented along with early and parallel execution of
local search. The algorithm was tested on 2 di�erent multi-GPU systems with
NVIDIA A100 GPUs to solve large-scale CVRPPD with up to 10, 000 nodes.
To take advantage of maximum parallelization, an approach of trading one in-
dividual from the population of one thread each was chosen. It was found that
parallelization produces signi�cant improvements in runtime for problem sizes as
small as 2, 000 bus stops compared to sequential execution on a CPU or without
the parallelization provided by CUDA. In our application, these 2, 000 stops are
actually necessary because in rural areas the stops are often far apart and a large
area needs to be covered. To cover this space accordingly with new stops and to
minimize the walking distances of the population, 2, 000 of these pop-up stops
were introduced.

References

1. T. Stadler, S. Hofmeister, and J. Dünnweber, �A method for the optimized place-
ment of bus stops based on voronoi diagrams,� in Proceedings of the Annual Hawaii

A Parallel HGS for the CVRPPD 15

International Conference on System Sciences, Hawaii International Conference on
System Sciences.

2. I. Lana, J. D. Ser, M. Velez, and E. I. Vlahogianni, �Road tra�c forecasting: Recent
advances and new challenges,� vol. 10, no. 2, pp. 93�109.

3. A. Turner, �Cirrus user guide.� https://cirrus.readthedocs.io/en/main/user-
guide/introduction.html. last accessed on: 01.09.2023.

4. T. Pichpibul and R. Kawtummachai, �A heuristic approach based on clarke-wright
algorithm for open vehicle routing problem,� vol. 2013, pp. 1�11.

5. B. D. Backer, V. Furnon, P. Shaw, P. Kilby, and P. Prosser, �Solving vehicle routing
problems using constraint programming and metaheuristics,� vol. 6, no. 4, pp. 501�
523.

6. S. Ho�mann and R. Lienhart, OpenMP: Eine Einführung in die parallele Program-
mierung mit C/C++. Springer-Verlag, 2008.

7. D. Kirk et al., �Nvidia cuda software and gpu parallel computing architecture,� in
ISMM, vol. 7, pp. 103�104, 2007.

8. P. Yelmewad and B. Talawar, �Parallel version of local search heuristic algorithm
to solve capacitated vehicle routing problem,� vol. 24, no. 4, pp. 3671�3692.

9. T. Vidal, �Hybrid genetic search for the cvrp: Open-source implementation and
swap* neighborhood,� vol. 140, p. 105643, apr 2020.

10. M. Abdelatti, M. Sodhi, and R. Sendag, �A multi-gpu parallel genetic algorithm
for large-scale vehicle routing problems,� in 2022 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1�8, IEEE, 2022.

11. I. Santana, A. Lodi, and T. Vidal, �Neural networks for local search and crossover
in vehicle routing: A possible overkill?.� https://arxiv.org/abs/2210.12075, 2022.

12. G. Homsi, R. Martinelli, T. Vidal, and K. Fagerholt, �Industrial and tramp ship
routing problems: Closing the gap for real-scale instances,� vol. 283, pp. 972�990,
jun 2018.

13. C. Prins, �A simple and e�ective evolutionary algorithm for the vehicle routing
problem,� vol. 31, no. 12, pp. 1985�2002.

14. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms. The MIT Press.

15. R. Saxena, M. Jain, S. Bhadri, and S. Khemka, �Parallelizing GA based heuristic
approach for TSP over CUDA and OPENMP,� in 2017 International Conference
on Advances in Computing, Communications and Informatics (ICACCI), IEEE.

16. M. A. J. Andy B. Yoo and M. Grondona, �Slurm: Simple linux utility for resource
management,� in Proceedings of the ClusterWorld Conference and Expo, Springer
LNCS.

17. J. Coupey, �New features for our route optimization api.� https://blog.verso-
optim.com/2022/05/31/solving-problems-better-and-faster/. last accessed on:
01.09.2023.

