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A B S T R A C T

In the field of computer- and robot-assisted minimally invasive surgery, enormous progress has been made in
recent years based on the recognition of surgical instruments in endoscopic images and videos. In particular,
the determination of the position and type of instruments is of great interest. Current work involves both
spatial and temporal information, with the idea that predicting the movement of surgical tools over time
may improve the quality of the final segmentations. The provision of publicly available datasets has recently
encouraged the development of new methods, mainly based on deep learning. In this review, we identify
and characterize datasets used for method development and evaluation and quantify their frequency of use
in the literature. We further present an overview of the current state of research regarding the segmentation
and tracking of minimally invasive surgical instruments in endoscopic images and videos. The paper focuses
on methods that work purely visually, without markers of any kind attached to the instruments, considering
both single-frame semantic and instance segmentation approaches, as well as those that incorporate temporal
information. The publications analyzed were identified through the platforms Google Scholar, Web of Science,
and PubMed. The search terms used were ‘‘instrument segmentation’’, ‘‘instrument tracking’’, ‘‘surgical tool
segmentation’’, and ‘‘surgical tool tracking’’, resulting in a total of 741 articles published between 01/2015
and 07/2023, of which 123 were included using systematic selection criteria. A discussion of the reviewed
literature is provided, highlighting existing shortcomings and emphasizing the available potential for future
developments.
1. Introduction

Minimally invasive surgery (MIS) offers several advantages over
conventional types of surgery, making it the standard method for many
surgical interventions today [1–4]. By introducing surgical instruments
through narrow incisions, surgical trauma can be significantly reduced,
ensuring faster patient recovery and a shortened hospital stay [1]. The
movements of the surgical tools in the human body are commonly
recorded using an endoscopic camera, and the images are made visible
to the surgeon on a monitor. However, MIS also faces several challenges
arising from the more elaborate surgical procedure, the limited field of
view, and the complex hand-eye coordination. In addition, the guidance
of the endoscope by a human assistant results in increased time and
costs [5].

To address these challenges, the research area of computer- and
robot-assisted minimally invasive surgery (RAMIS) has been experienc-
ing increasing interest in recent years [6,7]. The development of new
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techniques in this field aims to assist the surgeon in overcoming these
drawbacks in the best possible way and opens up further possibilities
such as surgical skill assessment, operating workflow optimization, or
the training of junior surgeons. One popular approach to this is the
utilization of information regarding the positions and movements of
the surgical instruments over time. This can be achieved by tracking
surgical tools using electromagnetic or infrared-based methods or by
attaching external markers [8–11]. However, all of these techniques
have in common that they require additional effort to prepare for
surgery. In addition, these approaches cannot be easily integrated into
the existing workflow of an operation.

For these reasons, current work focuses exclusively on purely visual-
based processing of the endoscopic video stream. Due to the great
success of deep-learning-based methods in the field of image processing
in recent years, approaches developed in this way also represent the
state of the art for this application [12–14]. Here, the detection of
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surgical instruments is often performed by object detection methods
that localize the tools through comprehensive axis-aligned bounding
boxes and follow them across multiple video frames using appropriate
tracking methods [11,15,16]. Approaches developed using this tech-
nique often exhibit fast processing time but are usually imprecise since
surgical instruments often protrude from the bottom two corners into
the center of an image, resulting in maximally unfavorable conditions
for the axis-aligned bounding box detection.

In contrast, segmentation methods allow a much more accurate
determination of the position of surgical tools in images since the shape
of the instruments can also be predicted on the basis of this pixel-
by-pixel classification. Moreover, the technical advances achieved in
recent years make it possible to segment surgical tools in real-time,
thus providing an accurate and fast method [17–21]. In addition, these
characteristics can be further improved by incorporating the temporal
information inherent in video recordings through novel techniques.
In addition to these technical innovations, the availability of publicly
accessible datasets has also supported the increased interest in this
research area. A specific contribution to this development is presented
by the organization of challenges conducted as part of an annual
conference organized by the Medical Image Computing and Computer
Assisted Intervention Society (MICCAI)1 [22].

In the present work, we analyze current approaches concerning
semantic and instance-based segmentation of surgical instruments in
endoscopic images and videos and provide possible research directions.
To this end, the contributions of this work are threefold:

• Identification and characterization of robotic and non-robotic
datasets used for method development and evaluation and quan-
tification of the frequency of use in the literature.

• Systematic search and analysis of articles concerning semantic
and instance-based segmentation of minimally invasive surgical
instruments in endoscopic images and videos.

• Discussion of the reviewed literature, identification of existing
shortcomings, and highlighting the potential for future develop-
ments.

The structure of this document is as follows. In Section 2, we de-
scribe related reviews and their considered research areas and highlight
differences between the present work and these publications. Section 3
presents the conducted systematic search, describes the criteria used to
select the relevant publications, and analyzes the results. The datasets
employed in the relevant publications are described in more detail in
Section 4, both in terms of the frequency with which the datasets were
used as well as concerning their characteristic properties. A description
of the selected literature regarding semantic segmentation of surgical
instruments is provided in Section 5. Here, the articles are divided
into single-image segmentation and segmentation involving temporal
information. Instance-based methods of current literature are analyzed
in Section 6, following the same structure. Subsequently, Section 7
presents articles that use the segmentation of surgical tools as a basis for
further processing. The discussion of the results of the systematic search
takes place in Section 8. Finally, Section 9 summarizes the results of this
work, highlights the main findings, and provides an outlook on possible
further developments in this research area.

2. Related work

In the following, we briefly describe the objectives of related re-
views and contextualize the contributions of the present work. For
this purpose, we only consider papers that exclusively address visually-
based approaches without markers of any kind and that have been pub-
lished since 2015. The works are arranged chronologically in ascending
order.

1 http://www.miccai.org/
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In 2017, Bouget et al. [23] published a comprehensive review of
the current state of research, identifying and analyzing commonly used
datasets for the development and testing of surgical tool recognition
algorithms, providing an in-depth comparison of instrument detection
methods as well as highlighting existing shortcomings and providing
an analysis of validation techniques to measure the quality of the
approaches considered. For this purpose, the authors reviewed datasets
and publications between 2000 and 2015, using the keywords ‘‘sur-
gical tool detection’’, ‘‘surgical tool tracking’’, ‘‘surgical instrument
detection’’, and ‘‘surgical instrument tracking’’ on the search platforms
Google Scholar and PubMed, resulting in a total of 28 articles, and
considered both endoscopic and microscopic image data.

Three years later, Yang et al. [14] presented a survey with similar
goals, focusing on methods based on Convolutional Neural Networks
(CNNs) architectures. The authors group the considered papers based
on methodological CNN-oriented approaches but do not provide spe-
cific details about the applied review method, such as the used search
platforms or the number of observed publications. The search terms
are composed of two necessary parts, one consisting of the terms
‘‘neural network*’’ or ‘‘deep learning’’, and the other of ‘‘mini* in-
vasive’’, ‘‘robot* surger*’’, ‘‘robot* surgical’’, or ‘‘laparoscop*’’, where
the * operator represents an arbitrary continuation of the respective
expression.

In 2021, the work of Anteby et al. [12] was published, which,
in addition to determining the presence and localization of surgical
tools, considers many other tasks, such as surgical phase detection,
classification and segmentation of anatomy, determination of surgical
actions, or even prediction of the required surgical time. A total of 32
identified papers were considered relevant after searching the platforms
Medline, Embase, IEEE Xplore, and Web of Science for publications
between January 2012 and May 2020.

In the same year, Rivas-Blanco et al. [13] provided a review on
deep-learning-based methods in minimally invasive surgery that covers
the area of surgical image analysis, surgical task analysis, surgical skill
assessment, and automation of surgical skills. The keywords for the
search on the IEEE Xplorer, Springer Link, Science Direct, and ACM
Digital Library platforms consisted of two parts, the first of which had
to contain the terms ‘‘deep learning’’ or ‘‘deep neural network’’ and
the second of which had to contain ‘‘laparoscopic surgery’’, ‘‘minimally
invasive surgery’’, ‘‘robotic surgery’’, or ‘‘robot-assisted surgery’’. A
total of 85 papers between 2015 and 2020 were considered.

In 2022, Nema and Vachhani [24] investigated current trends in ar-
tificial intelligence (AI)-based visual detection and tracking of surgical
instruments and its application to surgical skill assessment. The authors
do not specify details regarding the applied review methodology, such
as databases considered, search terms, or time period.

A more comprehensive analysis and summary of current research
regarding visual detection and tracking of minimally invasive surgical
instruments was presented in 2022 by Wang et al. [11], who ana-
lyze the literature concerning various aspects. The approaches were
identified by searching the platforms Web of Science, Google Scholar,
PubMed, and CNKI using the search terms ‘‘object detection’’, ‘‘object
tracking’’, ‘‘surgical tool detection’’, ‘‘surgical tool tracking’’, ‘‘surgical
instrument detection’’, and ‘‘surgical instrument tracking’’, including
articles published between 1985 and 2021.

Looking at these reviews, it is noticeable that the focus is often on
tasks such as binary tool presence detection, surgical action determi-
nation, surgical phase recognition, or surgical skill assessment, with
object detection methods using axis-oriented bounding boxes being the
central approach while segmentation of minimally invasive instruments
tends to play a minor role. This observation is due to the fact that
none of the search terms used in the aforementioned works contains the
keyword ‘‘segmentation’’, whereas the term ‘‘detection’’ is frequently
used. Due to the rapid increase in the number of publications in this
area in recent years, which is illustrated in Fig. 1 and described in more

detail in Section 3, some of the results of the above reviews no longer
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Fig. 1. Number of relevant publications by year resulting from searches on the platforms Web of Science, PubMed, and Google Scholar, according to the selection criteria. For
2023, in addition to the publications up to and including July, the numbers of expected papers by the end of the year are shown in italics at the top of the transparent boxes.
represent the current state of the art, both in terms of freely available
datasets as well as regarding published methods. Another limitation of
the presented works is that the search methods used often lack central
details, such as the time period considered, the search platforms used,
keywords, inclusion and exclusion criteria, or the number and type of
articles identified, which reduces the traceability and informative value
of the results.

The focus of this paper is explicitly to provide an overview of
the current state of research concerning methods and datasets for the
semantic and instance-based segmentation and tracking of minimally
invasive surgical instruments in endoscopic images and videos. To
this end, we specify our approach in detail concerning the search
methodology, including the search platforms, the search terms, the
time period, the information extracted from the articles, and the se-
lection criteria used, followed by an analysis of the results. In order
to demonstrate the transferability and applicability of segmentation
methods to clinical applications, we also present publications that use
surgical instrument segmentation as a basis for further processing in
robotic-assisted settings. We present a discussion and in-depth analysis
of the literature reviewed, related to the datasets currently being used
to develop and validate new approaches and related to the methodolo-
gies identified, emphasizing existing shortcomings and highlighting the
available potential for future developments.

3. Review methodology

The publications for this work were identified by systematic search
on the platforms Google Scholar, Web of Science, and PubMed. The
search terms used were ‘‘instrument segmentation’’, ‘‘instrument track-
ing’’, ‘‘surgical tool segmentation’’, and ‘‘surgical tool tracking’’, and
all articles published between 01/2015 and 07/2023 were included.
For all platforms, the search was based on the titles of the publica-
tions. An article was retrieved if all parts appeared for one of these
search terms. For each publication, we identified the title, the datasets
used, and the type of segmentation, i.e., whether it is semantic or
instance segmentation, as well as whether it concerns binary, instru-
ment type, or instrument part segmentation. Furthermore, for each
article, it was reviewed whether temporal information was used to
track surgical instruments or to improve segmentation quality, and if
so, what methodology was used to do so. Only publications written
in the English language and which have undergone a peer-review
process were considered, resulting in the exclusion of 5 and 26 articles,
3

respectively. In the following, the criteria that a publication must fulfill
to be included as a relevant paper in this review are presented first.
Subsequently, the results of the systematic search are analyzed.

3.1. Selection criteria

We considered only publications with methods developed and val-
idated on the basis of endoscopic imaging data, excluding all articles
employing data of a different nature. A publication meets the criterion
if the developed method has been validated with at least one endo-
scopic data set. Furthermore, we concentrate on new methodological
developments and not on the pure application of methods in the field
of semantic and instance-based segmentation of minimally invasive
surgical instruments. Articles concerning other research areas as object
recognition or pose estimation are excluded from the results. The
processing of the endoscopic image data must be exclusively visual,
which means that we excluded methods utilizing external markers of
all possible types on the instruments from the results. Publications
that do not present new methodological developments regarding the
segmentation of surgical tools, but which utilize the results of the
segmentation as a foundation for further actions, were included in the
present work and described separately from the novel methodological
developments.

3.2. Analysis of the results

The search on the Google Scholar platform retrieved 423 results,
the search on Web of Science returned 208 matches, and the search on
PubMed resulted in 110 articles. According to the selection criteria, 123
(29.1 %), 49 (23.6 %), and 45 (40.9 %) results were relevant for Google
Scholar, Web of Science, and PubMed, respectively. A representation of
the relevant publications for the respective years is shown in Fig. 1. It
can be seen that Google Scholar has the highest number of publications
meeting the selection criteria in each year. Furthermore, all included
articles are already covered by Google Scholar, resulting in 123 publi-
cations taking all three search platforms into account. A positive trend
can be noticed across all search platforms until 2021, indicating a
strong increase in research in this area in recent years. Since this review
only covers the first seven months of 2023, the expected number of
publications by the end of the year is given on the top of the transparent
boxes, assuming a linear increase in the number of papers.
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Fig. 2. Visualization of commonly used datasets along with their frequency of use in recent publications.
4. Public datasets

The provision of freely available datasets had a central impact
on the development of new methods concerning segmentation and
tracking of surgical instruments in endoscopic images and videos in
recent years [22]. In the following, we present publicly available
datasets for surgical instrument segmentation. For this purpose, we
first consider the datasets that are commonly used in recent work and
in the publications included in this review, according to the selection
criteria. To provide a comprehensive overview of all available datasets,
we further characterize datasets that are not used in the publications of
this review but provide segmentations of surgical instruments and are
available for the development of new methods.

Fig. 2 shows a visualization regarding the frequency of use of the
datasets employed in the considered papers. A total of 187 datasets
were used in the 123 publications considered, divided into nine rel-
evant datasets, private non-public datasets, and datasets that did not
meet the criteria for relevant datasets. The criteria for a dataset to
be considered relevant are that surgical instruments are present, that
segmentation ground truths are available for these instruments, and
that they consist of endoscopic images or videos. All datasets that are
not publicly available are grouped under the term ‘‘Private Datasets’’.
The term ‘‘Others’’ includes all datasets that are publicly available but
do not meet the relevant criteria described above. It can be seen that
the EndoVis-2017 dataset [25] was used in a total of 62 publications,
making it by far the most frequently used dataset. This is followed by
the group of private datasets used in a total of 40 publications. Ranked
third, fourth, fifth, and sixth most frequently used datasets are the
EndoVis-2015 [26], EndoVis-2018 [27], Kvasir Instrument [28], and
EndoVis-2019 [29] datasets, with 14, 14, 14, and seven utilizations,
respectively. The Sinus Surgery-C/L dataset [30,31] was referenced
seven times. Three times each, the results of publications were based
on the datasets labeled Laparoscopic Image-to-Image Translation [32],
UCL dVRK [33], and RoboTool [34]. Furthermore, 22 publications
utilized datasets that did not correspond to any of the above groups.

An overview of the datasets together with their corresponding ref-
erences and website links can be seen in Table 1. The upper part of
the table contains datasets that have been used in the literature of this
review and meet the above mentioned criteria. The lower part describes
datasets that also contain segmentations of surgical instruments, but
either do not meet all of these criteria or were not used by any
relevant publication in the time period considered. Datasets are sorted
4

in ascending order by the year of their publication.
Various characteristics of the datasets are given in Table 2. For each
dataset, the type of instruments, the resolution of the video images, the
type of procedure shown, whether the images are in-vivo or ex-vivo
along with the type of tissue, and the size of the dataset consisting
of the number of frames annotated and the number of sequences are
listed. Unfortunately, no information is available if the datasets are
retrospective or prospective in nature. For the relevant datasets, which
belong to the upper part of the table and are listed in Fig. 2, an example
image for each dataset is shown in Fig. 3.

In the following, these nine relevant datasets with their character-
istics are described in more detail, followed by the properties of the
seven additional freely available datasets. As in Tables 1, 2, and Fig. 2,
the datasets are each sorted in ascending order by the time of their
publication.

4.1. EndoVis 2015 - Instrument Segmentation and Tracking

As part of the MICCAI 2015 conference, the Instrument Segmenta-
tion and Tracking sub-challenge was organized and conducted which
can be divided into the two tasks of segmenting surgical instruments
in single endoscopic images and tracking them over time in endoscopic
image sequences. The dataset includes in-vivo images of laparoscopic
colorectal procedures using rigid instruments and frames from ex-vivo
environments using robotic tools.

For rigid instrument segmentation, 160 annotated images are avail-
able for training, extracted from four sequences in equal numbers.
Ten additional images from each sequence and 50 frames from each
of the two additional sequences are provided for validation purposes.
The tracking training dataset with rigid instruments consists of four
sequences of 45 seconds each, of which one image per second is
annotated. For validation, one frame per second is provided for a
further 15 seconds per sequence and two additional recordings of one
minute each. All in-vivo images have a resolution of 640 × 480. For
segmentation, each pixel is assigned to one of the classes background,
shaft, and manipulator, while for tracking the surgical tool, the coordi-
nates of the center of the shaft end and the orientation of the instrument
are also available.

For the segmentation of robotic instruments in ex-vivo images, four
sequences of 45 seconds each are available for training, with each video
frame annotated. A further 15 seconds of recording from each of the
four sequences and two one-minute videos are available for validation,
with each frame annotated. The video data of the tracking dataset

regarding robotic instruments is identical to that of the segmentation,



Computers in Biology and Medicine 169 (2024) 107929T. Rueckert et al.

r
i
s
u
p

4

m
s
t
r
w
v
e
o
m
s
d
k
k

4

w

Table 1
Publicly available endoscopic datasets together with their corresponding references (Ref.) and website links. The upper part contains datasets
used in surveyed literature, while the lower part lists other freely available data that are available for the development of segmentation methods.
The datasets are each sorted in ascending order by year of publication.
Dataset Ref. Website

EndoVis 2015 [26] https://endovissub-instrument.grand-challenge.org
EndoVis 2017 [25] https://endovissub2017-roboticinstrumentsegmentation.grand-challenge.org
EndoVis 2018 [27] https://endovissub2018-roboticscenesegmentation.grand-challenge.org
EndoVis 2019 [29] https://robustmis2019.grand-challenge.org/
Lap. I2I Translation [32] http://opencas.dkfz.de/image2image
Sinus-Surgery-C/L [30,31] http://hdl.handle.net/1773/45396
UCL dVRK [33] https://www.ucl.ac.uk/interventional-surgical-sciences/weiss-open-research/weiss-

open-data-server/ex-vivo-dvrk-segmentation-dataset-kinematic-data
Kvasir Instrument [28] https://datasets.simula.no/kvasir-instrument
RoboTool [34] https://www.synapse.org/#!Synapse:syn22427422

InstrumentCrowd [35] https://opencas.webarchiv.kit.edu/?q=InstrumentCrowd
NeuroSurgicalTools [36] https://medicis.univ-rennes1.fr/software
CholecSeg8k [37] https://www.kaggle.com/datasets/newslab/cholecseg8k
HeiSurF [38] https://www.synapse.org/#!Synapse:syn25101790/wiki/608802
ART-Net [39] https://github.com/kamruleee51/ART-Net
CaDIS [40] https://cataracts-semantic-segmentation2020.grand-challenge.org
AutoLaparo [41] https://autolaparo.github.io
except that the annotations differ. All ex-vivo images have a resolution
of 720 × 576. For segmentation, each pixel is assigned to one of the
classes background, shaft, head, and clasper, while for surgical tool
tracking, posture information in the form of rotation, translation, and
articulation of the instrument head and claspers is provided.

4.2. EndoVis 2017 - Robotic Instrument Segmentation

Two years after the first MICCAI sub-challenge focused on the
segmentation of surgical tools in endoscopic images, the Robotic Instru-
ment Segmentation sub-challenge was conducted in 2017 with a similar
objective. The data provided for this sub-challenge deals with abdomi-
nal porcine procedures performed exclusively with robotic instruments
and recorded by a da Vinci Xi system. Eight video sequences are
available for training, each with 225 annotated frames, with one image
annotated per second. An additional 75 video frames for each sequence
and two additional sequences of 300 images each are provided for
validation. All video frames have a resolution of 1920 × 1080 and rep-
esent in-vivo recordings. The segmentation distinguishes between the
nstruments large needle driver, prograsp forceps, monopolar curved
cissors, cadiere forceps, bipolar forceps, vessel sealer, and a drop-in
ltrasound probe. Furthermore, each instrument is divided into three
arts.

.3. EndoVis 2018 - Robotic Scene Segmentation

As part of the MICCAI 2018 conference, the Robotic Scene Seg-
entation dataset was released, with video sequences showing porcine

urgical procedures. The dataset consists of 19 video sequences, 15 for
raining and four for validation. As with the EndoVis 2017 dataset, only
obotic instruments are visible over porcine tissue, and the recordings
ere captured using the da Vinci X and da Vinci Xi System. The
ideos have a resolution of 1280 × 1024 and were taken with a stereo
ndoscope. In addition to the instrument classes and their subdivisions
f the different instrument parts used in the Robotic Instrument Seg-
entation sub-challenge of 2017, suturing needles, suturing thread,

uction-irrigation devices, and surgical clips were segmented. In ad-
ition to these non-biological categories, the kidney parenchyma, the
idney fascia, and perinephric fat, which the authors called ‘‘covered
idney’’ and small intestine were also annotated.

.4. EndoVis 2019 - Robust Medical Instrument Segmentation

The Robust Medical Instrument Segmentation (ROBUST-MIS) dataset
5

as published in 2019. The aim was to investigate the robustness and
generalization ability of different algorithms developed within the sub-
challenge and to identify particular challenges in the images. For this
purpose, the authors provided a total of 30 surgical procedures, rep-
resenting in equal parts rectal resection procedures, proctocolectomy
procedures, and sigmoid resection procedures, containing 10,040 anno-
tated images. The recordings feature real-life in-vivo human surgeries
performed with rigid instruments. The videos were recorded in high
definition (HD) quality, downscaled and provided to challenge partici-
pants at a resolution of 960 × 540. The performance of the developed
procedures in terms of generalization ability and quality is investigated
in three stages, with increasing complexity. In stage one, test data
was taken from the procedures (patients) from which the training data
were extracted. In stage two, test data was obtained from the same
type of surgery as the training data but from procedures (patients) not
included in the training. Finally, in stage three, test data originates
from a different but similar type of surgery (and different patients)
compared to the training data. The instruments are assigned an instance
class with incremental numbering, which means that as soon as a new
instrument appears in an image, it is labeled a number one higher than
the previous highest category. As examples of instrument categories,
the authors name grasper, scalpel, (transparent) trocar, clip applicator,
hooks, stapling device, and suction.

4.5. Laparoscopic Image-to-Image (I2I) Translation

The Laparoscopic Image-to-Image (I2I) Translation dataset contains
20,000 automatically annotated synthetic images generated by 3D
laparoscopic simulations created from the CT scans of ten patients.
The images include a rendered view of laparoscopic scenes captured
under random camera positioning. The authors trained a translation
network and subsequently translated all rendered images with five
randomly drawn style vectors for each image, resulting in a total of
100,000 images. Furthermore, all images were translated with five
styles from the Cholec80 [42] dataset, which also shows images from
in-vivo laparoscopic videos, resulting in another dataset of 100,000
images as well, representing the visual features of the Cholec80 dataset.
All images are provided at a resolution of 452 × 256. Included in
the laparoscopic images are the two conventional surgical instruments
grasper and hook, with the shafts and tips of the two instruments
annotated as one instrument subclass each.

4.6. Sinus-Surgery-C/L

The Sinus-Surgery-C/L dataset consists of two subsets, the Sinus-
Surgery-C dataset, which shows surgical procedures on cadaver speci-
mens, and the Sinus-Surgery-L dataset, which contains real procedures

https://endovissub-instrument.grand-challenge.org
https://endovissub2017-roboticinstrumentsegmentation.grand-challenge.org
https://endovissub2018-roboticscenesegmentation.grand-challenge.org
https://robustmis2019.grand-challenge.org/
http://opencas.dkfz.de/image2image
http://hdl.handle.net/1773/45396
https://www.ucl.ac.uk/interventional-surgical-sciences/weiss-open-research/weiss-open-data-server/ex-vivo-dvrk-segmentation-dataset-kinematic-data
https://www.ucl.ac.uk/interventional-surgical-sciences/weiss-open-research/weiss-open-data-server/ex-vivo-dvrk-segmentation-dataset-kinematic-data
https://datasets.simula.no/kvasir-instrument
https://www.synapse.org/#!Synapse:syn22427422
https://opencas.webarchiv.kit.edu/?q=InstrumentCrowd
https://medicis.univ-rennes1.fr/software
https://www.kaggle.com/datasets/newslab/cholecseg8k
https://www.synapse.org/#!Synapse:syn25101790/wiki/608802
https://github.com/kamruleee51/ART-Net
https://cataracts-semantic-segmentation2020.grand-challenge.org
https://autolaparo.github.io
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Table 2
Properties of publicly available datasets. Indicated are the type of instruments, the resolution of the video images, the kind of procedure shown, whether the frames are in-vivo or
ex-vivo recordings along with the type of tissue, and the size of the dataset consisting of the number of annotated images and the number of sequences. The upper part contains
datasets used in surveyed literature, while the lower part lists other freely available data that are available for the development of segmentation methods. The datasets are each
sorted in ascending order by year of publication.

Dataset Instruments Data type Size

Rigid Robotic Resolution Procedure Ex-vivo In-vivo # Images # Seq.

EndoVis 2015 - Seg. ✓ 640 × 480 laparoscopy human 300 6
EndoVis 2015 - Track. ✓ 640 × 480 laparoscopy human 360 6
EndoVis 2015 - Seg. ✓ 720 × 576 porcine 9,000 6
EndoVis 2015 - Track. ✓ 720 × 576 porcine 9,000 6
EndoVis 2017 ✓ 1920 × 1080 abdominal porcine 3,000 10
EndoVis 2018 ✓ 1280 × 1024 nephrectomy porcine 2,831 19
EndoVis 2019 ✓ 960 × 540 laparoscopy human 10,040 30
Lap. I2I Translation ✓ 452 × 256 laparoscopy human 20,000 –
Sinus-Surgery-C/L ✓ 240 × 240 sinus surgery human 9,003 13
UCL dVRK ✓ 538 × 701 animal tissue various animals 4,200 20

Kvasir Instrument ✓
[720 × 576, gastroscopy & human 590 –
1280 × 1024] colonoscopy

RoboTool ✓ varying varying human 514 20

InstrumentCrowd ✓ 640 × 480 laparoscopy human 120 6
NeuroSurgicalTools ✓ 612 × 460 neurosurgery human 2,476 14
CholecSeg8k ✓ 854 × 480 laparoscopy human 8,080 17

HeiSurF ✓
[720 × 576, laparoscopy human 829 33
1920 × 1080]

ART-Net ✓ 1920 × 1080 laparoscopy human 635 29
CaDIS ✓ 960 × 540 cataract surgery human 4,670 25
AutoLaparo ✓ 1920 × 1080 laparoscopy human 1,800 21
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performed on living humans. For the Sinus-Surgery-C dataset, ten sur-
gical procedures were recorded from five different cadaver specimens,
ranging in duration from five to 23 min. The videos were recorded
at a framerate of 30 FPS and a resolution of 320 × 240, and one
frame was annotated every two seconds. The authors provide 4345
annotated images cropped to a size of 240 × 240, of which 3606
contain instruments. The Sinus Surgery-L dataset includes only three
surgical procedures on three different patients, with a total duration
of 2.5 hours. The recording and creation of the annotations followed
the same procedure as for the Sinus-Surgery-C dataset. A total of
4658 annotated video frames are provided, of which 4344 contain
instruments. The dataset creators note that the Sinus-Surgery-L dataset
is more complicated than the Sinus-Surgery-C dataset due to challenges
such as multiple instrument types, sometimes insufficient visualization,
and body excretions that can alter the scene. In both datasets, the
same micro-debrider instrument was used, and the segmentation masks
contain information for each pixel whether it belongs to the instrument
used or to the background.

4.7. UCL dVRK

The dataset entitled ‘‘Ex-vivo dVRK (da Vinci Research Kit) segmen-
tation dataset with kinematic data’’ provides both segmentation masks
and kinematic data for 14 surgical procedures with 300 video frames
each. The authors first perform movements with surgical instruments
recorded by the dVRK system. These movements are then placed over
tissues from different types of animals and over a green screen. The
segmentation masks of the instruments are then determined by sub-
tracting the greenscreen background. The authors freely provide all the
data used to generate the dataset, including the kinematic data of the
motions of the instruments, the motion images over the greenscreen
background, and the final movements of the tools over tissues along
with the associated segmentation masks. For the development of own
methodologies with the help of the dataset, the first eight sequences
should be used for training, the two following recordings for validation,
and videos 11–14 for testing. The images were captured at an original
resolution of 720 × 576 and cropped to 701 × 538. The only instrument
in the recordings is the EndoWrist Large Needle Driver, which may
appear more than once in an image. The segmentation masks contain
the information for each pixel, whether it belongs to an instrument or
the background, which means that a binary segmentation is performed.
6

4.8. Kvasir Instrument

The dataset ‘‘Kvasir-Instrument: Diagnostic and Therapeutic Tool
Segmentation Dataset in Gastrointestinal Endoscopy’’ was released in
2021 and provides annotations for 590 endoscopic frames acquired in
gastroscopies and colonoscopies. The images include diagnostic and
therapeutic tools and have different resolutions between 720 × 576
and 1280 × 1024. The authors provide both binary segmentation masks
nd bounding boxes. Examples of GI instruments in the dataset include
nares, balloons, and biopsy forceps. Examples of GI instruments in the
ataset include snares, balloons, and biopsy forceps.

.9. RoboTool

For the creation of the RoboTool dataset, 514 video frames were
anually annotated from 20 publicly available surgical procedures. The

ecordings show exclusively robotic instruments, and the resolution of
he video frames is based on the respective source video recordings.
here exist only binary labels indicating whether a given pixel belongs
o an instrument or the background. In addition, the authors provide
mages that can be used to create a synthetic dataset. This consists
f 14,720 foreground images showing between one and three surgical
obotic instruments (of a total of 17 different types) in front of a green
creen, of which 13,613 images have a resolution of 4032 × 3024 and
he remaining 3360 × 2240. For each foreground image, the binary
egmentation mask of the instruments is provided. Furthermore, 6130
ackground images with different resolutions showing human tissue
rom 50 publicly available surgical frames in which no instruments
re present are provided. The authors also supply the source code for
lending the foreground images onto the background ones.

.10. Further datasets

In addition to these regularly used datasets identified in the recent
iterature, several others are available for the development of novel
egmentation methods, which are listed along with their respective
haracteristics in the lower part of Table 2.

In their work from 2014, Maier-Hein et al. [35] investigate whether
he annotation quality of a large number of anonymized non-experts is
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Fig. 3. Example images from frequently used endoscopic datasets, according to the upper part of Table 2. Images are taken from the EndoVis-2015 (a), EndoVis-2017 (b),
EndoVis-2018 (c), EndoVis-2019 (d), Lap. I2I Translation (e), Sinus-Surgery-C/L (f), UCL dVRK (g), Kvasir Instrument (h), and RoboTool (i) datasets.
comparable to that of medical experts. For this purpose, the authors cre-
ated and published a dataset consisting of six surgical procedures with
a resolution of 640 × 480, three each of laparoscopic adrenalectomies
and laparoscopic pancreatic resections. Twenty frames were extracted
from each procedure, ten of which were annotated by medical experts.
Ten non-expert annotations are available for all 120 available images. A
separate segmentation mask exists for each instrument within an image,
resulting in a total of 2350 segmented instruments.

The NeuroSurgicalTools dataset [36] contains 2476 annotated im-
ages with binary segmentations of surgical instruments during tumor
removal. Fourteen sequences were acquired with a neurosurgical mi-
croscope and the resolution of all videos was scaled to 612 × 460. In-
struments in the dataset included suction tubes, bipolar forceps, retrac-
tors, hooks, scalpels, pliers, and scissors, resulting in 3819 segmented
individual tools.

To use the Cholec80 dataset [42] also for segmentation tasks, Hong
et al. published the CholecSeg8k dataset [37] in 2020. The authors
extracted and labeled 8080 laparoscopic cholecystectomy images from
17 video recordings with a resolution of 854 × 480. Thirteen classes
were divided, two of which were laparoscopic instruments, namely the
L-hook electrocautery and grasping forceps.

As part of the MICCAI 2021 conference, the ‘‘HeiChole Surgi-
cal Workflow Analysis and Full Scene Segmentation (HeiSurF)’’ chal-
lenge [38] was conducted and the dataset used for it was published. The
represented surgeries are laparoscopic gallbladder resections. The focus
is on full scene segmentation and surgical workflow analysis, for which
the actions performed and the current phase of an operation is anno-
tated in addition to the ground truth of the segmentation. The training
data consists of two parts. In the first part, images are annotated at two-
minute intervals from 24 procedures, while the second part consists of
short sequences of each video annotated at 1 FPS. The test data consists
of nine unpublished surgeries. The resolution of the recordings varies
from 720 × 576 to 1920 × 1080. In addition to the categories for tissues
and organs, there is a global instrument class, a class for drains, clips,
one for trocars, and a class for specimen bags.

The ‘‘Augmented Reality Tool Network (ART-Net)’’ dataset [39]
consists of 29 procedures representing laparoscopic hysterectomies
performed with non-robotic instruments. In addition to binary segmen-
tation of surgical instruments, tool presence, and instrument-specific
7

geometric primitives are also annotated. All recordings correspond to
a resolution of 1920 × 1080.

The ‘‘Cataract Dataset for Image Segmentation (CaDIS)’’ [40] is a
collection of 25 video recordings and 4670 annotated frames showing
cataract surgery that was used in a MICCAI challenge in 2020. Three
tasks are described for which annotations are provided with different
granularity, i.e., different instruments and tissue types are distinguished
in more detail. There are 29 different instrument classes, 4 anatomy
classes, and 3 categories for different objects appearing in the scene.
All images have been scaled to a resolution of 960 × 540.

The AutoLaparo dataset [41] provides sub-datasets for the tasks
workflow recognition, laparoscope motion prediction, and instrument
and key anatomy segmentation. A total of 21 videos of laparoscopic
hysterectomies are provided, recorded at a resolution of 1920 × 1080.
In addition to the anatomy-based segmentation of the uterus, four types
of instruments are distinguished in the recordings, namely grasping
forceps, ligasure, dissecting and grasping forceps, and electric hook.

The freely available datasets described are limited by the fact that
only those were selected that contain annotations for surgical instru-
ment segmentation. For a detailed overview of datasets available for
other tasks in the surgical context, such as action classification, phase
recognition, surgical skill assessment, or segmentation of anatomical
structures, we refer to the works of Maier-Hein et al. [7] and Rodrigues
et al. [22].

5. Semantic segmentation methods

The following presents current semantic segmentation approaches,
divided into two chapters and several subchapters, as shown in Fig. 4.
First, contributions to the segmentation of single images are described,
followed by approaches that address the segmentation of images incor-
porating temporal information from successive video frames.

5.1. Single frame segmentation

This section deals exclusively with publications focusing on the
semantic segmentation of single images, for which 72 contributions
were identified. In the following these are characterized and logically
grouped according to different characteristics. First, the type of segmen-
tation is examined, i.e., work on binary, instrument type-based, and
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Fig. 4. Structure of Section 5 regarding semantic segmentation methods, to be read from left to right. Indicated are the topics by which the identified publications are grouped.
he methods of both single-frame segmentation (Section 5.1) and those involving temporal information (Section 5.2) are divided by segmentation type (Sections 5.1.1 and 5.2.1),

earning strategy (Sections 5.1.2 and 5.2.2), inference speed (Sections 5.1.4 and 5.2.4), and attention mechanisms (Sections 5.1.5 and 5.2.5). For single-frame segmentation, methods
f domain adaptation 5.1.3 are further presented, and for publications with temporal information tracking approaches (Section 5.2.3) are explained.
nstrument part-based segmentation is reviewed. Each of these three
ypes has different requirements and challenges, and the segmentation
f instrument parts is usually more complex than the segmentation of
ure instruments, which in turn is more difficult to evaluate than the
inary distinction between instruments and background. The develop-
ents are then organized according to the following learning strategies:

upervised learning, semi-supervised learning, weakly-supervised learn-
ng, and work that does not fit into any of these categories. We
urther provide methods that focus on the adaptation to new domains.
ollowing this, we present contributions that focus on developing real-
ime or near-real-time approaches and explicitly state the processing
peed of their methods for this purpose. Finally, we give an overview
f recent developments incorporating attention-based techniques into
etwork architectures and highlight how this methodology improves
egmentation quality.

.1.1. Segmentation type
The number of relevant publications per segmentation type is visu-

lized in Fig. 5, where only those segmentation types and combinations
re listed that are used in at least one paper. Table 3 shows all works
ealing with binary segmentation of instruments, which corresponds
o the largest group. Approaches focusing on other segmentation types
re presented in Table 4, subdivided according to the categories shown
n Fig. 5. For each article the supervision strategy, a binary indicator
f whether attention mechanisms were employed in the methodology,
nd the datasets used are provided. Methods developed using a super-
ised approach are labeled SV, unsupervised developed methods are

Fig. 5. Number of relevant publications per segmentation type for semantic single
image segmentation.
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marked USV, weakly supervised approaches are identified as WE, semi-
supervised methods using SE, methods dealing with the generation
and/or use of synthetic data are indicated as SN and methods dealing
with the task of domain adaptation are labeled DA. When specifying
the datasets used, the meaning of the columns ‘‘Private’’ and ‘‘Other’’ is
identical to the one described in Section 4. If a publication uses several
datasets that are not publicly available and thus belong to the ‘‘Private’’
category or uses several datasets that were not recorded endoscopically
or not contain surgical instruments and thus belong to the ‘‘Other’’
category, the corresponding column is marked only once.

5.1.2. Learning strategies
The following is a review of the works identified concerning the

learning strategies used. For this purpose, they are divided into super-
vised, semi-supervised, weakly supervised, and other types of learning
methods. An overview of the number of papers according to each
learning method is presented in Fig. 6.

Supervised learning
Supervised learning methods represent a group of approaches in

which neural networks are trained using pixel-precise segmentation
masks, which serve as the ground truth. Most of the reviewed work
regarding single-image segmentation of surgical instruments in endo-
scopic images and videos has been developed using this approach.
Here, most of the work focuses on improving the segmentation quality
by developing new architectures or adapting existing architectures by
enhancing certain components [30,39,43–68].

Other developments aim at improving segmentation quality by
adding parallel processing of an auxiliary task. In addition to pre-
dicting the segmentation, this can include information about whether
an instrument is present in a video frame or not, as well as the
determination of geometric primitives [39]. Other work estimates a
saliency map in addition to segmentation and computes a scan path
from it [18]. Improvements in segmentation quality can be achieved by
predicting bounding box coordinates in parallel [69] or by estimating a
localization heatmap [53]. Recent research also shows that additional
depth estimation in stereo images leads to better segmentation re-
sults [57,70]. Regarding instrument shape, current developments show
that additional auxiliary contour supervision leads to more precise
contour shape predictions for final segmentation [30]. Another super-
vised method relies on tool-pose-informed variable center morpholog-
ical polar transform, by which segmentation in endoscopic images is
improved [71].
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a

In contrast to the above works, current research also deals with
the comparison regarding the strengths and weaknesses of existing
supervised methods on specific validation datasets [20,72,73].

However, following a supervised learning strategy and, thus, need-
ing annotated data to develop novel methods faces several challenges,
as labeling the data is a time-consuming and costly process that is
typically performed manually.

Semi-supervised learning
Semi-supervised learning is one approach to address the challenges

posed by the need for annotated data. This requires a sufficiently large
amount of data, of which only a small fraction needs to be annotated,
thus significantly reducing the annotation effort. Developments in this
area are based on teacher-student learning approaches, which are well-
established methods for this purpose and have been used successfully
in other domains of semi-supervised learning. Recent work proposes an
approach that learns on annotated synthetic and unlabeled real-world
data, combining loss functions from both branches [74]. A different
approach by Sanchez-Matilla et al. [75] describes a method based on
semi-supervised learning and weak supervision. The authors propose
an adaptive loss that allows training the network when only a small
amount of annotated data is available. A semi-supervised contrastive
learning approach published by Lou et al. [76] adapts the idea of
solving a min–max similarity problem by classifying and projecting all-
negative and positive-negative feature pairs, which are used to optimize
the minimum-maximum similarity problem.

Weakly-supervised learning
To overcome the lack of annotated data, the field of self-supervised

learning, often referred to as weakly supervised learning, is an active
area of research. These approaches either require no annotation at all
or only very simple and rapidly generated manual annotations. Two
types of weakly supervised learning can be distinguished.

One method is to automatically generate labels based on image data
and then use this generated target data to train a neural network. An
approach to creating the training labels is to use the estimate of a
robot’s kinematic model in terms of the shape of the surgical tool to
learn a projection of this data onto the input image using a cost function
based on the GrabCut algorithm. This target data is then employed to
train a segmentation network [77]. In the work of Pakhomov et al. [85],
the authors also propose a process where imprecise kinematic data is
used to generate training labels, and mappings between surgical images
and automatically generated masks are performed using an unpaired
GAN-based I2I translation approach. The training of a segmentation
network is then performed using the weak target data generated in this
way. Another method is to obtain labels using both electromagnetic
tracking and laparoscopic image processing and then use these labels
to train a lightweight network [82]. Another work uses existing models

Fig. 6. Amount of relevant papers for single image semantic segmentation divided
ccording to the respective learning strategies used.
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trained on publicly available datasets to semi-automatically generate
the training dataset and processes the results using a watershed-based
segmentation method. A two-step training process is then used where
the input images are first processed using the publicly available seg-
mentation model, and the results are refined using a GrabCut-based
algorithm [83]. A similar approach by Huang et al. [17] generates
ground truth segmentation masks through a model trained on a publicly
available dataset and uses these masks to train their network for joint
segmentation prediction and disparity estimation.

A second way to apply weakly supervised learning is to work
only with manually generated coarse annotations that can be acquired
quickly and cost-effectively. By providing bounding boxes as weak
annotations, training datasets for segmentation tasks can be generated
by applying the DeepMAC [94] method. Subsequently, segmentation
models are trained using these target data and domain-adapted syn-
thetically generated data [84]. An efficient method for creating a
training dataset is described by Papp et al. [86], where only one video
frame per second is manually labeled, and all intervening video frames
are semi-automatically annotated by applying optical flow (OF)-based
tracking. Four established segmentation networks were trained with the
annotations generated in this way, to assess the surgical skills of the
operators. The creation of weak labels can also be aided by the use of
a virtual reality (VR) simulator, where the ground truth is determined
from this data with minimal manual effort, rendering the instruments
with a solid white color and the background with uniform black color
at three different levels of realism. The data generated in this way
can then be used to train segmentation networks [80]. An alternative
approach to semi-automatically generate the training dataset is to
create coarse, scribble-like weak annotations of the tools and transform
them into training data using a graph-based method. Subsequently,
a segmentation model is trained using these noisy annotations in a
two-step process divided into a warm-up phase and a stabilization
phase, characterized by the use of highly noisy weak annotations in the
warm-up phase and less noisy labels in the stabilization phase [92].

Different learning approaches
This section deals with approaches that do not fit strictly into the

previously mentioned learning variants. In their work, Qin et al. [87]
describe a segmentation network that is trained in a two-step proce-
dure. In the first step, the feature extractor is trained unsupervised
on a large set of unlabeled data. In the second step, they train the
segmentation part of the network in a supervised fashion on a small set
of annotated images. The CNN results are fused with the kinematic pose
of the instruments to obtain the final predictions. The application of a
GAN-based unpaired I2I approach to surgical instrument segmentation
is presented by Zhang et al. [93]. The core concepts are an embed-
ded constraint, which specifies that each pixel belongs to either an
instrument or background, and the use of textured instrument images
as annotations for the network generator rather than segmentation
masks. The approach of Nema and Vachhani [102] also relies on a
CycleGAN architecture that learns a mapping between raw surgical
images and segmentation maps for instruments in an unsupervised
manner, with the objective of using sparsely available training data
to achieve optimal results for a large amount of unseen test data. In
contrast to previously presented methods, the approach described by
Su et al. [90] is based on classical image processing methods and does
not include machine learning elements. The authors present a multi-
stage approach that is essentially based on the fusion of shape matching
using a discrete Fourier transform and a color mask determined by log-
likelihood. The same authors describe a similar method, which relies
on the same elements and deals with the segmentation of surgical tools

and their 3D reconstruction [89].
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Table 3
Publications that contributed in the area of binary semantic single-image segmentation of surgical instruments. For each publication, the type of methodology (SV = supervised,
USV = unsupervised, WE = weakly-supervised, SE = semi-supervised, SN = synthetic data, DA = domain adaptation), whether or not attention mechanisms (Att.) were used in
the methodology, and the datasets used are indicated.

Publication Supervision Att.
Used datasets

EndoVis Lap.
I2I

Sinus
Surg.

UCL
dVRK

Kvasir
Inst.

Robo-
Tool

Pri-
vate

Ot-
her15 17 18 19

Banik et al. (2021) [43] SV ✓

Chou (2021) [44] SV ✓ ✓

da Costa Rocha et al. (2019) [77] WE ✓

Devi et al. (2022) [45] SV ✓

Galdran (2021) [47] SV ✓

Garcia-P.-H. et al. (2017) [78] SV ✓

Garcia-P.-H. et al. (2021) [79] SN ✓ ✓

Hasan et al. (2021) [39] SV ✓ ✓

Hasan et al. (2021) [49] SV ✓

Heredia Perez et al. (2020) [80] SN ✓

Huang et al. (2022) [17] WE ✓

Huang et al. (2022) [71] SV ✓

Jha et al. (2021) [20] SV ✓ ✓

Kalavakonda et al. (2019) [73] SV ✓ ✓

Kalia et al. (2021) [81] DA ✓ ✓

Keprate and Pandey (2021) [52] SV ✓

Lee et al. (2019) [82] WE ✓

Lee et al. (2019) [83] WE ✓

Leifman et al. (2022) [84] WE, SN, DA ✓ ✓ ✓

Lou et al. (2023) [76] SE ✓ ✓ ✓

Ni et al. (2019) [54] SV ✓ ✓

Pakhomov et al. (2020) [85] WE ✓

Papp et al. (2022) [86] WE ✓ ✓

Psychogyios et al. (2022) [70] SV, DA ✓ ✓

Qin et al. (2019) [87] USV, SV ✓

Qin et al. (2020) [30] SV ✓ ✓

Rajak and Mirza (2021) [55] SV ✓

Sahu et al. (2020) [88] SN, DA ✓ ✓ ✓

Sahu et al. (2021) [74] SE, SN, DA ✓ ✓ ✓ ✓

Su et al. (2018) [89] USV ✓

Su et al. (2018) [90] USV ✓

Suzuki et al. (2019) [57] SV ✓

Wang et al. (2021) [60] SV ✓ ✓

Wang et al. (2022) [91] SN, DA ✓ ✓

Yang et al. (2022) [62] SV ✓ ✓ ✓

Yang et al. (2022) [63] SV ✓ ✓ ✓

Yang et al. (2022) [92] WE ✓

Yang et al. (2023) [64] SV ✓ ✓ ✓

Yang et al. (2023) [65] SV ✓ ✓ ✓

Yeung (2021) [66] SV ✓ ✓

Yu et al. (2020) [67] SV ✓

Zhang et al. (2021) [93] USV ✓ ✓
5.1.3. Domain adaptation
Another frequent requirement is the adaptation to changes in the

domain, e.g., concerning new instrument sets or different types of op-
erations. In these cases, retraining for the adapted circumstances would
be needed. One approach that meets this challenge is called domain
adaptation. Often, such approaches employ a two-step process in which
synthetic data is generated first and then used in the training process,
which is also referred to as simulation-supervised learning [105].

A commonly used way to do this is to use unpaired I2I transla-
tion to translate data from a synthetic to a given real-world domain,
i.e., to generate artificial images that look as realistic as possible on
the desired target domain. For this purpose, architectures based on
generative adversarial networks (GANs), specifically CycleGAN archi-
tectures [110], are frequently used. The resulting artificial images are
then employed to train a neural network [84,103,105,111]. However,
domain adaptation based on the generation of synthetic data can also
be performed in other ways. One possibility is to use a VR simulator
to generate endoscopic data with different levels of realism, train a
segmentation network with this data, and evaluate the influence of the
degree of realism of the simulated data on the predictive quality of
the network [80]. A further possibility for the generation of artificial
training data is the blending of images. In a promising approach, Wang
10

et al. [91] select an image from the EndoVis-2018 dataset that shows
only background and does not contain any tools, and multiply it by
applying a variety of augmentations. Then, images containing instru-
ments are selected for the foreground, these instruments are extracted,
and the background is made transparent. The instruments are then
blended onto the background images, and the resulting dataset is used
to train a segmentation network whose performance is also evaluated
on a different real-world dataset.

In addition, there is work in the field of domain adaptation that
does not use a two-step process not uses I2I-based techniques. Instead,
a model based on consistency is trained simultaneously for real-world
and simulated data in an end-to-end manner. In this approach, the
simulated data are processed according to a supervised technique,
whereas the images of the real-world domain are processed accord-
ing to a consistency learning strategy, combining the losses of both
branches [88]. An improvement of this method is described by Sahu
et al. [74] by improving the generation of the pseudo-labels for data
belonging to the real-world domain.

Another type of domain adaptation deals with the transfer from
an annotated dataset to an unknown one for which no labels are
available and which represents a divergent surgical scene. Here, both
datasets show real-world interventions, and unlike the methods de-
scribed above, this formulation of the problem does not involve arti-

ficially generated data been in advance. Regardless of the domain shift
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Table 4
Publications that contributed in the area of non-binary semantic single-image segmentation of surgical instruments. For each publication, the type of methodology (SV = supervised,
USV = unsupervised, WE = weakly-supervised, SE = semi-supervised, SN = synthetic data, DA = domain adaptation), whether or not attention mechanisms (Att.) were used in
the methodology, and the datasets used are indicated. The works are grouped according to the segmentation types visualized in Fig. 5, excluding the binary category.

Publication
Super-
vision Att.

Used Datasets

EndoVis Lap.
I2I

Sinus
Surg.

UCL
dVRK

Kvasir
Inst.

Robo-
Tool

Pri-
vate

Ot-
her15 17 18 19

Liu et al. (2021) [95] DA ✓ ✓

Ni et al. (2020) [96] SV ✓ ✓ ✓

Ni et al. (2020) [97] SV ✓ ✓ ✓

Ni et al. (2021) [98] SV ✓ ✓ ✓

Ni et al. (2022) [99] SV ✓ ✓ ✓

Sanchez-Matilla et al. (2021) [75] SE ✓

Shen et al. (2023) [56] SV ✓ ✓ ✓ ✓

Wang et al. (2023) [61] SV ✓ ✓ ✓

Xue and Gu (2021) [100] SV ✓ ✓

Andersen et al. (2021) [101] SV ✓

Dong et al. (2021) [46] SV ✓ ✓

Guo et al. (2022) [48] SV ✓ ✓ ✓

He et al. (2020) [50] SV ✓ ✓ ✓ ✓

Nema and Vachhani (2023) [102] SV, USV ✓

Ozawa et al. (2021) [103] SN, DA ✓

Sun et al. (2021) [104] SV ✓

Islam et al. (2019) [18] SV ✓ ✓

Islam et al. (2020) [69] SV ✓ ✓

Colleoni et al. (2022) [105] SN, DA ✓ ✓ ✓ ✓

Laina et al. (2017) [53] SV ✓ ✓

Mahmood et al. (2022) [106] SV ✓ ✓

Pakhomov et al. (2019) [107] SV ✓

Pakhomov and Navab (2020) [21] SV ✓

Islam et al. (2019) [19] SV ✓

Kamrul H. and Linte (2019) [51] SV ✓

Liu et al. (2022) [108] DA ✓ ✓

Shvets et al. (2018) [109] SV ✓

Vishal and Kumar (2018) [58] SV ✓ ✓

Wang et al. (2021) [59] SV ✓ ✓ ✓

Zhou et al. (2021) [68] SV ✓ ✓
considered, unpaired I2I translation based on CycleGAN architectures
is also used for this purpose. Kalia et al. [81] present an approach
in which the generator performs the transfer from the labeled to the
unlabeled dataset, learns a segmentation model based on these results,
and influences the generator in the process. Other approaches use
graph-based neural networks to best model the relationships between
the two domains. This involves extracting relevant features of the input
images of both domains through a CNN and processing them through
different regions with associated responsibilities in the graph-based
network [95,108].

A further type of domain adaptation is described in the work of
Psychogyios et al. [70]. The authors present an architecture that jointly
estimates the disparity and segmentation of surgical tools. The seg-
mentation task is performed in a supervised manner using annotations
available only for the left image of the stereo camera, and the disparity
estimation is modeled as an auxiliary task, improving the performance
in terms of disparity estimation only by training the segmentation task.

In addition to work aimed at improving quality in various as-
pects through domain adaptation, some publications focus on the cre-
ation and provision of synthetic datasets. One way is by moving and
recording instruments against a uniform background, automatically
segmenting the tools, and blending them into images showing only the
background [79].

5.1.4. Inference speed
Besides improving the quality of segmentation, recent work focuses

on fast processing and preferably real-time processing capability of the
proposed applications, which represents a prerequisite to be applicable
in real-world scenarios. In this context, the speed at inference time
represents an important criterion. In the literature, this speed is often
specified in frames per second (FPS), i.e., the number of video frames
11
a method processes within one second. In our review, we obtained
a total of 19 contributions presented in Table 5 that determined and
reported the inference speed of their methods concerning the semantic
segmentation of individual frames. To allow for a fair comparison,
these works are listed together with their respective processing speed
at inference time in FPS, image resolution, used GPU and the number
of graphics cards used, and CPU and the amount of CPUs used.

5.1.5. Attention mechanisms
In addition to the established network architectures and compo-

nents used for segmentation tasks, current research explores the po-
tential of attention techniques. These address the limitations associ-
ated with traditional CNN-based approaches. The core idea is to use
attention-based mechanisms to extract more useful features and to
better suppress irrelevant ones resulting in improved segmentation
quality.

Current work in the field of single-frame segmentation of surgical
instruments shows promising results that achieved by using attention-
oriented methods, in particular by modifying and extending parts of
encoder–decoder-based architectures. Other work uses attention-based
mechanisms for a dual-model filtering strategy to reduce the num-
ber of false-positive predicted pixels [44]. In unpaired I2I translation
with CycleGAN-based architectures, generated synthetic images can
be improved by integrating an attention module trained in parallel
with the generator, supporting the model to focus on domain-specific
features [105]. Approaches that address the problem of overparameteri-
zation of neural networks demonstrate the benefit of dynamic attention-
based pruning strategies that identify and eliminate non-meaningful
features after each encoder block [69]. Other recent research examines
the impact of differently designed attention-based modules deployed in
the skip connections, i.e., the links between the encoder and decoder
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Table 5
Semantic segmentation methods for single images that have specified processing speeds at inference time. Indicated are the publication, the speed in FPS, the image resolution,
the GPU used as well as the number of graphics cards, and the CPU used and the number of CPUs. The publications are sorted in descending order according to the reported
inference speed.

Publication Inf. speed (FPS) Resolution GPU #GPU CPU #CPU

Islam et al. (2019) [19] 174 1024 × 1280 GTX 1080 Ti 1 – –
Huang et al. (2022) [17] 172 192 × 384 RTX 2080 Ti 1 – –

Guo et al. (2022) [48] 171, 175 1024 × 1280 GTX 1070 1 2.80 GHz 1167 480 × 640
Islam et al. (2019) [18] 127 – GTX 1080 Ti 3 – –
Pakhomov and Navab (2020) [21] 125 1024 × 1280 Tesla P100 1 – –
Jha et al. (2021) [20] 102 540 × 960 DGX-2 1 – –
Shen et al. (2023) [56] 102 512 × 640 RTX A6000 1 Xeon Gold 6226R 1

Andersen et al. (2021) [101] 90 448 × 448 RTX 2080 Ti 1 – –36 672 × 1120
Garcia-P.-H. et al. (2017) [78] 43/29/8 576 × 720 GTX Titan X 1 Xeon E5-1650 3.50 GHz 1
Lou et al. (2023) [76] 40 288 × 512 RTX A5000 1 – –
Ni et al. (2020) [96] 39 544 × 960 Titan X 1 – –
Sun et al. (2021) [104] 37 1024 × 1280 P6000 1 – –
Xue and Gu (2021) [100] 25 224 × 224 – – – –
Psychogyios et al. (2022) [70] 22 1024 × 1280 DGX V100 1 – –
Sanchez-Matilla et al. (2021) [75] 22 512 × 512 RTX 6000 1 – –

Mahmood et al. (2022) [106] 21 512 × 512 GTX 1070 1 Core-i7-7700 3.60 GHz 1512 × 640
Islam et al. (2020) [69] 18 1024 × 1280 RTX 2080 Ti 1 – –
Shvets et al. (2018) [109] 11/6/5 1024 × 1280 GTX 1080 Ti 1 – –
Su et al. (2018) [90] 6 480 × 640 No GPU 0 – –
blocks [58,59,66]. In addition to this work the use of attention-based
techniques with a particular focus on the decoder part of architectures
is being investigated, for example, by adding such an attention module
after each decoder block [54]. Related recent research describes how
the use of attention-based techniques in a second, parallel decoder
branch with a divergent task has a positive effect on segmentation
quality. Of all the models compared by Jha et al. [20], the model with
the best results uses an autoencoder combined with attention modules
as an additional branch in the decoder to refine the features of the
encoder part, and Islam et al. [18] include attention-based modules into
a parallel decoder branch to predict a saliency map. Also focusing on
the decoder, Shen et al. [56] integrate a block attention fusion module
into the decoder for efficient feature localization and global context
understanding. Between the lightweight encoder and the decoder, a
branch balance aggregation module is placed, which is responsible
for the fusion of feature maps of different levels as well as for the
suppression of noise in the low-level feature maps. Yang et al. [62] use
attention-based techniques both in the bottleneck layer in the encoder
part of the network to better capture global concepts of the input, as
well as in the form of a dual-attention module that combines the high-
level features and the low-level features of the decoder and encoder,
respectively. Therein, valuable features are recognized and irrelevant
ones are suppressed, thus improving the overall segmentation quality.
To overcome the drawbacks of convolutional neural networks concern-
ing the capture of features of smaller objects as well as weaknesses in
the processing of local semantic features, Yang et al. [64] introduce
a multi-scale attention fusion network, which relies on an attention
fusion module that integrates multi-scale information by cross-scale
feature fusion. Capturing multi-scale information and using attention-
based fusion modules is also the central objective of the method of
Yang et al. [63,65], who aim to suppress irrelevant information in the
low-level features by using attention feature fusion modules and ad-
ditive attention and concatenation modules in their proposed network
architecture. By using guidance connection attention modules, Wang
et al. [61] also attempt to eliminate irrelevant low-level features. In ad-
dition, the inclusion of local information and local–global dependencies
through bidirectional attention modules to identify accurate instrument
features is also a central aspect of their method.
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5.2. Incorporating temporal information

This section presents recent research on semantic surgical instru-
ment segmentation incorporating temporal information. In the follow-
ing, these works are analyzed according to the type of segmentation,
the learning strategies, the methodological approaches used to segment
and track the tools over time, the inference speed, and the incor-
poration of attention-based techniques to improve the segmentation
results.

5.2.1. Segmentation type
The division of segmentation types for the papers considered in this

chapter is visualized in Fig. 7, and a listing showing all publications
grouped by these types is presented in Table 6, whose structure is
identical to the one described in Section 5.1.

5.2.2. Learning strategies
Regarding the learning strategies, the included literature can be

divided into various groups presented together with their appearance in
Fig. 8. The majority of the reviewed methods are based on supervised
approaches [114,116,117,126,127]. To overcome the lack of annotated
data, some works present semi-supervised methods using sparsely la-
beled video sequences [124,128,129]. Jin et al. [128] present a module
through which the network’s prediction for an unlabeled frame is
applied to the previous annotated frame, and a loss is computed using
its ground truth. In the contribution of Zhao et al. [129], motion flows

Fig. 7. Number of relevant publications per segmentation type for semantic image
segmentation incorporating temporal information.
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Table 6
Publications that have contributed in the area of semantic segmentation of surgical instruments by incorporating temporal information. For each publication, the type of methodology
(SV = supervised, USV = unsupervised, WE = weakly-supervised, SE = semi-supervised, SN = synthetic data, DA = domain adaptation), whether or not attention mechanisms
(Att.) were used in the methodology, and the datasets used are indicated. The works are grouped according to the used segmentation types visualized in Fig. 7.

Publication Super-
vision Att.

Used Datasets

EndoVis Lap.
I2I

Sinus
Surg.

UCL
dVRK

Kvasir
Inst.

Robo-
Tool

Pri-
vate

Ot-
her15 17 18 19

Agustinos and Voros (2015) [112] USV ✓

Amini Khoiy et al. (2016) [113] USV ✓

Attia et al. (2017) [114] SV ✓

Du et al. (2016) [115] SV, USV ✓ ✓

Garcia-P.-H. et al. (2016) [116] SV, USV ✓ ✓ ✓

Lin et al. (2019) [117] SV ✓

Lin et al. (2021) [118] SV ✓ ✓ ✓

Liu et al. (2020) [119] WE ✓

Sestini et al. (2023) [120] USV ✓ ✓ ✓

Yang et al. (2022) [121] SV ✓ ✓ ✓

Zhao et al. (2021) [122] DA ✓ ✓ ✓ ✓ ✓

Zhao et al. (2021) [123] DA ✓ ✓ ✓

Li et al. (2021) [124] SE, USV ✓

Zhang and Gao (2020) [125] SV ✓

Islam et al. (2021) [126] SV ✓ ✓

Wang et al. (2021) [127] SV ✓ ✓ ✓

Jin et al. (2019) [128] SE, USV ✓ ✓

Zhao et al. (2020) [129] SE, USV ✓
)

are learned in two parallel branches to propagating the annotations
available for a few locations to the unlabeled video frames. Then,
the manually created annotations, the propagated annotations, and the
labels for additional interpolated frames are used to train a segmen-
tation network. Based on this approach, the work of Li et al. [124]
presents a method for improving the interpolation of the images and the
associated labels between the annotated frames. Various approaches
use elements of unsupervised learning in addition to the above learning
strategies to track the instruments over time, which are described in a
later topic within this section [116,120,124,128,129].

A different approach is taken by Liu et al. [119], which operates
in a weakly supervised manner. Instead of annotated data, automati-
cally generated pseudo-labels based on the input images and manually
specified cues are used. These pseudo-labels then serve as ground
truth and are used to compute an anchor loss. As with single-image
segmentation, there exists research in the area of domain adaptation
based on the incorporation of temporal information. Zhao et al. [122,
123] present related approaches in which initial models are learned
through meta-learning and then applied to new domains through an
online adaptation scheme, requiring only an annotation for the first
frame of a video sequence at inference time. An unsupervised three-
stage approach that consists solely of implicit motion information and
instrument-oriented shape-priors is provided by Sestini et al. [120].
Working entirely without manual annotations or prior knowledge is the
approach of Agustinos and Voros [112], where the 3D pose of the in-
struments is determined in a multi-step procedure using classical image
processing techniques, essentially based on the use of the Frangi filter.
The method from Amini Khoiy et al. [113] also works only with color
features, first converting the input image to the more informative hue,
saturation, value (HSV) color space, then performing V+S histogram
thresholding followed by the application of a filter on the H channel.
Almost unsupervised is the method proposed by Du et al. [115], where
only the 3D pose of the surgical tool in the first video frame needs
to be known, and, based on this the position of the instrument in all
subsequent frames is estimated.

5.2.3. Tracking approaches
This section summarizes the key concepts in the current literature

for tracking surgical tools over time. Often, this information is pro-
cessed within the network architecture, for example, by using recurrent
13

layers. Attia et al. [114] present an approach in which the low-level
features resulting from the network’s encoder are processed in four
alternating convolutional and recurrent layers and then converted into
the final output by the decoder. Also based on the idea of recurrent
layers is the method of Yang et al. [121], which uses blocks of re-
current convolutional layers in both the encoder and decoder of its
architecture. Adapting the idea of processing recurrent sequences, Lin
et al. [118] present a module located between the encoder and decoder
of a segmentation network and can be used to temporally and spatially
aggregate features of video frames.

In addition to recurrent components, long short-term memory (LSTM
blocks are often incorporated into the network structure. Current work
exploits temporal information by processing features at the bottleneck
of an encoder–decoder architecture in LSTM blocks [124,129]. Other
articles integrate such layers into the decoder of an auxiliary task
to improve overall segmentation results [126]. Related publications
describe an approach in which the features of successive frames are
aggregated by convolutional LSTM layers [127].

In addition to recurrent layers and LSTM mechanisms, determining
the motion flow between two successive frames by computing the OF
field is a commonly used approach. To this end, Lin et al. [117] present
a method that computes the OF as an intermediate step in a multi-
stage procedure to determine the potential position of the surgical
instrument in the successive video frame. The approach of Sestini

Fig. 8. Amount of relevant papers for semantic segmentation incorporating temporal
information divided according to the respective learning strategies used.
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Table 7
Semantic segmentation methods incorporating temporal information that have specified processing speeds at inference time. Indicated are the publication, the speed in FPS, the
image resolution, the GPU used as well as the number of graphics cards, and the CPU used and the number of CPUs. The publications are sorted in descending order according
to the reported inference speed.

Publication Inf. speed (FPS) Resolution GPU #GPU CPU #CPU

Lin et al. (2021) [118] 182 240 × 240 Titan Xp 1 Core-i7-7700K 4.20 GHz 1117 360 × 640
Islam et al. (2021) [126] 42 1024 × 1280 RTX 2080 Ti 1 – –
Wang et al. (2021) [127] 38 512 × 640 Titan RTX 4 – –
Agustinos and Voros (2015) [112] 30 556 × 720 No GPU 0 Xeon 2.67 GHz 1
Amini Khoiy et al. (2016) [113] 30 480 × 640 No GPU 0 Core Duo 2.5 GHz 1

Garcia-P.-H. et al. (2016) [116] 30

480 × 640,

GTX Titan X 1 1576 × 720, Xeon E5-1650 v3,
[460 × 612, 3.50 GHz
1080 × 1920]

Zhang and Gao (2020) [125] 15 480 × 640 GTX 1080 Ti 1 Core i-7-7700 3.60 GHz 1
Zhao et al. (2021) [123] 4 1024 × 1280 Titan Xp 1 – –
Zhao et al. (2021) [122] 3 1024 × 1280 Titan Xp 1 – –
et al. [120] also relies on a multistep procedure in which unsupervised
optical-flow segmentation is the first step. For the generation of realistic
binary segmentation maps, a generative-adversarial approach is used to
learn the mapping between the domain of optical-flow images and the
domain of shape-priors. Garcia-Peraza-Herrera et al. [116] present a
method that computes an affine transformation between feature points
in the last segmented image and feature points in the current image and
then applies this affine transformation to the predicted segmentation
masks of a CNN. Also based on OF computation is the approach of Jin
et al. [128], which uses the network’s prediction for the previous image
as a reliable prediction for the position and shape of an instrument in
the subsequent frame. In their works, Li et al. and Zhao et al. [124,129]
use a network that determines the OF based on a pre-trained network.
The results are then processed in two parallel branches to jointly apply
the network’s predictions and associated annotations to subsequent
video images.

Online adaptation describes a research approach that involves dy-
namically adapting existing models trained using an easily accessible
source domain and then applying them to different target domains at
test time, with only an annotated segmentation mask available for the
first frame of the target domain. A contribution by Zhao et al. [123]
describes a meta-learning-based dynamic online adaptive learning ap-
proach using a two-step procedure. In step one, they train a seg-
mentation network using a meta-learning approach that provides fast
adaptable parameters for step two. Then, this network is dynamically
adapted to a new video using the first annotated frame in several
iterations, employing the output of the previous frame and the updated
parameters to generate pseudo-masks. An improvement of this method
is presented by Zhao et al. [122] by applying an anchor-oriented online
meta-adaptation approach dealing with one-shot instrument segmenta-
tion in robotic surgical videos. For this purpose, the meta-training of the
segmentation network is modified by an anchor-matching mechanism.
At test time, the pseudo-masks used for online supervision are created
using the first annotated frame, called the anchor, and inter-frame
visual information instead of the outputs of previous images.

Instead of specifying the segmentation mask as the ground truth of
a surgical instrument in the first frame of a sequence, approaches exist
that use the 3D pose of the tool as the ground truth. Instruments are
then tracked by a 2D tracker based on a generalized hough transforma-
tion and a probabilistic segmentation model that makes the probability
of a pixel belonging to a tool dependent on the segmentation of the pre-
vious video frame. The results of this 2D tracker are combined with a
3D tracking algorithm to estimate the 3D pose of the tool [115]. Further
methods limit the relevant region considered for the segmentation of a
frame to the results of previous images, tracking the joint of the surgical
instrument over time [125]. Similar approaches incorporate the results
of previous frames in a related manner, identifying candidate bounding
boxes in each image, but searching for an instrument exclusively in the
boxes related to the position of the tool in the last frame [112]. The
14
proposed segmentation algorithm from Amini Khoiy et al. [113] also
works only within the region of interest (RoI) identified as relevant in
the previous frame and propagated to the current one.

5.2.4. Inference speed
As with single-frame segmentation, processing speed at test time

plays a key role in the applicability of the proposed methods in real-
world scenarios. In total, we identified nine papers that specifically
stated the speed of their processes in FPS, presented together with
various characteristics in Table 7.

5.2.5. Attention mechanisms
In total, six papers used attention-based techniques in their work.

A popular approach is to leverage attention mechanisms within the
network architecture. This can be realized by using squeeze & excita-
tion (SE) techniques built into attention-dense recurrent convolutional
blocks (ADRCB) in the encoder and in the decoder and into a context
fusion block (CFB) between the two parts [121]. The work of Islam
et al. [126] relies on improved SE blocks, executing skip competitive
spatial and channel squeeze & excitation (SC-scSE) blocks several times
in succession in the decoder path. Another approach is the incorpora-
tion of attention-based techniques in multi-frame feature aggregation
(MFFA) blocks placed between the encoder and decoder [118]. In
their presented DMNet, Wang et al. [127] use RNN and self-attention
mechanisms in their local memory module to optimally incorporate
current temporal information as well as to better localize the currently
viewed frame into the overall temporal structure. Another possible
application is presented by Jin et al. [128], where they describe an
attention-guided module placed in their network architecture that is
used multiple times in a pyramid-like structure. In the meta-training
flow of their method, Zhao et al. [122] use attention-inspired tech-
niques in the anchor matching mechanism, identifying noisy pixels for
foreground and background.

6. Instance segmentation methods

In the following, we describe contributions regarding instance-based
segmentation of surgical instruments in endoscopic video images. The
structure is analogous to the one presented in Fig. 4 regarding se-
mantic segmentation methods, with domain adaptation being the only
deviation from this as no instance-based works could be identified for
this category. We first consider approaches focussing on the process-
ing of individual frames, followed by methods incorporating temporal
information.

6.1. Single frame segmentation

Within the following, the developments regarding single-image seg-
mentation using instance-based methods are subdivided concerning the
topics segmentation type, learning strategies, inference speed, and use
of attention mechanisms.



Computers in Biology and Medicine 169 (2024) 107929T. Rueckert et al.
Table 8
Publications that have contributed in the area of single-image instance segmentation of surgical instruments. For each publication, the type of methodology (SV = supervised),
whether or not attention mechanisms (Att.) were used in the methodology, and the datasets used are indicated. The works are grouped according to the used segmentation types
visualized in Fig. 9.

Publication Super-vision Att.
Used datasets

EndoVis Lap.
I2I

Sinus
Surg.

UCL
dVRK

Kvasir
Inst.

Robo-
Tool

Pri-
vate

Ot-
her15 17 18 19

Shimgekar et al. (2021) [130] SV ✓

Baby et al. (2023) [131] SV ✓ ✓ ✓

Cerón et al. (2021) [132] SV ✓ ✓

Cerón et al. (2022) [133] SV ✓ ✓ ✓

Kitaguchi et al. (2022) [134] SV ✓

Kitaguchi et al. (2022) [135] SV ✓

Kurmann et al. (2021) [136] SV ✓

Kletz et al. (2019) [137] SV ✓

Kong et al. (2021) [138] SV ✓ ✓

Roß et al. (2021) [29] SV ✓ ✓

Sun et al. (2022) [139] SV ✓ ✓
6.1.1. Segmentation type
Fig. 9 illustrates the number of publications per segmentation type

and for each existing combination of them. A representation of all
papers based on this partitioning can be found in Table 8.

6.1.2. Learning strategies
All work in this area follows the supervised learning approach.

However, the methodologies of these contributions can be subdivided
into topic-related groups. Kurmann et al. [136] describe a newly devel-
oped architecture based on a shared encoder that forwards the detected
features of each layer to the corresponding layers of two decoders. The
main idea is to first segment the instruments in the image and then
classify the instances thus determined.

In addition, recent research has focused on improving the quality
of existing network architectures by incorporating novel developments,
for example, by adding advanced modules to the backbone and the
feature pyramid network (FPN) of an established architecture [132,
133]. Sun et al. [139] also modify the backbone part of a network by
adding novel modules, although the basic architecture has a different
structure from the ones mentioned above. An improvement of existing
architecture is also presented by Kong et al. [138], which realizes this
by employing an evolved region proposal network part and anchor
optimization. Baby et al. [131] extend existing instance segmentation
architectures with an additional classification module, which they call
a multi-scale mask-attended classifier. Multi-scale mask attention high-
lights instrument features and suppresses features from background
pixels, resulting in improved instrument classification.

In contrast, other research aims to evaluate the performance of
established architectures using newly collected data from specific types
of operations [134,137]. In this context, the ability to generalize to
unknown data from different types of operations is also a key chal-
lenge [135]. An evaluation of various methods on several kinds of

Fig. 9. Number of relevant publications per segmentation type for instance single
image segmentation.
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operations is also presented by Roß et al. [29], who examine the
concepts and quality of participants’ submitted developments on the
provided data of their organized challenge, especially concerning the
criteria of robustness and generalization ability.

6.1.3. Inference speed
A quantitative evaluation of the speed of their approaches at test

time is provided by three works, which are presented in Table 9
together with various characteristics.

6.1.4. Attention mechanisms
The use of attention-based techniques is a central component in the

development of instance-based approaches. One variant is to modify
established architectures by using criss-cross attention blocks to cap-
ture global contextual information [132] or by using convolutional
block attention modules instead of criss-cross attention blocks [133].
In addition, attention-oriented techniques are integrated into exist-
ing architectures through swin-transformer blocks that act as fea-
ture fusion modules localized in the backbone. The operations within
these swin-transformer blocks essentially consist of multi-head win-
dow self-attention and multi-head shift window self-attention opera-
tions [139]. Among the methods submitted by the participating teams
in the EndoVis-2019 challenge, two rely on the use of attention-based
techniques [29].

6.2. Incorporating temporal information

This section presents publications that have provided new findings
concerning instance-based segmentation of surgical instruments in en-
doscopic images and videos by incorporating temporal context. The
structure of this section follows the one described in Section 5.2.

6.2.1. Segmentation type
A breakdown of papers by segmentation type is shown in Fig. 10,

and a listing of publications by these categories is given in Table 10.

6.2.2. Learning strategies
All the works employ supervised learning techniques. One approach

uses established network architectures that are adapted and extended
with respect to the specific use case [140,141]. Other methods rely
on several different established architectures, processing the frames
of a video sequence in parallel and merging the resulting features in
the decoder part of the network [142]. Other work describes an ap-
proach using the principles of instance-based segmentation techniques
to design a novel network architecture that is based on the parallel
prediction of instrument types, their localization, and the determination
of their unique identities [143].



Computers in Biology and Medicine 169 (2024) 107929T. Rueckert et al.

e
n

6

m

Table 9
Instance segmentation methods for single images that have specified processing speeds at inference time. Indicated are the publication, the speed in FPS, the image resolution,
the GPU used as well as the number of graphics cards, and the CPU used and the number of CPUs. The publications are sorted in descending order according to the reported
inference speed.

Publication Inf. speed (FPS) Resolution GPU #GPU CPU #CPU

Cerón et al. (2021) [132] 49 540 × 960 Tesla P100 1 Xeon E5-2698 v4 2.2 GHz 1
Cerón et al. (2022) [133] 24 - 69 540 × 960 Tesla P100 1 Xeon E5-2698 v4 2.2 GHz 1
Kurmann et al. (2021) [136] 15 512 × 640 RTX 2080 Ti 1 – –
6.2.3. Tracking approaches
The types of surgical tool tracking over time can be divided into

several groups. One approach is to use the frame-by-frame results
of successive images by applying tracking techniques to improve the
segmentation of subsequent images based on this information. Lee
et al. [141] present a method in which they propagate the predicted
coordinates of the bounding boxes of surgical instruments from one
frame to the next using the deep simple online and real-time tracker
(deepSORT) algorithm. Another component of the tracking framework
is instrument re-identification, which is needed when instruments leave
the field of view or are very close to each other [141]. González
et al. [140] describe a method based on a instance segmentation ar-
chitecture, which they extend by adding a temporal consistency module
employing a two-step procedure and thus allows tracking the tools over
time.

Other approaches aim at modifying or designing network archi-
tectures to process temporal information directly within the model.
Current research achieves this through spatio-temporal LSTM layers
that model the relationships of video-level features resulting from a
network that processes three-dimensional inputs by providing multiple
input images simultaneously. For the final segmentation prediction,
the outputs of the LSTM layers are further processed by a down-
stream decoder [142]. In addition to this approach, embedding novel
modules into the network architecture is another option for tracking
instruments. Recently, Zhao et al. [143] describe two modules ex-
plicitly designed to track instruments with huge temporal variations.
To achieve this, the authors incorporate the intermediate results of
previous frames as well as those of the currently viewed video image
and process this information both in an identity-matching module that
follows a two-stage structure and in a contrastive query-based learning
approach.

6.2.4. Inference speed
The processing speed at inference time is stated with 23 FPS by

the work of Zhao et al. [143]. The used datasets have a resolution of
540 × 960 and 1024 × 1280, however, the utilized image size is not
xplicitly specified. A Titan Xp is employed as hardware, but there is
o information about the CPU used.

.2.5. Attention mechanisms
The method proposed by Zhao et al. [143] is based on a transformer

odule that further processes the low-level features of the input image

Fig. 10. Number of relevant publications per segmentation type for instance image
segmentation incorporating temporal information.
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obtained from an encoder network. The module consists of a trans-
former encoder–decoder network that converts the input image features
and query embeddings by applying self- and cross-attention mecha-
nisms to instance embeddings that encode global information about
the instruments within the scene. These are then further processed
in the contrastive query learning process as well as in the instance
fusion module that generates the final classes, bounding box, and mask
predictions from these embeddings.

7. Further processing of segmentations

In addition to the segmentation of surgical instruments, approaches
for further processing the results are described. Zhang et al. [144]
propose an application-oriented method with a specific focus on the
endoscope-holding robotic assistant stably holding the endoscope and
modifying the position of the endoscopic camera. The authors describe
a surgical instrument tracking control method based on visual tracking
features in combination with hand-eye coordination, including the
feedback of multiple sensors. Accurate binary segmentation and local-
ization of surgical instrument tips are performed to use this information
for the autonomous control of the endoscopic field of view. A related
approach is published by Gruijthuijsen et al. [145], whose work also
describes the interaction between a human surgeon and an autonomous
robotic endoscope holder. The authors investigate the applicability of
semantically rich instructions of the operator to communicate with the
robot. To this end, they explain a technique for determining the posi-
tions of instrument tips in which the binary segmentation of surgical
tools is of central importance. This information is then processed for
visual servo control of the robotic endoscope holder. Li et al. [146] also
present an autonomous three-dimensional instrument tracking frame-
work for a robotic laparoscope based on a binocular camera. Based
on instrument tip segmentation and stereo matching by a semi-global
matching algorithm the depth in the current field of view is determined.

Another approach that combines deep-learning-based segmentation
of surgical instruments with visual servo control is described by Cheng
et al. [147]. The tips of the instruments are also binarily segmented
using an encoder–decoder-based architecture. Subsequently, a robotic
system consisting of a robotic arm and a magnetically anchored and
actuated endoscope is autonomously moved based on these results.

Zinchenko and Song [148] present another method based on in-
strument tip segmentation. For the segmentation, rectangular bounding
boxes around the instrument tips are first identified by an object
detection network, within which the exact structures of the instrument
tips are then refined by a network with a different architecture. A
difference between the two previously described works arises from the
fact that the visualization in the proposed approach is achieved through
a simulation in a three-dimensional virtual reality environment. The
positioning of the surgical robot is based on the current locations of
the instruments and the direction of the surgeon’s gaze to determine
an optimal new camera image center.

8. Discussion

This chapter discusses the key findings that arise from the literature
reviewed. For this purpose, the numerical results of the review obtained
using the method described in Section 3 are evaluated first, and an
assessment regarding the possible further development of the research
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Table 10
Publications that have contributed in the area of instance segmentation of surgical instruments by incorporating temporal information. For each publication, the type of methodology
(SV = supervised), whether or not attention mechanisms (Att.) were used in the methodology, and the datasets used are indicated. The works are grouped according to the used
segmentation types visualized in Fig. 10.

Publication
Super-
vision Att.

Used datasets

EndoVis Lap.
I2I

Sinus
Surg.

UCL
dVRK

Kvasir
Inst.

Robo-
Tool

Pri-
vate

Ot-
her15 17 18 19

Kanakatte et al. (2020) [142] SV ✓

González et al. (2020) [140] SV ✓ ✓

Lee et al. (2020) [141] SV ✓ ✓

Zhao et al. (2022) [143] SV ✓ ✓ ✓ ✓
field is presented. This is followed by a consideration of currently
publicly available datasets described in more detail in Section 4. For
this purpose, the strengths and weaknesses of the existing datasets are
highlighted, and potentials for future developments in this area are
presented. Subsequently, the identified work is discussed concerning
semantic and instance-based segmentation methods. Again, we describe
existing strengths and weaknesses and identify promising opportunities
for future developments.

8.1. Review methodology

Our search terms focus on the publication titles, leading to a large
number of highly specific contributions to the topic of this review.
However, there might be more general approaches, which show their
results exemplarily also on the public datasets for minimally invasive
surgery instrument segmentation and which are not covered by this
review, e.g., [149–151].

The number of included papers analyzed in Section 3.2 and pre-
sented graphically in Fig. 1 show a clear positive trend regarding the
considered time period. On the one hand, this result shows the high
relevance of the research area, both in terms of current research topics
and practical application areas, and suggests that the research commu-
nity will continue to grow steadily. On the other hand, the observations
of published works lead to the conclusion that the considered research
area still has enormous potential for future development in the coming
years.

8.2. Public datasets

The availability of high-quality and publicly available datasets rep-
resents a central component for the development and validation of
novel methods. Furthermore, such datasets provide the basis for repro-
ducible results, which is also essential for the traceability of scientific
findings and for establishing the plausibility of results. The segmenta-
tion of surgical instruments poses a particular challenge in this context
since this application requires polygonal lines to be drawn around the
relevant regions within an image to achieve pixel-precise segmentation
ground truths masks, requiring a great deal of manual effort, which
involves both time and subsequent financial drawbacks. Based on these
reasons, it can be assumed that the number of freely accessible datasets
is rather limited despite the increasingly active research in this area.
Within the 123 relevant publications identified in Section 3.2, only
nine different freely available datasets providing endoscopic images
or videos are employed, as shown in Fig. 2. It can further be seen
here that the number of times these datasets are used varies greatly.
The high number of publications that have used these datasets and
the fact that the respective datasets of the four MICCAI challenges are
ranked among the six most used datasets suggests the high popularity
of these data. Furthermore, a correlation can be observed between
the timing of dataset publications within the MICCAI challenges and
the successfully submitted number of publications depicted in Fig. 1,
where the timing of the first publicly accessible dataset provided within
the scope of the MICCAI in 2015 conference can be considered as a
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starting point for an increasingly active research community. These
results further demonstrate the enormous impact that the challenges
organized and conducted as part of the annual MICCAI conferences
have on the development of new methods.

However, Fig. 2 also shows that a total of 40 different publications
use self-collected and annotated data to develop and validate their
methods, ranking the group of private datasets second among the most
commonly used datasets. This development is associated with several
disadvantages since results generated in this way are not reproducible,
verification of the results is not possible, and further research based
on the used data is excluded for other research groups. Furthermore,
the results obtained based on data collected in this way cannot be
compared with the results of other approaches which use different data,
which makes it much more difficult to classify a presented method
about the current state of research. To improve these drawbacks, we
would like to encourage future researchers to use publicly accessible
and comparable datasets to develop and validate their approaches or
to disclose the collected and self-labeled data, making them accessible
to other researchers. Having said this, we are aware of legitimate
issues regarding data security of personal medical data and financial
considerations in third-party funded projects involving the medical
device industry.

The datasets shown in Fig. 2 and described in Section 4 also provide
information about current shortcomings and possible future develop-
ments. Regarding the data based on manually created annotations,
it can be seen that in the creation of more recent datasets, there is
a stronger focus on incorporating challenges from real-world opera-
tions to increase the robustness of developed algorithms. Furthermore,
the generalization capability of developed methods to other types of
operations or operations performed in other institutions is becoming
increasingly important. This development results in the EndoVis-2019
dataset, which currently corresponds to the largest freely accessible
annotated dataset used in the publications considered. In the coming
years, this trend will surely increase, and it will be exciting to see how
the structure and design, as well as the focus on the various real-world
challenges, will evolve in the coming years concerning the provision of
new datasets.

In addition to traditional approaches in terms of collecting and
labeling data, currently published datasets are using other approaches
that represent an interesting trend. As described in 4, current work
explores methods to minimize manual annotation effort by generating
synthetic training data, as presented in the Laparoscopic I2I Translation
and RoboTool datasets. Also, the procedure used to generate the UCL
dVRK dataset based on movements of the surgical instruments leads
to a significantly lower manual label effort and provides a variety of
promising opportunities for future developments. Again, there is great
potential for designing new datasets in the coming years, supporting
and encouraging research and development of new methods in this
area.

8.3. Semantic segmentation methods

In the area of semantic segmentation, it can be observed that the
majority of publications concern single-frame segmentation of surgical

instruments in endoscopic images, ignoring the temporal context. One
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reason may be that frame-by-frame segmentation is more in line with
the conventional development process, and most available methods
are designed for this use case. Furthermore, methods that consider
temporal information in processing have to deal with unlabeled images
since usually not every video sequence frame is annotated. Novel
approaches have to deal with these challenges, resulting in increased
complexity of the development process. However, the consideration of
successive results in processing offers great potential for new methods.

Regarding the type of segmentation, most methods are based on
the binary distinction between instrument and background, regardless
of whether approaches for single-frame segmentation or for tracking
surgical instruments over time are considered. This is reasonable at
first glance, as it allows distinguishing the surgical tools from the back-
ground, but upon closer examination introduces some shortcomings.
For applications that further process these segmentations and are made
for real-world scenarios, distinguishing the different types of instru-
ments is often of great relevance. Usually, different types of instruments
have varying fields of application and appear only in certain phases
of an operation. In addition, the behavior of downstream algorithms
that make decisions based on this information is often directly affected
by the type or part of the instrument. Segmentation at the level of
instrument parts, however, allows us to determine the detailed position
of an instrument in an image by its shaft and tip and to use this
information to track tools over time.

With a few exceptions published in the early years of the considered
time period, the vast majority of approaches use deep-learning-based
techniques for their methods. Within this group of approaches, most
methods apply a supervised learning strategy both for frame-by-frame-
based algorithms and concerning tracking methods. Here, the ground
truth target data is created by manual labeling since domain-specific
knowledge about the existing data is often required. This finding is
not particularly surprising since supervised learning is also the most
commonly used method in many other application domains, as it
represents an intuitive and relatively well-studied method for learning a
model compared to other learning strategies. However, the reliance on
annotated datasets presents a variety of challenges. First, the creation of
manual labels is time-consuming and potentially costly, as this process
is typically performed by experts. Second, a reasonably large amount
of annotated data is usually required to obtain accurate results.

Dealing with these challenges is playing an increasingly important
role in current research. Parallels can be identified between currently
published methodological approaches and the structure and nature
of recently published datasets since a trend towards fewer manually
created annotations can be observed. The semi-supervised learning
strategy shows great potential for developing new methods since the
data to be processed often consists of video recordings, of which only
a small fraction is manually annotated and a much larger fraction of
unlabeled video images is available. In addition, promising results have
been achieved regarding weakly supervised learning in recent years,
which can significantly reduce the effort of manual annotation. In
both single-image segmentation methods and, in particular, approaches
that incorporate the temporal component, some elements of completely
unsupervised learning strategies can also be identified in recent work,
opening up new possibilities for further developments to reduce the
annotation effort. In addition, a central challenge of methods based on
annotated data is the transfer to other domains, showing, for example,
different types of operations or coming from other institutions. Current
research concerning domain adaptation is yielding very promising
results, often based on the incorporation of synthetic data, which also
reduces the annotation effort. We think this research areas have great
potential for further development and will show an increasing impact
in the coming years.

Real-time capable processing at inference time is essential for meth-
ods to be applicable in real-world scenarios and medical devices.
However, awareness of this issue is low in most of the approaches. Only
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a small fraction of the frame-by-frame segmentation methods focus on
this issue in particular, indicating that generating high-quality results
is more important than the fast processing of inputs. In contrast, fast
inference time plays a much more important role for methods that
consider temporal information. Since segmentation methods can only
be used in real-world surgical procedures if they are fast and show high-
quality results, it will become more and more important to consider
both aspects in the future. Incorporating the temporal component can
be a viable approach, as has already been shown in some recent work.

Our review shows that attention-based approaches are equally im-
portant in publications on single-image segmentation and in papers
on segmentation involving temporal information. Embedding attention
mechanisms into network architecture allows new possibilities that
are difficult to realize with solely convolutional-based architectures. In
some considered works in this review, this leads to an improvement of
the results of the previous state-of-the-art. The publication of articles
using attention-oriented approaches has followed a clear positive trend
in recent years, and it can be expected that this trend will continue in
the future, making the utilization of attention layers within the network
structure an active research topic.

8.4. Instance segmentation methods

In addition to semantic segmentation methods, the instance-based
segmentation techniques described in Section 6 represent another im-
portant group of approaches providing several additional benefits.
Instance segmentation allows each surgical tool in the image to be
assigned a unique identifier that remains unchanged over time, which
is not easily achieved with semantic training labels. This feature is
particularly useful in surgeries where instruments of the same type
occur multiple times in an image to distinguish between these instru-
ments and to track the individual tools independently over time. In
our review, we determined that the number of instance-based papers is
nevertheless significantly lower than the number of publications relying
on semantic segmentation methods. Since the above advantages have a
significant impact on the practical applicability of the methods and due
to the promising results of existing methods, the field of instance-based
approaches represents a research area with high potential in the future.

Differences between instance-based and semantic-based methods
can be seen concerning the segmentation types, since in contrast to the
semantic variants only one approach for instance segmentation is based
on binary segmentation only, and most of the works are specialized to
distinguish the different types of instruments. This finding is hardly
surprising since the conceptual design of established instance-based
network architectures is well suited for this task and highlights one of
the strengths of these methods.

Regarding the learning strategies used, the considered instance
segmentation methods differ significantly from the semantic ones dis-
cussed before. In single-image processing and in methods involving
the temporal component, exclusively supervised learning approaches
are used. Concerning the previously mentioned disadvantages of this
learning strategy, the advanced and more efficient processing of an-
notated data represents a conceivable future research focus. Another
interesting finding is that no synthetically generated or computer-
simulated training data is employed in the publications associated with
instance segmentation. Analogous to semantic segmentation, this opens
up new possibilities for instance segmentation by including data of this
type, thus providing an incentive for further research in this area.

The situation regarding the consideration of processing speed in
the development of novel methods is similar to that of semantic seg-
mentation. It would be desirable if awareness of this aspect would
also increase for instance-based approaches besides the primary goal
to improve the segmentation quality.

The popularity of attention-based techniques, previously discussed
for semantic segmentation methods, continues here. Some instance-
based publications take advantage of diverse attention modules to bet-

ter incorporate image features, both in frame-by-frame approaches and
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in sequence processing based on temporal information. It is expected
that also in the field of instance segmentation, the use of attention-
based techniques will play a central role in the following years, both as
components within conventional convolutional network architectures
as well as through the design of completely attention-based networks
that do not use convolutional layers at all.

8.5. Further processing of segmentations

In Section 7, we describe papers that further process the segmen-
tation results for controlling a robotic system. These already show the
potential existing in high-quality and fast to compute segmentations
for practical use in applications based on them. We do not claim to be
exhaustive concerning articles dealing with this topic, as this requires a
more detailed search that may not be covered by the search terms used
in this review. However, we want to draw attention to this issue by
showing that there are promising ways to further process segmentation
results.

8.6. Summary of challenges and potential future work

Our described findings confirm that methods based on the segmen-
tation of surgical tools have a high value for RAMIS, as evidenced
by the rapidly growing number of publications in this field. However,
our results also show that many developments rely on self-collected
and annotated data, which makes reproducibility of results and fur-
ther research based on these data impossible. Moreover, few publicly
accessible datasets exist that contain real-world challenges. Providing
synthetic or simulated datasets represents a promising approach for the
future to reduce manual annotation efforts.

Most reviewed articles ignore the temporal context, although its
inclusion provides the potential for higher-quality results and faster
processing speed. Furthermore, most semantic approaches perform only
binary segmentation, which often represents an insufficient level of
accuracy for RAMIS. Most publications are based on supervised deep-
learning techniques, which means heavy reliance on manually labeled
data. Although real-time processing is an essential requirement for
using a method in RAMIS, the focus is often on producing high-quality
results, and fast processing of inputs is of secondary importance. A
comparison of segmentation types shows that current research often
relies on semantic methods. Nevertheless, instance-based approaches
have advantages, such as unique identification and tracking of surgical
instruments over time, even if multiple tools of the same type are
present in an image.

9. Conclusion

In this paper, we provided an overview of the current state of the
art concerning semantic and instance-based segmentation of surgical
instruments in endoscopic images and videos. To do this, we identified
datasets commonly used for method development and validation and
quantified their use in the literature. We further conducted a systematic
search, divided the results concerning semantic and instance-based
segmentation methods, and divided the papers within each segmen-
tation type into single-image segmentation and approaches that use
temporal information. In addition, we presented approaches for further
processing the semantic segmentation results. We provide a discussion
regarding the findings of the reviewed literature, identifying existing
shortcomings and highlighting the potential for future developments.

Assisting surgeons in MIS through robotic assistance represents an
active research area of increasing importance. In this context, purely
vision-based methods for localizing surgical instruments in endoscopic
images and videos provide the foundation for many procedures with
instrument segmentation enabling accurate prediction and, due to tech-
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nical and methodological advances, can be performed in real time.
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