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Abstract—As more energy stems from renewable sources and
the electricity market becomes more volatile, new solutions to
ensure the security of supply are tested. Microgrids offer a
possibility to prevent construction downtime. In order to use the
energy sources and storage facilities of the microgrid effectively,
load forecasting algorithms are essential. Thus, in this study a
short term load forecasting model for a construction company is
designed, that will be used for managing a microgrid as well as
the general load consumption. This paper proposes the use of the
XGBoost algorithm for the 36-hour forecast including predictors
based on past measurements as well as information extracted
from the timestamp. Moreover, it is shown that including load
profiles attained by conventional methods has the potential to
improve the accuracy of the model.

I. INTRODUCTION

Due to the highly fluctuating behavior of the energy market
driven by demand and offer, load forecasting has been a
research topic for years [1]. New developments in recent years
like the surge of renewable energy sources lead to new chal-
lenges in the field. In order to integrate the volatile new energy
sources, the power grid is monitored more closely [2]. The
availability of sensor data enables the application of methods,
that can help to ensure a high quality of supply. Moreover,
renewable energy sources and smart storage solutions can help
secure the supply during power outages. Local solutions or so-
called microgrids are a possibility for the production industry
to adapt in order to prevent financial loss due to production
downtime. To achieve this, planning and managing as well as
more accurate short and long term load forecasting algorithms
are essential.
In this study the goals of a mid-sized construction company are
considered. The company is designing a microgrid including
energy sources like photovoltaic systems, wind energy plants
and block heat and power systems as well as energy storage
facilities. In case of a power outage the connection to the
main grid will be separated and the microgrid will be used to
keep the production lines going as smartly as possible until a
reconnection is possible again. In case the stored energy is not
sufficient to keep all machines running during the entire power
outage, the machines should be shut down in a controlled
manner to prevent damage. To accurately manage the load
while the microgrid is in use, a load forecasting algorithm is
needed. Moreover, the company also plans to use the load

forecasting to smartly manage the load consumption when
taking energy from the main grid as high consumption should
be avoided in times of high energy prices.
Thus, in this study a data driven load forecasting algorithm
will be designed. A machine learning model using XGBoost
trees will be tested and the results will be compared with a
conventional method using load profiles. A focus of this paper
is to show how the two methods can be merged and how load
profiles can help improve the accuracy of machine learning
models for electricity load forecasting.
The paper is structured as follows. In section II some related
literature is presented. Afterwards in section III the data used
in this study is presented and the objectives are specified.
Section IV contains a review of the utilized algorithm and
is followed by the presentation of the results in section V and
the conclusion.

II. RELATED WORK

Gradient Boost trees are often used for short term load
forecasting in literature for different forecast horizons as well
as settings. Wang et al. [3] use gradient boost decision trees
to predict the power output of photovoltaic systems using
historical data as well as weather data. In [4] the authors
use XGBoost successfully to forecast a single time lag using
Australian energy market load data. In [5] Porteiro et al.
evaluate seven regression models for a 24-hour load forecast
for an industrial park and show that the Gradient Boost Trees
are among the three best performing algorithms. The authors
used date and historic load features as input data. In [6]
the XGBoost outperforms four other methods for a 168-hour
forecast. In [2] Lang compares XGBoost to one dimensional
convolutional neural network models for a 36-hour forecast
of household loads. The features used in this study resemble
the ones used by Lang. However, contrary to [2] this study
examines the effect on including load profiles as predictors
for the XGBoost model.

III. DATA SET AND OBJECTIVE

The data set used in this study contains two years and six
months of data from January 2019 to June 2021 and stems
from a construction company based in Germany. Measure-
ments are available in 15 minute intervals. The load data
is derived from balance data between the factory and the



public grid as well as an aggregation of all energy supplying
sources within the factory. It therefore represents the total load
consumption of the company. The data was cleaned by domain
experts and data imputation on the basis of similar days was
performed. The data set is split into training and test data.
While the first two years are used to fit the model and to
perform hyperparameter tuning using 3-fold cross-validation,
the last six months are used to assess the models.
The goal is to design a short-term-forecasting model that
produces a 36-hour forecast. A focus should lie on the first
hour, as the short term load changes are the most essential for
the microgrid management. However, the 36-hour forecast is
important for the general load management of the company.
The objective of this study is to show how the use of load
profiles can improve an electricity load forecast model utilizing
the XGBoost algorithm.

IV. METHODS

In this section the methods used in this study are presented
closer. Subsection A presents the conventional method using
load profiles, while subsections B and C focus on the XGBoost
tree as well as the combined model. All models will be
evaluated by calculating the Mean Absolute Percentage Error
(MAPE) for all 15 minute intervals of the 36-hour forecast

A. Load Profiles

A well established method for planning and managing
energy consumption is to analyze load curves [7]. To estimate
the future load a comparable measurements from a load curve
formed by past values can be chosen. This approach utilizes
the seasonality and the distinct patterns that are present in
the data. A preliminary exploration of the data set at hand
reveals strong daily and weekly patterns. They are typical for
industrial load data, due to the orderly workflow in companies.
As the electricity demand correlates strongly with the working
hours, the daily load progression mirrors the end and start of
the work day as well as lunch and coffee breaks. For the same
reason the load progression of weekdays differ significantly
from weekends and holidays. Therefore it is reasonable to
suggest, that the future load is similar to a load measurement
recorded on the same weekday at the same time of the day.
To make the estimation more robust to random behavior the
average of all data points recorded at the same time during
the week is taken. The results of this procedure can be seen
in figure 1 and will be referred to as load profiles throughout
this paper.

B. XGBoost Trees

Popular machine learning-based methods for load forecast-
ing are tree-based models. The XGBoost algorithm used in
this study is an implementation of a gradient boost regression
model, which uses an ensemble of regression trees for predic-
tion.
Regression trees are binary decision trees predicting a numeric
value by splitting the predictor space or feature space into
regions [8]. Further information on feature engineering and

Figure 1. Load profiles attained by averaging data points from identical times
of day for different weekdays.

Figure 2. Schematic of a decision tree. Y1...3 represent the target values. The
decisions are represented by the split points t1 and t2. X1 and X2 are the
predictors that contain the information relevant for the prediction.

which features are used in this study, will follow in subsection
C. Figure 2 shows the basic structure of a decision tree. The
data points are divided by certain split decisions until a leaf
node is reached. The regression result is the average of all
data points that end up in a specific leaf node. When fitting a
tree to a training data set the split decisions are optimized to
minimize the prediction error [8].
Ensemble learners are based on the notion, that the model
accuracy can be improved by aggregating several simpler
models [9]. In other words, many weak predictors form a
stronger one. One way of building an ensemble of regression
trees is called boosting. Contrary to other aggregation models,
like for example bagging, boosting is a sequential algorithm,
where each fitted weak predictor depends on the results of
the previous ones. This means in each new step the model
puts the most effort into reducing the biggest errors made
by the previous model [8]. The most often used boosting
algorithm for regression tasks is gradient boosting. Each new
tree is built using the prediction errors or pseudo-residuals
of the previous ensemble of trees. Next the tree is scaled by
multiplying its results with a parameter called learning rate or



shrinkage. Adding the scaled tree to the ensemble represents a
small step along the negative gradient of the loss function [8].
After updating the model the training data is evaluated, the
new pseudo-residuals are computed and the next tree is built.
XGBoost (Extreme Gradient Boosting) is a framework that
effectively implements gradient boost regression by adding
features like awareness of sparse data and parallelization
[10]. It is known for the speed of the computations. Further
advantages of gradient boost algorithms are, that the single
decision trees can be visualized and have a comprehensible
structure. Moreover, they can work with numeric as well as
categorical predictors, that do not need do be standardized in
any way [8].
When using XGBoost several hyperparameters have to be set.
For the analysis in this study a set of parameters that was
successful for a similar application [2] is used. To justify this
approach a GridSearch is performed for a few key parameters,
namely the number of trees, the maximum tree depth of each
regression tree, the learning rate and the subsampling rate, that
determines the number of training data points that are used to
build each tree. The examined settings are the following:

• number of trees: 100, 200, 400
• maximum tree depth: 3, 9, 12
• learning rate: 0.01, 0.1, 0.3
• subsampling rate: 0.4, 0.5, 0.7, 0.9

All other parameters are left at their default as described in
the documentation of the XGBoost framework [11].

C. Feature Engineering

In order to build meaningful tree structures and to prevent
overfitting there should be little redundant information in the
training data [2]. Instead of using the original time series
data as the input, the goal is to extract characteristic and
discriminative properties also called features from the data.
Therefore, a key aspect of successfully using the XGBoost
algorithm for electricity load forecasting, is to convert the
input time series to a feature vector that summarizes the most
important information for the prediction and is the input for
the decision trees.
There are several different groups of features that can be
used. To include information about the load progression some
data from not too distant time stamps are used as features.
As in this study the desired forecast horizon is 36 hours, the
load from 48 hours ago as well as from 1 week, 2 weeks
and 3 weeks ago can be used for the entire forecast. These
particular features were chosen as they represent load data
from similar times in the day or week. Furthermore, the
last recorded load data point is added to the feature vector,
as it holds important information about the most recent
changes. Thus, for the first forecast point the load from 15
minutes prior is included, while for the last forecast point
the load from 36 hours back is used. To gain further insight
into the historic load consumption, features of the last fully
recorded day are added. There are many possible options for
features, that could be utilized as for example presented in

the framework tsfresh [12]. Corresponding to [2] in this study
statistical features such as the mean, maximum and minimum
load as well as the 0.25 an 0.75-percentiles are included.
For time series data with strong seasonality, date features
that are extracted from the time stamp of the data points
can be useful. In this study the month, the day of the week
and the hour of the day are added to the feature selection.
Furthermore binary features that state whether the day is a
holiday and whether it is a weekday or not are included. Many
studies also include weather features such as temperature or
sunshine duration. The idea is to capture information about
seasonal changes as well as more volatile day to day changes,
as the load consumption is postulated to correlate with the
weather. This is feasible as generally more electricity is
needed for lighting and heating when it is dark and cold.
However, this is not necessarily the case in the industrial
setting considered in this paper, as the lighting in production
halls is switched on regardless of the weather and the main
electricity consumption stems from the usage of machines
for manufacturing. Thus, weather features are not included in
this study.
One goal of this study is to test the idea of merging the
conventional approach presented in subsection A, with the
machine learning approach outlined in subsection B. To
achieve this the load profiles are used as input features for
the regression trees. In order to identify the effect of the load
profile feature, models with and without it are evaluated.

V. RESULTS AND DISCUSSION

When using the load profiles to predict the load, the rough
progression of the daily load changes can be approximated.
Moreover, as pictured in figure 3 the major changes between
the load consumption during holidays, such as the beginning
of January or April, and normal workdays are identified
and forecasted correctly. However, the more subtle day-to-
day changes are not followed by the model. This leads to
regular prediction errors of about 1000 kW. The maximum
prediction error amounts to 3500 kW. The MAPE of the model
is calculated to 17%. This result is valid for the entire 36-hour
forecast, because the available information does not change
with longer forecast horizons.
The hyperparameter search for the XGBoost model showed

that a learning rate of 0.01 is not suitable as it increases the
forecast error drastically. However, all other combinations of
parameters only have a minor effect on the results. Thus, the
following set of parameters was maintained throughout the
examinations:

• number of trees: 100
• maximum tree depth: 9
• learning rate: 0.1
• subsampling rate: 0.5

The prediction results of the XGBoost model follow the true
load progression more closely, justifying the application of
the machine learning model. The first model includes all
features except for the load profile feature. Figure 4 shows the



Figure 3. Forecast results using the load profiles for prediction. The true
load progression as well as the predicted value and the forecast error for the
15-minute forecast are pictured.

Figure 4. Forecast results using XGBoost without using the load profile as
a feature. The progressions for the 15-minute forecast are pictured.

progression as well as the prediction errors for the 15-minute
forecast. As the algorithm takes into account the most recent
load measurement, it more accurately models fluctuations. The
prediction error ranges between 700 and -700 kW with two
outliers in the end of January at 1600 kW and the end of
February at 2500 kW. The MAPE for the 15-minute forecast
is calculated to 3.5 %. To assess the model for the whole
36-hour forecast, the MAPE is calculated for each 15-minute
interval and pictured in figure 5. For the first six hours of the
forecast horizon a rapid increase of the MAPE is observed. For
the seven hour to 35-hour predictions the MAPE is constant
at about 12 % with a minor dip at the 24 hour-forecast. Also
illustrated in figure 5 is the result of a model that uses the
load profile feature instead of the most recent measurement.
Its MAPE calculates to 11 %. It can be observed that this
second model outperforms the first one for forecast horizons
longer than 5 hours. However, for more short-term predictions
up to five hours the first model succeeds.
To combine the advantages of the first two models a third

Figure 5. MAPE for the 36-hour forecast horizon for the XGBoost model.
The results show the effect of switching out the feature including the most
recent measurement for the load profile feature.

model containing the most recent measurement as well as the
load profile as features is created. Figure 6 shows that the
general progression of the MAPE over the forecast horizon
is similar to the first model. However, it does not exceed a
MAPE of 11 % which is the value of the second model. It
can further be observed that the slope of the MAPE up to
the 5-hour forecast horizon is steeper than in the first model.
Hence, to predict the load about 3 to 5 hours in the future the
combined model performs slightly worse.
The strong increase of the MAPE in models one and three
is explainable as for a shorter forecast horizon the model has
information about very recent load changes. When predicting
a load further in the future, the changes that might happen
in the meantime cannot be incorporated as they are unknown,
which leads to bigger prediction errors. The small dip in figure
5 confirms the approach of using similar times of the day as
features, as it shows that using the load data from exactly 24
hours prior, which is a measurement from the exact same time
of day, reduces the prediction error. In general the results show
that using the last measured load data points helps improve
the predictions for the first hours drastically. Moreover, it is
shown that for the 36-hour forecast using the load profile
as a feature for the machine learning algorithm improves
the accuracy especially for the day ahead. This demonstrates
that merging conventional and machine learning models is a
promising approach.

VI. CONCLUSION

This study presented the development of a model for a 36-
hour load forecast in an industrial setting. The data set is
provided by a construction company, with the goal to use
the load forecasting algorithm for managing the company
microgrid as well as the general load consumption. The results
show that the XGBoost algorithm is suitable for the task
as it outperforms conventional methods. It was demonstrated
that the model can be improved by proper feature selection.



Figure 6. MAPE for the 36-hour forecast for the XGBoost model. The results
for the combined model using the most recent measurement as well as the
load profile as features is pictured.

Especially the effects of using the load profile built for the
conventional method as a feature were highlighted. For the
day-ahead forecast the combined model significantly improved
the results. On the one hand this confirms the potential of
combining conventional and machine learning methods. On
the other hand it shows that for electricity load forecasting
the load profiles contain significant information that can help
enhance the forecast. In future work the effect of using the
load profile with other machine learning algorithms could be
tested.
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