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Abstract In this work, a surrogate model for structural, transient and discontinuously excited finite element
method simulations is developed. This allows to reduce the computational effort of repeated calculations
of identical models under different load cases. The architecture of the surrogate combines fully connected
neural network layers with long short-term memory layers. For the reproduction of different damping ratios, a
categorical variable is added to the continuous input data. Based on a recursive flow of the predicted data back
to the input layer, long-term dependencies do not vanish due to short-input sequences. The system dimension
is reduced by applying the model-order reduction technique for modal decomposition. The high accuracy of
the surrogate and the reduction of computational costs are shown on an academic example of a cantilever
beam and a real-world example of a robot. The advantages of our approach are illustrated in comparison with
state-of-the-art surrogates for transient finite element analysis. By using the surrogate proposed in this study,
oscillations due to discontinuous excitation of mechanical structures can be reproduced. For this purpose, only
short-input sequences are necessary since the excitation of the oscillations does not have to be part of the input
sequence during the whole duration of the oscillations. Due to the categorical variable for the damping ratio,
the surrogate can account for the influence of different damping in parameter studies.

Keywords Finite element method · Long short-term memory · Surrogate modeling · Modal decomposition ·
Discontinuous loads

1 Introduction

The finite element method (FEM) is a powerful numerical technique used to analyze and optimize mechanical
structures under transient and discontinuous loading for maximum performance and efficiency. However,
transient FEM calculations can be computationally expensive and time-consuming, particularly for complex
structures with a large number of degrees of freedom. This may limit the optimization of various designs in a
reasonable amount of time.

To address this challenge, a wide spectrum of model-order reduction techniques were developed, see Lu
et al. [1]. With the developments in the field of artificial intelligence (AI), researchers now have additional
possibilities to speed up calculations. To address this issue from a hardware point of view, Tong and Schiavazzi
[2] improve parallelization of the solving process and intelligent communication between the processors with
neural networks. Thus, computational costs can be saved. This approach is especially useful for problems,
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which have to be calculated only a few times. If calculations have to be carried out often, building a surrogate
model helps to cut computation times by a fraction. In recent years, the use of surrogate models has become
increasingly common in engineering design, as they provide a valuable tool for accelerating the optimization
process. By reducing the computational burden of FEM calculations, surrogate models allow engineers to
explore more design options and to improve the performance and efficiency of mechanical structures.

Surrogates of static structural analysis have been developed for replacing FE simulations and are already
established for a wide range of applications. Kneifl et al. [3] build surrogate models of musculoskeletal systems
based on PCA and autoencoders for model reduction purposes. Another approach of surrogate modeling is
presented by Funk et al [4], where mechanical systems are modeled based on support vector regression.
Additional examples of such models include [5–10]. These models are capable of modeling both linear and
nonlinear problems with great accuracy. To gain a more detailed overview of these models, we refer readers
to Phellan et al. [11].

Further research was conducted in the area of FE surrogates for dynamic problems. For reliability analysis,
Barbosa and Rade [12] investigate rotor-bearing systems with a surrogate, among others. Therefore, the vibra-
tion amplitudes of the bearings are computed with FEM and used to construct the surrogate model based on
kriging. Compared to FEM calculations, the calculation time of the surrogate is lower in the inference phase.
However, this method of surrogate modeling is not used to represent the dynamics of a system as a function
of time.

If a dynamic problem is not only dependent on time, but should also be solved in the time domain, recurrent
neural networks that can process data over timemust be used. Thereof, long short-termmemory (LSTM) neural
networks are the most prominent architecture.

In the area of short-term dynamics, Kohar et al. [13] use LSTMs to model the deformations of crash tubes.
Various approaches have been employed to reconstruct the deformation of either a single node or the entire
crash tube. In both cases, LSTMs are utilized to manage the time space. If the surrogate should represent the
complete model with all degrees of freedom, convolutional neural network (CNN) autoencoders are used to
handle the spatial space. These approaches enable reductions in computational costs depending on how many
degrees of freedom of the original FE model are to be reproduced.

The focus in the work of Zhang et al. [14] is on seismic, thus oscillating and time-dependent excitation
on buildings. Using a physics-informed LSTM metamodel, they calculate the displacements of buildings
with scarce data. However, damping issues are not explicitly addressed in the work. Vibrations occur due to
excitation with oscillating signals and not because of discontinuous loading.

Ma et al. [15] relate deep learning to sub-modeling methods. For coupling linear sub-models, nonlinear
connections are used. These are modeled by artificial neural networks (ANN) to reduce the computation time.

In the work of Baiges et al. [16], low-fidelity models are used as a baseline and corrections to their results
are added with the help of ANN to reduce calculation time. Under static load, only a slight error to the reference
solution can be detected. Since a phase shift accumulates over time, only the general behavior can be predicted
under dynamic excitation.

For applications in the field of soft robotics, Tariverdi et al. [17] use LSTMs to predict the displacement of
soft continuummanipulators. As input, magnetic forces and torqueswhich drive themanipulators are available.
The architecture of the neural network concatenates this information with the location of the magnets, which
are optically measured. Due to the low dimensionality, this surrogate is useful for real-time applications.

Kharazmi et al. [18] investigate marine risers for the prediction of fatigue damage. A LSTM network
reconstructs the dynamics of the system by learning measured data from modal decomposition.

For FE models with only few degrees of freedom, it is possible to build a surrogate which handles all
degree of freedom directly without any additional methods for the latent space. Koeppe et al. [19] investigate
a frame structure with 45 degrees of freedom and use a time-dependent one-dimensional force as single input
for the surrogate.

Using decomposition and replacing the numerically expensive time integration schemes through LSTMs
is part of recent research work, whereby reduced-order models for nonlinear systems are built. Simpson et al.
[20] propose an approach that uses autoencoder to reduce dimensionality. This representation of the problem is
learned over time by LSTMs. As an example, amass spring damper system is evaluated. Damping is introduced
with the proportional approach on a fixed basis. Later, this approach is applied to steel monopile foundations,
see Simpson et al. [21]. The work of Dutta et al. [22] follows a similar approach for fluid dynamics. With the
use of advection-aware autoencoders, data are mapped to shifted versions of the input data. The experiments
are subdivided using different Reynold numbers. Hence, no categorical variable is used; a single model has to
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be trained for every value. Furthermore, different model architectures are used within the range of Reynolds
numbers.

So far, no investigations on surrogates of transient FE simulations with discontinuous loads and damping
are reported in the literature, but this is important for modern engineering tasks. Our overarching objective is to
methodically demonstrate the enhancement and implementation of surrogate modeling for the aforementioned
use case of mechanical systems. Especially for parameter studies, motion planning or control applications,
where a large number of simulations have to be computed, our approach is beneficial. Therefore, we present a
surrogate for mechanical FE simulations which is capable of reproducing oscillations excited by discontinuous
loads. Our surrogate also can handle different damping characteristics by adding a categorical variable to the
input data. Through the recursive architecture of the surrogate only short-input sequences are necessary to
process long-time dependencies in the output values. This is especially important for the decay process of
oscillations, if the damping values allow multiple oscillation periods. Furthermore, our surrogate is able
to model the complete domain of a FE simulation. For this purpose, the latent space is modeled with the
contribution vector based on modal decomposition.

In this paper, we first show the fundamentals for modal reduction in Sect. 2.1 and for LSTMs in Sect. 2.2.
Thereafter, a detailed insight into the architecture of the surrogate is given in Sect. 2.3, followed by the
presentation of the data generation scheme in Sect. 2.4 and the training process in Sect. 2.5. Afterward, results
are presented for a cantilever beam. InSect. 3.1,we focus on the recursive architecture of the proposed surrogate,
and in Sect. 3.2 different damping values are evaluated. Finally, a conclusion is drawn in Sect. 4.

2 Surrogate modeling

The surrogate is based on a specific combination of neural networks (NN), which are several fully connected
dense layers combined with recurrent neural networks (RNNs). With this setup, it is possible to predict the
structural dynamics of amechanical system. Instead ofmodeling all degrees of freedom from the underlying FE
model, we only use a limited number of the systems eigenvectors for modal reduction. Since the eigenvectors
are dependent on the boundary conditions, they have to be known in advance. On the basis of this model-order
reduction (MOR) technique, the surrogate is trained on systematic provided training data. The main relevant
steps of the surrogate are explained in the following.

2.1 Modal reduction

In general, for the FEM, the problem can be described in the discretized linear form of the partial differential
equation (PDE), the equations of motion

Mü(t) + Cu̇(t) + Ku(t) = f (t). (1)

Here, vector u(t) ∈ R
N×1 describes displacements, where N is the number of degrees of freedom of the full

order model (FOM). Derivatives of u(t) denote velocities and accelerations. M ∈ R
N×N , C ∈ R

N×N and
K ∈ R

N×N are the mass, damping and stiffness matrix, respectively. Solving a time-dependent mechanical
problem, described by Eq. 1, usually requires a valid time integration scheme. For static problems, the damping
matrix is often neglected.We focus on dynamic problems and therefore have to consider damping. By assuming
a constant C , a simplification called modal damping or Rayleigh damping can be made, see Wriggers [23]. In
this case, C is assumed to be:

C = αdampM + βdampK , (2)

with αdamp ∈ R
+
0 and βdamp ∈ R

+
0 as parameters for adjusting the damping ratio D ∈ R

+
0 . The damping ratio

depends on the damping frequency fdamp ∈ R
+:

D = 1

2

( αdamp

2π fdamp
+ βdamp2π fdamp

)
. (3)

According to Bathe [24], it has to be considered that modes with eigenfrequencies higher than fdamp are
damped more than lower modes due to the stiffness proportional damping.
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In the following, the classical procedure for a modal reduction is shown. For further information, we refer
to Wagner [25]. We introduce the modal coordinates z(t) and the rectangular modal matrix �

u(t) = � z(t) (4)

to create an approximation of the full model with displacements u(t). At first, the eigenvalues are calculated.
The obtained eigenvectors are summarized in the modal matrix � ∈ R

N×N . For the reduced model, one can
choose a limited number n of eigenvectors to approximate the full model. The selected subset of eigenvectors
from � is now denoted as � ∈ R

N×n . This matrix is used to reduce the matrices on the left and the vector on
the right-hand side of Eq. (1):

�TM� z̈(t) + �TC� ż(t) + �TK� z(t) = �T f (t), (5)

so that a full model approximation with less degrees of freedom is derived. Thereby, z(t) ∈ R
n×1 denotes

the contribution vector or modal coordinates. Under the premise of nonnegative eigenvalues of M, C and K ,
multiplications with the modal matrix result in diagonal matrices, so that

�TM� = m,

�TC� = d,

�TK� = k

(6)

can be stated. The reduced mass, damping and stiffness matrices are expressed as m ∈ R
n×n , c ∈ R

n×n and
k ∈ R

n×n , respectively. They all are diagonal matrices. The reduced counterpart of Eq. (1) is given by:

mz̈ + cż + kz = �T f . (7)

Since the matrices are now of diagonal shape, they are decoupled. This allows an efficient time integration
scheme, because each row of the system of equations can be solved independently. Time integration results in
z(t).

2.2 Long short-term memory

LSTM neural networks can be assigned to the field of recurrent neural networks, which are especially suitable
for depicting time series. The input is a sequence of data or time series, which we call history. The output is
an approximation of the successive value. RNNs have in common that for one prediction of a time series, the
cells have to be forward propagated more than once. The network has to be iterated for each time-step in an
input sequence.

The main disadvantage of early RNNs is that with long input sequences, the past history has a vanishing
influence on the prediction of a new value. This is because of back-propagation trough time (BPTT), since the
error for the weights adjustment in the training process is calculated for each time iteration. One can imagine
that multiplying a small value with a small value over and over again leads to a vanishing error and therefore
gradient. Same with multiplying values greater than one over and over in the BPTT process. The network
does not learn long-term dependencies. The vanishing and exploding gradient problem is addressed in detail
by Hochreiter and Schmidhuber [26]. They solved this problems by introducing LSTM networks. The main
improvement are the hidden state ht and the cell state ct , which act as memory over the input sequence. These
two streams of information are manipulated in each iteration through time. Since a LSTM cell is a gated
network, it can decide whether old information is still relevant or new information should be added and which
information is relevant for the output. In summary, a LSTM cell is a small neural network on its own with
three parts, the forget, input, and output layer, see Fig. 1.

Data are processed with a sigmoid activation function σ = 1
1+e−x and a hyperbolic tangent activation

function tanh = ex−e−x

ex+e−x . Weights are stored in the variables W with two indices. The first index denotes the
affiliation to the data of ht or xt , the second index indicates forget (d), output (o) or input (i) layer. In the input
layer, a new candidate for the cell state, c̃, is introduced. Every multiplication of a weight with data is followed
by an addition of a bias. There can be a bias for processing the input data and the hidden state each.
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Fig. 1 Architecture of a LSTM cell at time t . With the cell input xt (dashed line), the previous hidden state ht−1 (solid line) and
the previous cell state ct−1 (dotted line), a new hidden state ht and cell state ct can be calculated. In optional additional LSTM
layers, ht will be processed as input, equivalent to xt in this figure. After the cell has been looped sequence length times, ct
represents a predicted value in the last step

At the beginning of every BPTT, ht−1 and ct−1 are set to a tensor of zeros. First, the input layer has to be
passed. Therefore, information from the input sequence xt of length lseq and the previous, here initial, hidden
state ht−1 are processed:

d t = σ(Wxdxt + bxd + Whdht−1 + bhd). (8)

Elementwise multiplication of the tensor d t with ct leads to the first update of ct−1. In neural networks, data
are processed batchwise, which means all samples in a batch are processed at once due to parallelization.

Thereby, the weights apply to Wxd ∈ R
nf×nh and Whd ∈ R

nh×nh with nf as the number of features and
nh as the number of hidden units. For clarity, the states for one timestep are defined as ht ∈ R

nb×nh and
ct ∈ R

nb×nh , where nb is the batch size. For one timestep of the input sequence, xt ∈ R
nb×nf can be stated

with xt from the input sequences x ∈ R
lseq×nb×nf .

For the next update of ct−1, input data and hidden state have to be processed in the input layer:

i t = σ(Wxixt + bxi + Whiht−1 + bhi), (9)

c̃t = tanh(Wxgxt + bxg + Whght−1 + bhg). (10)

Thereby, i t decides which data should be part of the update of ct−1 and c̃t decides how strongly these new
information should update ct−1. For the summarized update of ct−1 to ct , the expression ct = dt ◦ ct−1+ i t ◦ c̃t
has to be evaluated, where ◦ denotes element-wise multiplication.

The last layer in the LSTM which will be processed is the output layer. There, the hidden state ht will be
updated by

ot = σ(Wxoxt + bxo + Whoht−1 + bho) (11)

ht = ot ◦ tanh(ct ). (12)

Equations (8)–(12) will be evaluated lseq times for each value in x with the same weights W . The predicted
value x̂1 is set as the latest cell state clseq+1.

In deep learning, there are several concatenated neural networks. For the specific use cases of LSTM
networks, the input sequence of the second layer will not be x, it will be the hidden state of the previous layer
instead, see ht in the right upper corner of Fig. 1. Consequently, the number of features in the second LSTM
cell layer will be the number of hidden units in the first LSTM cell layer. The number of features in the cell
state of the last LSTM cell is not necessarily the number of output units for further data processing. This issue
is solved by adding a fully connected neural network layer after the last LSTM cell.
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Fig. 2 Architecture of the proposed surrogate with additional categorical variable D. Depending on whether the model is in the
inference or in the training phase, and depending on the training method itself, z̃(t) or z(t) is an input to the first dense layer. In
the figure this is depicted with a switch before the first dense layer. Data from the History- branch and the Force- branch are
concatenated for further processing. Whether the architecture has to reduce or increase the feature space depends on the problem
statement. Here, the feature space is increased

2.3 Architecture of the surrogate

The surrogate approximates linear FE models for transient structural analysis, which are reduced with modal
decomposition. Therefore, we calculate eigenvectors of the mechanical system with which a modal reduction
can be carried out, as explained in 2.1. To distinguish variables of the surrogate model from their physical
counterpart, the tilde symbol is added above them.

We strive to build a surrogate which is as far as possible independent of the sequence length lseq, as it is
the case in FE calculations. There, the transient solution is dependent on just the latest timestep for a one-step
procedure or only a few timesteps for a multi-step procedure, respectively. To achieve that, the output of the
model, the surrogate to u(t), which we denote as ũ(t), should not only depend on the excitation, and moreover,
the history of z̃(t) should be considered for further prediction steps. To fulfill this requirement, we choose a
recursive model architecture, see Fig. 2. Due to the recursive architecture, the input of the model differs during
training and inference phase. When training in an open loop, z(t) is an input variable to the model, when
training in a closed loop, z̃(t) is an input variable to the model. The training routine is explained in detail in
Sect. 2.5. In the inference phase, always z̃(t) is an input to the model. The output of the model in the inference
phase is ũ(t), but one has to note at this point, that the model is trained on z̃(t), see Sect. 2.5. No derivatives
of z̃(t) with respect to time are part of the surrogate model. Hence, it is necessary to model z̃(t) based on a
time series or sequence in order to predict new values according to the current status of the system. Therefore,
LSTMs are a proper choice from the field of neural networks. The term recursive has to be distinguished from
the term recurrent. Recursive describes the architecture of the surrogate, recurrent is associated with LSTMs.
In the surrogate the contribution vector z̃(t) is fed back to the input layer for every new prediction. On its way
to the output layer, new information regarding the excitation or even the damping ratio in form of a categorical
variable join the data stream and have a significant influence on it.

First, data of the main input sequence are processed with several fully connected layers. Depending on the
complexity of the FE model, the feature space is successively expanded or reduced to a higher or lower order
representation. This specific step is recommend by Goodfellow et al. [27]. Therefore, as activation function
tanh is used. As an alternative, the rectified linear unit (ReLU) function can be chosen, as proposed by Koeppe
[28]. Processing data with ReLU functions adds also some nonlinearities to the model, since ReLU is defined
as f (x) = max(0, x). However, experiments showed an inferior capability to model the system dynamics.
A possible explanation could be that ReLU cannot produce negative values and therefore does not match the
original data range. Second, data will be processed with LSTMs. Here, also several layers are lined up. To
prevent overfitting in the training process, dropout layers, see Goodfellow et al. [27], with a weight clearing
probability of 0.2 are introduced. The hidden size of the LSTMs can vary too, in order to have even more
instances for predicting new values. Up to this point, only information of previous contribution vectors and
the optional damping ratio are considered. Hence, only information about oscillations are handled. We call
that the history- branch. The architecture is physics inspired, which means that the flow of information
into the surrogate must be given at its intended layer. Since damping information has to be evaluated in the
history- branch to achieve a dissipation effect, they cannot be attached after the LSTM layer. Therefore,
the values of this categorical variable are repeated, so that a constant sequence is created which can now be
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concatenated to the main input sequence. If damping information joins the data stream after the LSTMs, the
damping ratios will not influence the surrogate. Moreover, the results will always be near to a solution with
the mean value of the presented damping ratios in the training set.

In a third step, information about the external excitation is added to the data stream.We call that the force-
branch. For this purpose, we studied multiple concepts. The best performing concept is depicted in Fig. 2.
Information of the history- branch and the force- branch are concatenated in the concatenation-

branch. As an alternative, tensors from the different branches can be brought to the same dimension and
can be added. We find that approach less suitable for the surrogate, due to the fact that it has a superposition
character. Of course, this is no downside for linear problems, but if the surrogate should be extended for
nonlinear problems, this could lead to false interpretations.

The introduction of the damping information at the concatenation- branch is also investigated. How-
ever, this approach was not capable of building a sufficient surrogate. Dissipation effects are not correctly
reproduced, and therefore, this approach is inferior compared to processing damping information as categori-
cal variable through the history- branch.

In the fourth and last step, the previous concatenated data are processed with one or more fully connected
layers. Again, the ReLU and tanh activation functions are investigated. In this step, it proved to be even more
important to use tanh to produce output values between [−1, 1]. This part of the neural network reduces or
increases the dimension of the output tensor in order to match the dimension of the contribution vector again.
Otherwise, the recursive architecture of the model could not be established.

Finally, the output of the neural network, z̃(t), has to be expanded with equation 4 to the full model
dimension.

One can explain the behavior of the surrogate as follows. The surrogate contribution vector follows the
excitation under the force- branch. Hence, without external manipulation of z̃(t) and no changes of the
force, z̃(t) will stay constant over time. If forces change in an discontinuous manner, the next prediction of
z̃(t) will add some oscillations to z̃(t) due to the recursive architecture of the surrogate. Depending on the
damping ratio as categorical variable, the oscillation will decay. Moreover, the oscillations are now preserved
in the input sequence. Processing the sequence in the history- branch will preserve the oscillations, even if
the excitation is held constant again. In other surrogates, the output purely depends on the information in the
input sequence [13,18], which is in most cases a sequence containing forces over time [19,20]. Comparatively,
our recursive architecture has one main benefit. An adequate sequence length of the input has no influence on
reproducing the history of the excitation, since history is decoupled from excitation. To keep an oscillation
ongoing, its cause must be within the input sequence for non-recursive architectures. More precisely, if an
oscillation takes tstat to fully dissipate, an input sequence length of tstat

�t is necessary to model the system.
Modeling a complete oscillation in the dimension of tstat = 1s and �t = 1 · 10−4s with a nonrecursive
architecture would need 105 entries in the input sequence. Following Neil et al. [29], training sequences of
this cardinality is not practicable. They first have to be reduced, for example by a decoder–encoder network.
This is an unwanted additional computational effort. Of course, the recursive structure needs also additional
computations, but they are negligible compared to longer input sequences. In the examples for this work,
we use a timestep of �t = 1 · 10−4s. Prediction time with the surrogate correlates linearly with �t . Hence,
choosing a timestep of 1 · 10−3s would lead to a 10 times higher reduction of computational costs. Also lseq
for a nonrecursive architecture would be reduced by a factor of 10. On the other side, a sufficient resolution of
the displacements over time has to be guaranteed. This trade-off is dependent on the mechanical system which
is evaluated.

Due to the use of modal reduction, as a downside of our surrogate, the location of the boundary conditions
has to be known for the generation of the surrogate. This is because the eigenvectors with these specific
boundary conditions have to be computed first. However, this disadvantage is common practice for a wide
range of modal reduction applications as in the approach of Craig-Bampton and others, see Sonneville et al.
[30]. Noteworthy, the locations of the exciting forces also have to be known for the data generation. After
training, additional forces cannot be applied to other nodes. In order to start predictions with the surrogate,
one has to define an initial input sequence for z̃(t) due to the recursive architecture. This limitation can be
circumvented by setting all entries in z̃(t) for the whole initial sequence to zero or to constant values based on
the load level. As a result, a nonoscillating starting point for the following predictions is found. As lseq is short
compared to the length of the training data, the additional zeros do not affect the robustness of the solutions
obtained with the surrogate.
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2.4 Generation of training data

As depicted in Sect. 2.3, the surrogate uses force and contribution vectors as input data. Optionally, the damping
coefficient as categorical variable is also part of the datasets. These three main types of features are time-
dependent, except of the categorical variable, and since their values may have different orders of magnitude,
they need to be normalized.

A popular approach is scaling to a range of zscaled ∈ [−1, 1] = {zscaled ∈ R| − 1 ≤ zscaled ≤ 1} by:

zscaled = 2
(
z − min(z)

)

max(z) − min(z)
− 1. (13)

Scaling is done for each feature individually, as well as for the force vector f . For this reason, each feature is
equally important for the neural network and the focus is not on the features with the highest absolute values.
Furthermore, it is important to generate a balanced dataset, where all features have to be centered around zero.
That means in our case that displacements in positive and negative direction should be predicted with equal
accuracy. Since removing the mean is not conducted by Eq. (13), training data has to be chosen carefully on
both sides of the abscissa.

Due to scaling, the maximum absolute value of displacements and forces needed in the inference phase
has to be known at this point. Predictions with the model are limited to values within training range. But this
disadvantage is not relevant for the proposed surrogate, since linear models are approximated. Hence, one can
first scale the exciting force to the trained range, and after prediction rescale displacements. Therefore, the
range of the modal coordinates is not exceeded.

To fulfill the aforementioned requirements, the training data routine creates at first three-dimensional
ramped force curves where the plateaus and slopes are set in a random manner. The plateaus are chosen from
a uniform distribution in the range [-1,1]. These values are then scaled with a force, which is constant for all
datasets and therefore marks the maximum force, which can be applied to the system in the inference phase.
The times associated with forces are sampled by taking values from an uniform distribution [0,1]. After that,
they are sorted and scaled with the simulation time of the dataset. Thus, pairs of forces and times are generated.
To obtain suitable force curves, an interpolation is carried out between these grid points. The load curves of
the ramped configuration differ on the following points, that means, generalization of the model has to be
interpreted according to them:

• force plateaus are on different load levels,
• force plateaus are held for a different time, hence, oscillation decays differently,
• the slope is different, and hence, the mechanical system is excited with oscillations of different amplitudes.

Due to the modal reduction process, the force curves are transformed according to Eq. (5). Therefore,
generality is limited to the spectral characteristics of the training data. The length of the curves is set to be
ttd = 0.3s. All curves begin with f x, sel.(0) = f y, sel.(0) = f z, sel.(0) = 0 for at least 0.01s. The term sel.
in the index denotes selected nodes where the force is applied. Each curve is duplicated, and the additional
curves are then inverted. This leads to a symmetric dataset with a mean value of zero. Since discontinuities in
the force curves lead to extraordinary strong and therefore unrealistic oscillations, depending on the damping
associated with the simulation, tangential transitions are implemented between slopes and plateaus.

Next, the force curves are used as input sequences for explicit FEM calculations. For that, an appropriate
timestep �tFEM is chosen for integration over time. The surrogate does not need an adequate timestep for a
stable solution, rather, a fixed timestep is mandatory. Hence, results are interpolated with �tSurr. = 1 · 10−4s,
independent of�tFEM. As described in Sect. 2.3, the initial FE degrees of freedom are not used to approximate
the system’s spatial space. Indeed, only the modal coordinates are used to train the model. Basically, these are
several oscillating curves, which can be seen in Fig. 3a.

The surrogate should not learn fixed oscillations on different load levels, rather it should be able to gen-
eralize. Hence, oscillations on not trained load levels should be predicted with high accuracy. Therefore, the
surrogate has to predict oscillations because of changes in the force curves. On the other side, oscillation can
occur because of oscillating force curves. A finding here is that it is necessary to add input sequences of that
type to the training data set, see Fig. 3b. In the data generation scheme, these force curves are also manipulated
in a random manner. The basis is a sine, so for one degree of freedom f (t) = sin(bt + d)a + c can be stated,
which undergoes random adjustments which are scaling time with b as well as shifting and scaling force f
with c and a.
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Fig. 3 Modal coordinates (solid lines) based on an excitation of the example shown in Sect. 3.1 with force curves (dashed lines)
in the ramped configuration (a) and oscillating configuration (b)

Consequently, these curves are inverted too by multiplying c with −1 and setting d = π . Contribution
vectors, compare Fig. 3b, are computed with FEM. They show oscillations due to the excitation with an
oscillation force as well as the dynamics of the system itself.

In order to obtain identical training data for each component of the three-dimensional excitation, each force
profile is used for every component. This prevents the surrogate from predicting displacements caused by a
specific force component with lower accuracy.

In a last step, data are generated for a one-dimensional excitation. Therefore, the same force curve is
only used for one component, the other two components are set to zero. This setup is shuffled until every
combination is represented in the dataset.

2.5 Training of the model

Each evaluated dataset consists of a time series with sequence length plus one modal coordinates zi , i =
1, ..., lseq + 1. All of them, except the last one, are used as input sequence for the forward propagation. The
last modal coordinate vector of this series, zlseq+1, is used for the mean-squared error (MSE) calculation with
its predicted counterpart, z̃lseq+1,

εMSE = ( z̃lseq+1 − zlseq+1)
2

n
. (14)

After calculation of the error, which is the squared L2 norm between the prediction and the target, BPTT is
performed. For training of the complete network Adam optimizer, see Kingma and Ba [31], is used. Since
adjustment of weightsW is done in batches, the errors εMSE of each sample in a batch are averaged or summed
before BPTT is conducted.

For LSTM neural networks, training data has to undergo preprocessing. Sequences with the desired
sequence length lseq have to be extracted out of the time series generated in the previous section. Here,
this is done with a stride of one.

As usual in all machine learning or AI tasks the dataset has to be split into a training, test and validation
set:

• Training dataset: 70% of the training/test dataset,
• Test dataset: 30% of the training/test dataset,
• Validation dataset: Additional dataset generated with identical data generation routine as for training/test
dataset, but with different random state, see Sect. 2.4.

In order to prevent data leakage a strict separation of these datasets is preserved. This is done by storing each
dataset as a separate file and loading this file when necessary.

A bottleneck in the training process is the memory requirement, since a lot of repeated data, approximately
lseq times the data generated, has to be stored. This can amount several gigabyte, which is not to be stored in
one matrix. Thus, only a subset of sequences is processed at once. The affiliation of the sequences to such a
partition is shuffled over the epochs.

Before training can start, the weights have to be initialized. This is done with a Xavier normal distribution
based on the work of Glorot and Bengio [32]. In a first step, training follows the Teacher- Forcing (TF)
concept. Thereby, an input sequence with true data from the training set is forward propagated. After that, an
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Fig. 4 The concept of Teacher- Forcing and no Teacher- Forcing with a sequence length of four. Fields with stripes are
predicted values, which are used as input sequence for the training process. Dark gray fields represent predicted values for the
error calculation. The index of z denotes the timestep

error between predicted vector z̃lseq+1 and true vector zlseq+1 is calculated by use of Eq. (14). This concept
promises fast convergence of the weights. But one has to note that in the inference phase of the surrogate, we
use an open-loop strategy. Prediction starts based on an initial input sequence. The new predicted value is set
in front of the initial input sequence. In order to keep the sequence length, the first value of the input sequence
is dropped, see Fig. 4. In summary, we do predictions on predicted values. This is a completely new use case
compared to the one seen in the training process. Since predictions vary from true values, predictions on top
of that can become less precise over the number of predictions, see Goyal et al. [33]. In our usecase, strong,
not expected oscillations occur. This problem is known as exposure bias and addressed in Schmidt et al. [34].

To counter exposure biasing, training is conducted with use of the no Teacher- Forcing (nTF) concept
investigated by Bengio et al. [35]. Given an input sequence from the dataset in a first step, lseq predictions are
made. On the basis of this sequence of predictions, an additional forward propagation with saved gradients
is conducted for the weight adjustment process. This is basically the process in the inference mode, where
predictions on the basis of predictions are made. This forward propagation results in a new vector, z̃lseq+1.
Finally, an error can be calculated again. With BPTT and the Adam optimizer, the surrogate is updated. Thus,
the length of a training sequence now has to be 2lseq. Figure4 illustrates the two concepts for the training
process.

Noteworthy, training with nTF is very time-consuming, since the whole training dataset has to be predicted
additionally before prediction for the calculation of the error can be made. Also, convergence is achieved not
as fast compared to TF, since the input sequence for the BPTT is totally different to the input sequence, which
will later lead to sufficient predictions. For solving that problem, mixed- teacher- forcing (mTF) can be
used. This splits the number of epochs into three sections. First, one follows purely the TF approach, where
the surrogate learns to predict on true values. In the second section, TF and nTF are mixed in a randomized
manner going from TF to nTF. If epoch−epochstart,mTF

epochend,mTF−epochstart,mTF
is greater than a random number between zero and

one, nTF is chosen. The decision between TF and nTF is made within one epoch several times. Consequently,
the training and test scores increase again since nTF is not known yet to the surrogate and therefore must be
trained on first. Also, a high variance in both scores can be seen, compare Fig. 5. In the third section, pure nTF
is performed. The surrogate learns to predict in an open-loop application. Both training and validation scores
decrease again until convergence is achieved.

Decreasing the learning rate in a cyclic scheme, as proposed by Smith [36], does not lead to a faster
convergence. Thus, only exponential decay of the base learning rate of α = 1 · 10−4 is used. Batch size per
weight adjustment is set to 1024. Due to steep flanks in the optimization domain, the optimizer may suffer from
high gradients. Pascanu et al. [37] solved this problem by introducing gradient clipping, where the gradient
norm is truncated at a maximum value.

Another hyperparameter, which has a big impact on the results, is the sequence length lseq. This parameter
defines how far in the past the data influences the predictions and has to be defined already in the first
preprocessing step. A summary of all hyperparameter is given in Table 1.

When comparing the train and the test datasets, one notices that the test error is smaller than the train
error. This is not because of an easy to predict test dataset or data leakage. Rather it is because of the dropout
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Table 1 Best hyperparameter for the training of the surrogate

Hyperparameter Value

Sequence length, lseq 50
Number of epochs 3000
Number of weight updates 390
Batch size, nb 1024
Learning rate, α 1 · 10−4

Gradient clipping 0.5
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Fig. 5 Train and test score of the surrogate. Both start to increase in the region of mTF between epoch 1000 and 1500

layers, which are active while training and inactive while testing. Therefore, better results can be expected from
testing. Furthermore, the training error for an epoch is calculated by taking the mean batchwise error. Hence,
especially for early batches of a training epoch, the neural net is not as often updated as at the calculation of
the test error. It is important to mention, that this score in fact computes how accurate the surrogate will deal
with one-step predictions. How the surrogate will behave in an open-loop configuration is not estimated at this
point.

In the training process of the example in Sect. 3.1, one can see in Fig. 5 a decreasing train and test score
until convergence has been accomplished. Training could be stopped after 2600 epochs, since no further
improvement of the surrogate can be found. Furthermore, it can be clearly seen where the training concept
starts to change from TF to nTF. Noteworthy, the low error level at the end of the pure TF phase cannot be
reached at the end of the nTF phase. For one-step predictions, the surrogate at epoch 1000 promises best
results, but if an open-loop configuration is necessary, the surrogate with weights from the last epoch will
outperform the TF trained model.

3 Results and discussion

In this section, we present results from the surrogate and compare them with solutions obtained from FE
simulations. First we introduce an academic example of a cantilever beam investigated with fixed damping.
Second, the cantilever beam is evaluated under variable damping due to the introduced of a categorical variable.
Third, a real-world problem of a six-axis robot is investigated. For this purpose, the validation dataset is used,
which is not part of the training process.

During training only one-step predictions are made. In contrast, for the validation process, all predictions,
except when based on the starting sequence, are done based on predicted values. This scenario is the use case
we are aiming at. Hence, the switch at the top left in Fig. 2 is connected to z̃(t). Thus, the surrogate model is
validated methodically on other examples as used for training, which, apart from the strict separation of all
datasets, additionally ensures the absence of data leakage.

3.1 Cantilever beam with constant damping

The cantilever beam is fixed on one side and deflected by a force on the opposite side, as shown in Fig. 6.
Also the node for the following comparisons is located on the deflected side. The initial FE model consists
of 640 linear hexahedron elements with 1025 nodes. A fixed damping ratio of D = 0.057 is chosen. For the
modal reduction, the first ten eigenvectors are used. The model is then solved with the explicit leap-frog time
integration scheme, see Wagner [25].
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Fig. 6 Investigated cantilever beam with fixed support on the left-hand side and load on the right-hand side. Validation of the
displacements is done at the node highlighted with dot

Table 2 Architecture of the surrogate for the cantilever beam example. The last number in History- branch, LSTM is for the
dense layer

Layer nfeatures, out

History- branch, dense 12, 16, 24, 32
History- branch, LSTM 32, 48, 32, 32
Force- branch 6
Concat.- branch 32, 24, 16, 10
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Fig. 7 Displacement of the cantilever beam in the y-direction where the uniaxial force is applied. Solutions from the FEM, our
surrogate and BM I are shown

A complete training set for the cantilever beam with fixed damping consists of a total of 40 subsets, where
30 are from the ramped configuration and ten are from the oscillating configuration, see Sect. 2.4. Experiments
have shown that fewer subsets have a negative impact on the generalization ability of the surrogate. In summary,
there are 116,000 samples for training.

The surrogate has 37,400 trainable parameters; a detailed overview of the specific architecture is given in
Table 2.

To emphasize the advantages of our recursive architecture, we compare our solution with two different
baseline models. For consistency, the baseline models are trained with the same dataset as the surrogate.

As a first baseline model (BM I) for a surrogate of transient FE simulations, a neural network is consulted.
This neural network consists only of fully connected dense layers. Using this naive model greatly reduces the
effort for the training strategy and duration due to a more simple architecture. A comparison of BM I with
FEM shows that displacements only follow the force curves, see Fig. 7. Dynamic effects in the oscillations are
not reproduced. Hence, for transient simulations, the surrogate outperforms BM I.

The second baseline model (BM II) is derived from the work of [13,19,20], where only the force is used
as input variable. For the LSTM layers in BM II, an identical number of neurons as in our surrogate is used.
Equal dimensionality of the input features is increased by several dense layers, see Table 2. The need for a
high sequence length for the reproduction of the FE results is illustrated in Fig. 8, as different sequence lengths
are evaluated.

To show the influence of the sequence length, a load case of the ramped configuration is investigated. To
simplify the training process of BM II, we use a training dataset for this comparison. This is valid here, since
generalization is not in the focus. For BM II - 100, oscillations start at the point where the first discontinuity
in the load curve can be found at t = 0.1s. The first kink dynamically excites the system. Compared to
the displacements obtained by FE, we consider the results sufficient. At t = 0.2s, we note an abrupt decay
of the oscillation. The same behavior can be observed by BM II with a sequence length of 250. The first
and second kink of the load curve are only separated by 0.2s; hence, BM II - 250 is able to reproduce the
displacements for that plateau. For displacements after t = 0.3s,BM II calculates under both sequence lengths
again oscillating results. This is due to the repeated change in the force. After 0.1s and 0.25s, respectively, the
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Fig. 8 Displacement of the cantilever beam in the y-direction where the uniaxial force is applied. Solutions from the FEM and
BM II with two different sequence lengths are shown. For simplicity, the result of the surrogate is not shown again, see Fig. 7
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Fig. 9 Displacement of the cantilever beam’s evaluation node based on FE calculations and the surrogate under a load case of the
ramped configuration. Error is calculated as RMSE over the three displacements ux, uy and uz. The FE and surrogate solution
match accurately

oscillation decays again, although this is not the expected behavior. In contrast, the surrogate follows the FE
solution exactly, although the sequence length is only 50, see Fig. 7.

The dynamics of the system are reproduced with high accuracy, as long as the causal excitation region is
less than lseq steps in the past. After that, BM II has a similar behavior to BM I, as no dynamic effects are
captured.

If the excitation only affects a few hundred timesteps, BM II is a feasible approach to build surrogates.
Since in the BM II approach no predictions of the past are needed to predict new values, parallelization in the
prediction of different timesteps allows a enormous reduction of the simulation time. But if dynamic effects
need several hundred timesteps to decay, training BM II will be very difficult, due to the underestimation
of the long-term dependencies. With our surrogate the sequence length will not influence the accuracy of a
prediction due to the recursive architecture.

Similarly, there are applications where one is not able to predict a range of timesteps at once, because
predictions are dependent on environmental data. In this case, despite the advantages with a short sequence
length, BM II cannot benefit from parallelization. To summarize, the presented surrogate will also outperform
BM II.

To prove the generalization ability of our surrogate, new and therefore unseen load curves are generated. On
the one hand, these load curves are used as an input for the reference solution computedwith FEM.On the other
hand, displacements based on these load curves are calculatedwith the surrogate, seeFig. 9. The summedRMSE
of the surrogate over all components of the displacement has a maximum value of εRMSE, sum = 2.8 · 10−3mm.
Noteworthy, the RMSE is a pessimistic metric for the description of the similarity between the results, since a
slight phase shift creates high errors. This is one reason for the oscillating error, which has the same oscillation
frequency as the displacements. Also oscillation amplitudes of the surrogate are slightly underrepresented.
Apart from that, dissipation effects and frequency information are met with high accuracy, see the detail in
Fig. 9. Furthermore, 100 validation load cases are evaluated. For every timestep of the expanded solution,

the RMSE of the evaluated node is calculated, εRMSE, t =
√∑3

i=1(uFEM − uSurr.)2. The mean error of all

evaluated 3 · 105 predictions is εRMSE, mean = 1.08 · 10−3mm. Values for the displacement are in the range
u = [−0.2, 0.2]mm.
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Fig. 10 Displacement of the cantilever beam’s evaluation node based on FE calculations and the surrogate under a load case of
the sine configuration. Error is calculated as RMSE over the three displacements ux, uy and uz. The FE and surrogate solution
match accurately

Table 3 Duration for a simulation time of tsim = 0.5s for the cantilever beam example. Reference simulations are computed with
the transient structural ANSYS solver. For reduced-order solutions, 10 eigenvectors are used

one-time computations repeated computations

tcomp. eig. ttraining Surrogate tFOM tmod. red. tSurrogate tmod. red./tSurrogate
2s 315 · 103s 177s 21s 12s 1.8

The accuracy of the results obtained from the surrogate is identical for the whole load spectrum. This is
only possible because of the symmetric training dataset and the evenly distributed load curves for each load
component.

With an excitation in the oscillating configuration, similar results can be obtained, see Fig. 10. Again,
100 new load curves are used for this calculations. The mean RMSE of all evaluated 3 · 105 predictions is
ε = 6.49 · 10−3mm, which is lower than that of the ramped configuration. In the training process, data out
of the oscillating configuration are underrepresented compared to the ramped configuration. Especially force
curves with a high frequency in the sine have difficulties to match displacements with the high accuracy of the
other examples. Nevertheless, results are sufficient, considering that we focus on discontinuous loads and this
type of force curves are only necessary in the training to separate handling of data in the History Branch

and in the Force Branch.
Computation of results with the surrogate is faster compared to full- and reduced-order FE models. Ref-

erence calculations are computed using the ANSYS solver for transient structural analysis. In Table 3, the
durations for the generation of the results are presented for a problem with a simulation time of tsim = 0.5s.
All computational times shown in Table 3 are computed with an i9-10900K CPU.

For both model reduction techniques, standard modal reduction and surrogate modeling, the computational
time of extracting eigenvalues is identical and only necessary once for both approaches.

Computational time for training the surrogate is 5.3s for each TF epoch and 176s for each nTF epoch on
a Quadro P2200 graphic card. One has to note that for this example no measures are taken to reduce training
time. To summarize, the nTF phase is crucial for the training due to lseq forward propagations for every dataset,
see Sect. 2.5. Nevertheless, in a feed forward controlling application the surrogate model will amortize the
training effort. Therefore, the surrogate will lead to a substantial benefit.

3.2 Cantilever beam with variable damping ratio

Investigating the same problem of the cantilever beam, the capability of the model to predict deformations
in dependency of different damping ratios is evaluated. Therefore, a categorical variable D is attached to the
LSTM input tensor, see Fig. 2.

In contrast to the force curve, the damping ratio is out of the set of numbersD = {0.032, 0.057, 0.083, 0.110}.
These values are calculated using Eq. (3), with αdamp = 6 and βdamp = {1, 2, 3, 4} · 10−4. The damping fre-
quency is set to be fdamp = 82Hz, since this is the first natural frequency with the relevant eigenvector for
the investigated load cases. For the training, values of D are chosen to result in underdamped oscillations. A
complete training set for this study consists of a total of 192 subsets, where 168 are from the ramped configu-
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Fig. 11 Displacement of the cantilever beam’s evaluation node based on FE calculations and the surrogate under a load case of
the ramped configuration and variable damping ratios D1 = 0.032 and D2 = 0.110. Error is calculated as RMSE over the three
displacements ux, uy and uz. The FE and surrogate solution match accurately
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Fig. 12 Displacement of the cantilever beam’s evaluation node based on FE calculations and the surrogate. The unseen damping
values are D = {8, 19, 44, 70, 148, 173} · 10−3. Dashed lines refer to results of the surrogate, solid lines to FE results and dotted
lines to RMSE

ration and 24 are from the oscillating configuration. In summary, there are 556,800 samples for training. The
sequence length as well as the architecture of this model are identical to the one presented in Sect. 3.1 and
described in Table 2.

For different damping coefficients, comparison of FE and surrogate results are shown in Fig. 11. All curves
match with high accuracy again. The load case in this example is unknown, hence, not included in the training
set. In contrast, the values of D are included in the training set.

It can be noted that the surrogate has a high generalization capability. For 100 evaluated unknown load
curves, which total 3 · 105 predictions, a mean RMSE of εRMSE, mean = 5.6 · 10−3mm is calculated. Thereby,
values for the displacement are in the range u = [−0.21, 0.21]mm.

Apart from only using the force as an input variable for which generalization should be evaluated, also
generalization of the categorical variable is investigated. This slightly contradicts the nature of a categorical
variable, but following Powers and Xie [38], a categorical variable is a variable which can only be measured
with a limited number of values. In most FE simulations, the damping value is constant over time. Hence, we
identify the damping ratio as a categorical variable. Even though the damping ratio is a categorical quantity,
it can have a wide range of values. Powers and Xie [38] call that categorization of a continuous variable.
Consequently, interpolation between the values is valid, since D is still constant within a simulation and
changes only over different simulations. Results of this investigation are presented in Fig. 12 with D =
{8, 19, 44, 70, 148, 173} ·10−3. There, the detail in Fig. 11 is reproduced with unseen values for damping ratio
D3 and D4. Displacements computed by the surrogate and FEM for D3 and D4 match with high accuracy.
With a maximumRMSE of εRMSE, max = 0.8 · 10−3mm, the error is similar to the error obtained by the trained
damping ratios. Noteworthy, the displacement curves from the surrogate and FE cannot be distinguished in
Fig. 12, since they overlay. Hence, the generalization ability of our surrogate between the trained damping
values is shown.

Another important aspect is extrapolation. Due to the linearity of the investigated problems, extrapolation
for the force input is not necessary, since this can be done by multiplying z(t) directly with a factor after the
output of the surrogate. However, this is infeasible for the damping and therefore, predictions with values for
D lower and higher compared to the trained range, which are D1, D2 and D5, D6 in Fig. 12, are conducted.
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Fig. 13 Mesh of the robot with fixed support marked in blue on the robots base and position of the force, marked in red on the
robots gripper mounting flange (a) and modal coordinates of the training dataset in ramped configuration (b)

For D1 and D2, the maximum RMSE is εRMSE, max = 4.4 · 10−3mm. This comparatively high error is caused
by a slight phase shift and an inexact reproduction of the amplitudes. The same observation can be made for
the second lowest damping value. On the other hand, the oscillation frequency and the decaying of the curves
match. Although for low-fidelity simulations these results may be sufficient, for high-fidelity simulations the
deviations are too high. With a closer look to the damping values on the other end of the training data set, the
extrapolation succeeds within a higher range of accuracy. For D5, and predominantly for D6, the maximum
RMSE is εRMSE, max = 0.6 · 10−3mm, hence, lower than for D1 and D2. It can be noted that the error is in a
similar range as for the trained damping values. Starting from t = 4.12s results of D6 differ with a maximum
RMSE of εRMSE, max = 1.4 · 10−3mm and therefore by twice the error. To summarize, extrapolation is possible
without a loss of accuracy compared to the trained parameters. This applies to damping values greater than the
trained ones under undamped decaying properties. This is a big advantage, since retraining of the model must
not be conducted to extend flexibility of the surrogate for this specific variable. Still, we always recommend a
critical verification of the model for the new range of input features.

Under the premise of sufficient accuracy for both examples, this leads to the finding that the history branch
size for the surrogate presented in Sect. 3.1 could be decreased. Due to the missing variability for damping,
complexity of the signals to learn for the example presented in Sect. 3.1 is less. Hence, less trainable parameters
are needed for a surrogate with fixed damping. Consequently, this has a beneficial effect on the computational
time in both the training and inference phases.

3.3 Robot

The results shown previously are of an academic nature. The proposed method of surrogate modeling is
also suitable for more complex use cases. Therefore, a six-axis robot is evaluated, see Fig. 13a. The robot
is simplified for the computation of displacements, since no gears are modeled and rigid connections of all
arms are assumed. Furthermore, all parts are modeled with a linear elastic structural steel material model. The
robot is discretized with 24102 linear tetrahedron elements, described by 7121 nodes. For modal reduction, the
number of modes taken into account is set to be 10. The lowest eigenfrequency is 16 Hz, the highest 238Hz.
Damping parameters for the construction of the damping matrix D are αdamp = 12 and βdamp = 0.002, hence,
D = 0.16. Procedures for the computation of the datasets are identical to the cantilever beam example.

In this example, again ten eigenvectors are used for the modal reduction, since higher eigenfrequencies are
not necessary tomodel themounting flanges displacements. Hence, as architecture of theNN the same values as
for the cantilever beam are used, see Table 2. The obligatory fixed time step of the surrogate is�t = 5 · 10−4s,
the sequence length is again lseq. = 50. Nevertheless, this example has a higher complexity compared to the
cantilever beam. In the cantilever beam example, displacements in y and z directions are identical for identical
excitations. In the robot example, this is different. As shown in Fig. 13b, no modal coordinate does follow a
force curve directly. In contrast, at the cantilever beam example, such a behavior of the modal coordinates can
be observed, see Fig. 3.

The surrogate model of the robot is trained with 1000 epochs, see Fig. 14. Evaluating the test score, training
can be finished after 850 epochs. In the following epochs, only the train score decreases. Hence, the model
starts to overfit. The results shown in this section are generated with the model at epoch 850.

Evaluation of displacements is done on a node in the middle of the face, where the load is applied.
Results from the surrogate model show high accuracy compared to results obtained with the standard modal
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Fig. 14 Train and test score of the surrogate model in the robot example. Both scores start to increase again in the region of mTF
between epoch 500 and 600. After epoch 850, the test scores does not decrease anymore
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Fig. 15 Displacement of the robots mounting flange evaluation node based on FE calculations and the surrogate under a load
case of the ramped configuration. Error is calculated as RMSE over the three displacements ux, uy and uz. The FE and surrogate
solution match accurately

Table 4 Duration for a simulation time of tsim = 1.0s for the robot example

one-time computations repeated computations

tcomp. eig. ttraining Surrogate tFOM tmod. red. tSurrogate tmod. red./tSurrogate
5s 3.7 · 103s 2.1 · 103s 273s 6s 45

Reference simulations are computed with the transient structural ANSYS solver. For reduced-order solutions, 10 eigenvectors
are used

reduction technique. Figure15 shows displacement curves from the validation dataset, hence generalization
within the models limitations can be stated. For 100 validation examples a RMSE of εRMSE, mean = 0.7mm
can be calculated. Values for the displacement are in the range u = [−47, 48]mm. For this, the RMSE of the
evaluated node is calculated and averaged over every timestep from all validation computations.

To emphasize the applicability of the proposed method for real-world problems, the training times were
optimized by choosing a higher learning rate of α = 5 · 10−4. Also the epochs in the nTF phase and the
transition from TF to nTF while training are at a minimum for that specific problem, as mTF starts at epoch
500 for 100 epochs, see Fig. 14. Further, most important is the reduction of the sequences in the training data
set. We use 82 simulations each of 0.5s, which leads to 16,300 sequences for training. Compared to the training
sampled of the cantilever beam from Sect. 3.1, this is just a tenth. Due to that measures, a total training time
of ttraining Surrogate = 3.7 · 103s can be achieved, see Table 4. The training and computation of the reference
solutions is done with the same hardware as described in Sect. 3.1. As shown in Table 4, computations with
the surrogate are faster compared to reference, which is the standard modal reduction solved by the ANSYS
transient solver. A speed-up factor of 45 can be achieved. For both methods, a timestep of �t = 5 · 10−4s is
used. The timestep is sized on the maximal eigenfrequency taken into account.

To summarize, as for the academic examples, the proposed method for transient surrogate modeling of
modally reduced structures applies also to practical examples. With this example, due to the higher number of
initial degrees of freedom, one can benefit from an even higher speed-up factor. Furthermore, the streamlined
training procedure of this example reduces the training effort to a minimum. The generation of the datasets
takes 2.7 · 103s. Taking all that into account, amortization of the one-time computations for training is reached
after 25 calculations.
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4 Conclusion

In this study, we present an ANN surrogate for modeling discontinuously excited transient mechanical struc-
tures. As a mechanical reference, training and evaluation data are based on FE simulations. For this purpose,
not the full discretized model is used. Moreover, dimensionality is reduced by modal reduction. The surrogate
consists of several dense and LSTM layers, which reproduce the contribution vector from the modal reduction
over time.

As in many machine learning models, the applicability of the model is restricted to mechanical systems
with a specific load scenario. For the proposed method of surrogate modeling, where a complete system
is considered, one is limited to geometry and material properties of the FE model being used for training.
Furthermore, the characteristics of the force curves in the prediction phase have to be similar to the ones used
during training. For example, step functions as force curves can not be modeled with our method, since they
are not part of the training dataset.

The main contribution is the recursive architecture of the surrogate in this context. Predictions are done
in a closed-loop manner, where the previous contribution vectors and only the force for the next timestep are
needed. The history of the displacements of themechanical system is stored in the input sequence, consisting of
the previous contribution vectors. However, this leads to short-input sequences for the surrogate. In the state-
of-the-art LSTM surrogates for transient problems, the length of the input sequence limits the dependency
of the displacements to the exciting event in the input. Consequently, long input sequences are necessary to
handle slowly decaying oscillations. Since the computational time for the LSTMs is in linear dependency to
the input sequence length, our surrogate achieves high accuracy in transient load cases at low computational
costs.

An additional contribution is the introduction of a categorical variable to the surrogate. Thereby, it is possible
to reproduce the results of FE calculations in dependency of the damping ratio, allowing more flexibility to
parameter studies. Moreover, this opens the way for the creation of surrogates with other categorical variables
as material properties. High efficiency and accuracy of the surrogate are exemplified on a cantilever beam.
Further, a comparison with state-of-the-art surrogates shows the advantages of the proposed surrogate on
dynamic excitations.

Future investigations could focus on the integration of the presented surrogate into submodeling techniques
by modifying the contribution vector with peripheral data before it is fed back to the input layer as part
of the recursive architecture. Replacing the eigenvectors of the presented linear problems with a reduced
representation of nonlinear systems obtained by an encoder–decoder system under shock loading could also
be a matter of future work.
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