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Review of elasto-static models for
three-dimensional analysis of thick-walled
anisotropic tubes
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Abstract
Most shell or beam models of anisotropic tubes under bending have no validity for thick-walled structures. As a result, the
need to develop three-dimensional formulations which allow a change in the stress, strain and displacement distributions
across the radial component arises. Basic formulations on three-dimensional anisotropic elasticity were made either stress-
or displacement-based by Lekhnitskii or Stroh on plates. Lekhnitskii also was the first to expand these analytical for-
mulations to tubes under various loading conditions. This paper presents a review of the stress and strain analysis of tube
models using three-dimensional anisotropic elasticity. The focus lies on layered structures, like fiber-reinforced plastics,
under various bending loads, although the basic formulations and models regarding axisymmetric loads are briefly dis-
cussed. One section is also dedicated to the determination of an equivalent bending stiffness of tubes.
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Introduction

This paper provides a review of analytical and semi-analytical
models and enhancements for the three-dimensional analysis
of stresses, strains and displacements of cylindrical tubes with
linear-elastic, anisotropic material behavior. Since the main
focus is on composite materials and their multi-layer design,
special cases of material symmetry like monotropy, ortho-
tropy and transverse-isotropy are considered. In general, all
formulations are basicly developed for a single-layered tube
and the layering is achieved by a multiple use of the model
description and fulfillment of continuity conditions at the
interphases. Even though the material description is three-
dimensional, the stress and strain distributions are usually
functions of only one or two coordinate directions to obtain a
solvable system of governing equations. However, there are
models with approximate solutions for the remaining di-
mensions using a series expansion or numeric methods.

The tube is globally described by a cylindrical co-
ordinate system, where the principal directions are
called radial r, circumferential θ and axial z, as well as a
cartesian coordinate system x, y and z. As illustrated in
Figure 1, both have their origin in the center of the
circular cross section. Therefore, x- and y-positions
could be expressed as x = r sin φ and y = r cos φ. In
some cases a third global coordinate system is

established, with the only difference being that the
radial component, later refered to as ~r, originates in the
center of the laminate and not the tube cross-section.
The associated displacements are indicated as ux, uy, uz
or rather u, v, w for cartesian coordinates and as ur, uθ, uz
for cylindrical coordinates, respectively. Stresses and
strains are described by the related 3×3 tensor, which
could be transferred to a 6×1 vector in notation by
Voigt,1 for the cylindrical coordinate system.

It should be noted here that the global cartesian tube
coordinate system in Figure 1 is taken from the basic
definition of Lekhnitskii,2 who defines the basis for further
bending models. For the material description, however, the
local and global coordinate systems must be used to ensure a
consistent transformation of the ply to laminate properties.
For the transformation from the global cartesian laminate
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coordinate system to the cylindrical tube coordinate system
according to Lekhnitskii,2 reference should be made to Siegl
and Ehrlich,3 who ensure the use of the correct transformed
material parameters for the use of tube bending models via
an introduced permutation matrix. Lekhnitskii2 relates his
cartesian coordinate system to generally anisotropic ma-
terials and does not take into account the fiber orientation,
which according to his definition would lie in the radial
direction in the tube cross-section and thus has no technical
application.3 If consistent coordinate systems for the ma-
terial description as well as of the global tube based on the
fiber orientation is desired, reference should be made to
Almeida et al.,4 nevertheless the relations of Lekhnitskii
(1963) are necessary to use the bending models, which is
why they are used in this paper.

The considered load types for the static analysis are
differentiated into axisymmetric and antisymmetric loads.
The former includes axial tension and compression, internal
and external pressure, torsion as well as in-plane shearing,
the latter mainly consists of bending, transverse shearing
and local transverse load. This review is focusing on tubes
subjected to different bending loads and boundary condi-
tions, but will also give an overview of general formulations
regarding three-dimensional anisotropic elasticity and tubes
under axisymmetric loads. Even though, some models in

this review are capable of enabling dynamic analyses due to
the physical description in form of an eigenvalue problem, it
is focused on models under static and mechanical loads.
Three-dimensional anisotropic elasticity also implies that
the tubes are thick-walled and shell or beam formulations
are not considered. A distinction between thin-walled and
thick-walled tubes is made by the ratio of radius to thick-
ness, which is strongly dependend on the used material and
load case.

Constitutive law

Regardless of the respective model or approach, the
continuum is described by three fundamental equations:
constitutive law, equilibrium equations and kinematic re-
lationships. In case of a cylindrical tube, the general an-
isotropic material law in global form becomes8>>>>>><>>>>>>:

εr
εθ
εz
γθz
γrz
γrθ

9>>>>>>=>>>>>>;
¼

26666664
S11 S12 S13 S14 S15 S16
S21 S22 S23 S24 S25 S26
S31 S32 S33 S34 S35 S36
S41 S42 S43 S44 S45 S46
S51 S52 S53 S54 S55 S56
S61 S62 S63 S64 S65 S66

37777775

8>>>>>><>>>>>>:

σr

σθ

σz

τθz
τrz
τrθ

9>>>>>>=>>>>>>;
(1)

Figure 1. General cartesian and cylindrical coordinate systems of the tube used according to the definition of Lekhnitskii2 and the local
and global cartesian coordinate system of the material in the wound fiber-reinforced tube with specification of the angle definition for
the transformation of the material properties from the ply to laminate.
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or8>>>>>><>>>>>>:

σr
σθ
σz
τθz
τrz
τrθ

9>>>>>>=>>>>>>;
¼

26666664
C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

37777775

8>>>>>><>>>>>>:

εr
εθ
εz
γθz
γrz
γrθ

9>>>>>>=>>>>>>;
(2)

in notation of the compliances [Sij] or stiffnesses ½Cij� ¼
½Sij��1 with i, j = 1-6. Due to the presence of a symmetry
plane and the reflection of all characteristic values on it, the
stiffness and compliance matrices can be simplified to a
monotropic or monoclinic material behavior. The compli-
ance matrix, as an example, is then expressed by

�
Sij, mono

� ¼
26666664
S11 S12 S13 S14 0 0
S21 S22 S23 S24 0 0
S31 S32 S33 S34 0 0
S41 S42 S43 S44 0 0
0 0 0 0 S55 S56
0 0 0 0 S65 S66

37777775: (3)

If a second or even third symmetry plane exists or-
thogonal to the first one, a further simplification to ortho-
tropic material behavior is possible and

�
Sij, ortho

� ¼
26666664
S11 S12 S13 0 0 0
S21 S22 S23 0 0 0
S31 S32 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66

37777775: (4)

A material is called transversely isotropic or in some
literature cylindrically anisotropic, if there are infinite
symmetry planes around one coordinate direction. The
matrix occupancy does not change in comparison to or-
thotropy, but the individual entries can be expressed by less
characteristic values. The elastic state of the material can be
expressed by 13 independent mechanical properties in case
of monotropy, 9 in case of orthotropy and 5 in case of
transversely isotropy. Note that there are many different
notations for constitutive law and, in particular, the com-
pliances in the literature.

Equilibrium Equations

The equilibrium equations are derived using the cartesian
coordinate system for cylindrical stresses under the as-
sumption of small angles on a segment of the hollow
cylinder. On the basis of these assumptions, the curved
surfaces of the segment can be approximated by plane

surfaces and the cross section becomes trapezoidal. For all
stresses, a Taylor series expansion is applied according to
σr(r) = σr and σr(r + dr) = σr + (∂σr/∂r) dr. All terms
multiplied by the finite dimensions dr, dθ or dz can be
neglected because of the low values. By also neglecting
inner forces of the continuum, the equilibrium equations
result to

∂σr
∂r

þ 1

r

∂τrθ
∂θ

þ ∂τrz
∂z

þ σr � σθ
r

¼ 0,

∂τθr
∂r

þ 1

r

∂σθ
∂θ

þ ∂τθz
∂z

þ 2τθr
r

¼ 0,

∂τzr
∂r

þ 1

r

∂τzθ
∂θ

þ ∂σz

∂z
þ τzr

r
¼ 0:

(5)

The indices ij (i, j = r, θ, z) correspond to the notation of
the section plane i and the direction of action j. Equation (5)
are describing the general form of equilibrium equations. In
dependence of the specific model the stresses are inde-
pendent of one or two coordinates, thus eliminating the
derivatives in the respective directions.

Kinematic relationships

The strains can be distinguished in normal strains {εi} and
shear strains {γij} for i, j = r, θ, z. Mathematically, they are
described by changes in the length and angular ratios of the
continuum, which can be expressed in terms of displace-
ments. Due to the contiguous ring cross-section of the tube,
a normal strain in tangential direction also produces an
additional displacement in the radial direction. The kine-
matic relationships, in form of the strain-displacement re-
lations, follow from vectorial considerations on a segment
of the hollow cylinder with small-angle approximations, a
Taylor series expansion according to the predescribed use
for the stresses and the assumption that only a minimal
change over the radius occurs. In general terms, they are

εr ¼ ∂ur
∂r

, γθz ¼
∂uθ
∂z

þ 1

r

∂uz
∂θ

,

εθ ¼ 1

r

∂uθ
∂θ

þ ur
r
, γrz ¼

∂uz
∂r

þ ∂ur
∂z

,

εz ¼ ∂uz
∂z

, γrθ ¼
1

r

∂ur
∂θ

þ ∂uθ
∂r

� uθ
r
:

(6)

In equation (6) the derivatives for the respective directions
disappear, if the strains and displacements are considered
invariabel along these directions.

Further damage and
failure-considering investigations

In addition to the elasto-static models for three-dimensional
analysis of thick-walled anisotropic tubes summarised here
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in detail, there are also numerous analytical, numerical and
experimental studies that deal with damage, failure and
buckling of filament wound composite tubes for further load
cases besides bending, as well as considering the aero-
elasticity and buckling of plates that could be used for an
application on fiber-reinforced tubes.

Further experimental, numerical and analytical studies on
composite tubes under different loading scenarios. If, at higher
loads, the material behaviour can no longer be adequately
described with the linear-elastic approaches, reference
should be made to the investigations on the damage and
failure of filament wound tubes under different loading
scenarios. Experimental and numerical approaches under
external pressure loads are described in Almeida et al.5 For
radial compression of the composite tubes, damage
modelling can be found in Almeida et al.6 and the in-
fluence of the winding pattern of the composite tubes is
described in Lisboa et al.7 Based on genetic algorithm
accounting progressive damage, Almeida et al.8 developed
an optimization of the stacking sequence of composite
tubes under internal pressure. Regarding the internal
pressure loading of the composite tubes, in Azizian and
Almeida9 surrogate models are used for stochastic,
probabilistic and relaibility analyses have using artificial
neural network metamodels. Further, optimisations and
effects on the manufacturing of variable-angle composite
cylinders can be obtained from experiments using digital
image correlation (DIC) to capture the strains on com-
posite tubes under axial compression in Almeida et al.10

Here, the measurement of imperfections is also used to
perform non-linear numerical model along with a pro-
gressive damage analysis to describe the occurring
buckling mechanisms more precisely. Further findings and
fundamentals on buckling of composite tubes under axial
compression are presented in Almeida et al.4 regarding
buckling and post-buckling as linear, nonlinear, damage
and experimental analysis and in Almeida et al.11 the basic
design methodology for optimising the tube with variable-
axial fiber layout can be found. Furthermore, in Wang
et al.12 a reliability-based buckling optimisation with an
accelerated kriging metamodel can be found for in the
winding process using variable angles. Based on this,
further developments of the Kriging-based metamodel in
combination with particle swarm optimisation can be
found in Wang et al.13 Further insights into the com-
pression of composite tubes can be found in Stedile Filho
et al.,14 who also investigate the torsion load of the
structure, which is used as a drive shaft. Furthermore, the
influences of mosaic pattern on hygrothermally-aged
composite tubes under axial compression have been in-
vestigated in Azevedo et al.15

Further investigations on aeroelasticity and buckling of composite
plates. Aeroelasticity considers the phenomena resulting
from the interaction of aerodynamic (especially transient),
inertial and elastic forces that occur during the relative
motion of a fluid (air) and a flexible body (aircraft).16 Based
on the approaches to aeroelasticity and buckling of com-
posite plates, certain material properties can be derived that
can be used for further investigations on fiber-reinforced
tubes that could be used in the aerospace industry. For this
purpose, the recent studies by Sharma et al.17 on stochastic
frequency analysis of composite plates with curvilinear fiber
and Sharma et al.18 on stochastic aeroelastic analysis of
laminated composite plates with variable fiber spacing can
be considered. The aeroelastic analysis of plates made of
lightweight materials with material uncertainty is described
in Swain et al.19 Methods for quantifying the uncertainty in
the free vibration and aeroelastic response of an angularly
adjustable laminates are given in Sharma et al.20 The
aeroelastic control of delaminated angle tow laminated
composite plates using piezoelectric patches is given in
Sharma et al.21 The use of piezoelectric patches is also
described in the study by Sharma et al.22 to investigate active
flutter suppression of damaged variable stiffness laminated
rectangular plate. Further investigations in the field of free
vibration can be found in Sharma et al.,23 who studied the
static and free vibration analysis of smart variable stiffness
composite plates with delaminations. On the other hand, in
Sharma et al.20 a study is made for uncertainty quantification
in free vibration and aeroelastic response of variable angle
tow laminated composite plates. Uncertainty quantification
under thermal loading in buckling strength of variable
stiffness laminated composite plates can be found in Sharma
et al.24 For functionally graded sandwich plates using
layerwise theory, a vibration and certainty analysis has been
carried out in Sharma et al.25

Three-Dimensional anisotropic elasticity

Three-dimensionality implies that the examined continua
are thick-walled and thus their properties change in
thickness direction. Theories which reduce the material
properties of a laminate to its median plane are therefore
excluded. Models regarding three-dimensional anisotropic
elasticity can be distinguished into formulations using
complex variables as well as formulations using the state-
space approach. Although some of these theories provide
exact solutions in all three coordinate directions for simple
continua, most models need to limit the stresses, strains and
displacements to functions of only one or two coordinates to
obtain a solveable system of governing equations. There-
fore, some approaches use approximate solutions along one,
two or even all three directions.
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General formulation using complex variables

There are two fundamental formulations of general aniso-
tropic elasticity, the stress- or compliance-based according
to Lekhnitskii2 and the displacement- or stiffness-based
according to Stroh,26 Stroh27 and Eshelby et al.28 Both
methods share similar approaches to describe the elastic
state of the homogenous continuum, although different state
variables are used. Constitutive law, equilibrium equations
and strain-displacement relations are employed as funda-
mental equations to generate a system of governing
equations. Stresses, strains and displacements are existent in
three dimensions, but do not vary along one coordinate. For
most of the tube models, there is no variation along the tube
axis z.

General formulation by Lekhnitskii. Lekhnitskii2 is ex-
pressing the strains and displacements as functions of the
stresses, which leads to the necessity of performing
compatibility conditions for the three displacements of
the motion field. By applying the stress functions of Airy
and Prandtl, the stresses are reduced to two unknowns. A
system of partial differential equations is formed for the
unknown stress functions using the aforementioned
fundamental equations in terms of reduced compliances
as well as the geometrical parameters and their deriva-
tions. The solution is then obtained in form of a sixth
order polynomial, the so-called sextic equation, by in-
serting predefined initial functions for the stress functions
and a subsequent integration. Henceforth, it is possible to
describe stresses, strains and displacements as functions
of the unknown integration constants Ci (i = 1-6) in the
polynominal equation, the compliances, reduced com-
pliances and coordinate positions. For the respective load
condition and continuum, simplifications of the funda-
mental equations can be made beforehand and the inte-
gration constants are determined through boundary
conditions.

General formulation by Stroh. Stroh26 on the other hand
operates with already compatible displacements of an ar-
bitrary solid, that are independent of one dimension (here z)
of an cartesian coordinate system (x, y, z). According to
Eshelby et al.28 the compatible displacement vector {uc}
can be expressed by the summation of three complex
functions composed of an unknown vector {Ac,i} and a
function of an unknown complex coefficent pi as well as the
two dependent coordinates x and y with

fucg ¼
X3
i¼1

fAc, ig f ðxþ pi yÞ, (7)

By utilization of the fundamental equations, an equation
of sixth order with the unknown roots pi (i = 1, 2, 3) is

obtained. These roots are necessarily complex, which was
proven by Eshelby et al.,28 and correspond to the eigen-
values of the continuum.26 Based on the fact, that the co-
efficients are real and elastic stability must be met, these
solutions appear in three complex conjugate pairs.29 For the
real displacements all imaginary parts vanish and only the
real parts have to be considered.28 For the respective
continuum and load case simplifications can be made and
the particular solutions are found through boundary con-
ditions. The general solution can be superposed from the
particular solutions.

Comparison of Lekhnitskii and Stroh. For a long time it was
only assumed that both formulations are equivalent re-
garding their sextic equations. It was finally proven by
Barnett and Kirchner29 by reducing the six-dimensional
formulation of Stroh into two homogeneous, linear alge-
braic equations in terms of the reduced compliances. A
more direct comparison of the coefficents, depending on
the formulation as functions of the stiffnesses or reduced
compliances, isn’t possible. According to Tarn and
Wang,30 the Lekhnitskii-formulation facilitates the rep-
resentation of the stresses and the Stroh-formulation those
of the displacements. Furthermore, the approach of
Lekhnitskii2 is not feasible for static motions like the
determination of eigenvalues and eigenforms.31 Stroh26

enables this by reducing the deformation problem to the
determination of the eigenvalues and eigenvectors of the
system and connecting them to the constitutive law
through special eigenrelations.32 Barnett and Kirchner29

favorate the formulation of Stroh,26 because of a more
direct computation and the already met compatibility
conditions. But they also point out that the choice must be
made in regards to the specific case.

General formulation of state-space approach

In addition to these two formulations, a mixed approach
known as state-space approach exists, where the gov-
erning equations are derived from the fundamental
equations in terms of stresses and displacements. This so-
called state equation in general form is expressed by the
derivation of a state vector {R}, usually consisting of
three displacements and three selected stresses. For most
models the stresses in radial direction are chosen and the
state equation is

∂
∂r

fRg ¼ ½AðrÞ� fRg: (8)

A second equation {S} = [B(r)] {R} is used after solving
the state equation for the computation of the vector {S},
containing the remaining three stress components. Matrices
[A(r)] and [B(r)] are linear differential operators, which
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depend on one coordinate, here r, but only consist of
derivations of the other two coordinates.33 Although state-
space models use elastic equations in three-dimensional
form, they must discretize in at least one coordinate di-
rection for a unique solution because of the fact that, for the
usual boundary conditions, the state equation becomes a
partial differential equation with infinite order.33 As a rule,
an approximation method by node subdivision is applied,
for example, by means of the finite-difference method, the
finite-element method or a series development in the
laminate plane (here z-θ). In this way, the state equation is
converted into a system of linear differential equations that
can be solved using standard methods by integrating the
boundary conditions into the matrices [A(r)] and [B(r)].
However, the boundary conditions at the end faces of the
continuum must again be formulated by simplifications in
certain coordinate directions. Exact solutions using three-
dimensional elastic equations are only possible in special
cases like Rogers et al.34 Therefore, most models in the
state-space only deal with axisymmetric loads and, like the
previous approaches, only allow changes of the dis-
placements, strains and stresses in two coordinate
directions.

Stress-Based approaches

In addition to the basic formulation of three-dimensional
anisotropic elasticity, Lekhnitskii deals in his books
‘Theory of Elasticity of an Anisotropic Elastic Body’,2

and ‘Anisotropic Plates’35 as well as numerous
publications36–38 with tasks regarding infinite plates,
bars, beams, cylinders, pipes, and plates with elliptical
defects or inclusions under differing axisymmetric or
bending loads. Each further described literature is based
on these formulations.

General formulation of the tube according
to Lekhnitskii

For the single-layered cylindrical tube, the fully populated
constitutive law, corresponding to equation (1), is used
initially. The tube is in the state of generalized plane strain,
which means that a strain εz is present. However, like all
other strains, displacements and stresses, it does not alter
along the axial component. This allows a simplification of
the contitutive law by a linear approach for the axial strain
with

εz ¼ S33 ðA xþ B yþ CÞ
¼ S33 ðA r sin θ þ B r cos θ þ CÞ: (9)

It is assumed that the axial strain only results from the
axial stress σz and consists of one component for each of the
bending moments about the x- and y-axis as well as one

component for the axisymmetric loads. The unknowns A, B,
and C represent the magnitudes of these stresses that in-
crease with distance x or y to the neutral fiber for a moment
load (A and B) and are constant for an axial load (C). By
substituting the equation (9) into the third equation of (1),
the stress in z direction can be computed and inserted into
the remaining equations of (1). The result is the reduced
material law

εr ¼ β11 σrþβ12 σθþβ14 τθzþβ15 τrzþβ16 τrθ
þS33 ðAr sinθþBrcosθþCÞ,

εθ ¼ β21 σrþβ22 σθþβ24 τθzþβ25 τrzþβ26 τrθ
þ S33 ðAr sinθþBrcosθþCÞ,

γθz ¼ β41 σrþβ42 σθþβ44 τθzþβ45 τrzþβ46 τrθ
þ S33 ðAr sinθþBrcosθþCÞ,

γrz ¼ β51 σrþβ52 σθþβ54 τθzþβ55 τrzþβ56 τrθ
þ S33 ðAr sinθþBrcosθþCÞ,

γrθ ¼ β61 σrþβ62 σθþβ64 τθzþβ65 τrzþβ66 τrθ
þ S33 ðAr sinθþBrcosθþCÞ,

(10)

with the reduced compliances

βij ¼ Sij � Si3 S3j
S33

for i, j¼ 1; 2; 4; 5; 6: (11)

Furthermore an approach according to the stress func-
tions of Airy F(r, θ) and Prandtl Ψ(r, θ) for the remaining
five stresses is used. These stress functions meet the given
equilibrium equation (5) and allow the boundary value
problem to be converted to only two stress variables.
Stresses can then be written as

σr ¼ 1

r

∂Fðr, θÞ
∂r

þ 1

r2
∂2Fðr, θÞ

∂θ2
,

σθ ¼ ∂2Fðr, θÞ
∂r2

,

τrθ ¼ � ∂2

∂r∂θ

�
Fðr, θÞ

r

�
,

τrz ¼ 1

r

∂Ψðr, θÞ
∂θ

,

τθz ¼ �∂Ψðr, θÞ
∂r

:

(12)

The six strains are described by only three displacements
in the strain-displacement relations (6), which implies that
they can’t be independent of one another and must meet
compatibility requirements. The equation (6) are therefore
inserted into the material law (2). By integration of the 3rd,
4th and 5th equation of the resulting system over the z-axis
and conversion to the displacements, the following equa-
tions can be deduced
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By using the displacements due to strains Ur, Uθ, Uz in
the cylindrical coordinate system as well as the translatory
u0, v0, w0 and rotatory ω1, ω2, ω3 rigid-body motions in the
cartesian coordinate system, equations for the unknown
displacement functions, resulting from the integration, can
be established. Due to the small angles, the rigid-body
motions can be transformed into the cylindrical system
by means of the trigonometric functions. The displacement
field is thus given by Lekhnitskii2 in the form

Ur, 0 ¼ Ur þ u0 cos θ þ v0 sin θ,
Uθ, 0 ¼ Uθ � u0 sin θ þ v0 cos θ þ ω3 r,
Uz, 0 ¼ Uz þ ω1 r sin θ � ω2 r cos θ þ w0:

(14)

For compatibility, the equation (13) must be
substituted into the other three equations of the con-
stitutive law (2). The governing partial differential
equation system can be established as a function of
stress functions using the reduced constitutive law (10),
the stress function approach (12), the displacements
(13) and the displacements resulting from integration
and expressed by the displacement field (14). For
brevity, the system results in2

L0
4FþL0

3Ψ¼ 2 ½ðS13�S23ÞA�S36B�sinθr
þ2 ½S36AþðS13�S23ÞB�cosθr ,

(15a)

L00
3FþL0

2Ψ¼ð�S35Aþ2S34BÞcosθ

þð2S34AþS35BÞsinθþCS34
1

r

: (15b)

The differential operators of second order L
0
2, third order

L
0
3, L

00
3 and fourth order L

0
4 are

L0
2 ¼ β44

∂2

∂r2
�2β45

1

r

∂2

∂r∂θ
þβ55

1

r2
∂2

∂θ2
þβ44

1

r

∂
∂r
,

L0
3 ¼�β24

∂3

∂r3
þðβ25þβ46Þ

1

r

∂3

∂r2∂θ

�ðβ14þβ56Þ
1

r2
∂3

∂r∂θ2
þβ15

1

r3
∂3

∂θ3

þðβ14�2β24Þ
1

r

∂2

∂r2
þðβ46�β15Þ

1

r2
∂2

∂r∂θ

þ β15
1

r3
∂
∂θ

,

L00
3 ¼�β24

∂3

∂r3
þðβ25þβ46Þ

1

r

∂3

∂r2∂θ

�ðβ14þβ56Þ
1

r2
∂3

∂r∂θ2
þβ15

1

r3
∂3

∂θ3

�ðβ14þβ24Þ
1

r

∂2

∂r2
þðβ15�β46Þ

1

r2
∂2

∂r∂θ

þðβ14þβ56Þ
1

r3
∂2

∂θ2
þβ46

1

r3
∂
∂θ

,

L0
4 ¼ β22

∂4

∂r4
�2β26

1

r

∂4

∂r3∂θ
þð2β12þβ66Þ

1

r2
∂4

∂r2∂θ2

�2β16
1

r3
∂4

∂r∂θ3
þβ11

1

r4
∂4

∂θ4
þ2β22

1

r

∂3

∂r3

�ð2β12þβ66Þ
1

r3
∂3

∂r∂θ2
þ2β16

1

r4
∂3

∂θ3

� β11
1

r2
∂2

∂r2
�2ðβ16þβ26Þ

1

r3
∂2

∂r∂θ

þð2β11þ2β12þβ66Þ
1

r4
∂2

∂θ2

þ β11
1

r3
∂
∂r
þ2ðβ16þβ26Þ

1

r4
∂
∂θ

:

(16)

uz ¼ z ðS31 σr þ S32 σθ þ S33 σz þ S34 τθz þ S35 τrz þ S36 τrθÞ þ Uz, 0ðr, θÞ,
uθ ¼ z ðS41 σr þ S42 σθ þ S43 σz þ S44 τθz þ S45 τrz þ S46 τrθÞ

� z2

2

1

r

∂ðS31 σr þ S32 σθ þ S33 σz þ S34 τθz þ S35 τrz þ S36 τrθÞ
∂θ

� z

r

∂Uz, 0

∂θ
þ Uθ, 0ðr, θÞ,

ur ¼ z ðS51 σr þ S52 σθ þ S53 σz þ S54 τθz þ S55 τrz þ S56 τrθÞ

� z2

2

∂ðS31 σr þ S32 σθ þ S33 σz þ S34 τθz þ S35 τrz þ S36 τrθÞ
∂r

� z
∂Uz, 0

∂r
þ Ur, 0ðr, θÞ:

(13)
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Pure bending of the tube according to Lekhnitskii

For the load case of pure bending around the y-axis, some
simplifications can bemade. The orthotropic constitutive law, see
(4), is used and the following variables are set equal to zero

∂
∂z

¼ 0; B ¼ C¼ 0; Ψ ¼ 0: (17)

B and C as described in section General formulation of
the tube according to Lekhnitskii are coupled to bending
around the x-axis and axisymmetric loads. The Prandtl
stress function Ψ is only considered for the load case of
torsion. This simplifies the equation system (15a), simul-
taneously eliminating (15b), to

β22
∂4F

∂r4
þð2β12þβ66Þ

1

r2
∂4F

∂r2∂θ2
þβ11

1

r4
∂4F

∂θ4

þ2β22
1

r

∂3F

∂r3
�ð2β12þβ66Þ

1

r3
∂3F

∂r∂θ2

� β11
1

r2
∂2F

∂r2
þð2β11þ2β12þβ66Þ

1

r4
∂2F

∂θ2

þ β11
1

r3
∂F
∂r

¼ 2ðS13�S23ÞAsinθr :

(18)

A solution for this partial differential system is searched,
using a trigonometric approach in the form

F ¼ f ðrÞ sin θ (19)

and results in a polynomial function of the fourth class with
five unknowns C1-C4 and A by searching solutions for f(r)2

F ¼
�
C1

n
r1þn þ C2

n
r1�n þ C3 r ln r

þ C4 r þ A
g

2
r3
�
sin θ:

(20)

Substituting Equations (20) and (17) into (12) provides
the stress distributions

σr ¼ C1 r
n�1ð Þ � C2 r

�n�1ð Þ þ C3

r
þ A g r

� �
� sin θ,

σθ ¼ C1 nþ 1ð Þ rn�1 þ C2 n� 1ð Þ r�n�1 þ C3

r
þ 3A g r

� �
� sin θ,

σz ¼ A r sin θ � 1

S33
S13 σr þ S23 σθð Þ,

τrθ ¼ � C1 r
n�1 � C2 r

�n�1 þ C3

r
þ Ag r

� �
� cos θ,

(21)

with

g ¼ S23 � S13
β11þ2 β12 þ β66�3 β22

,

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β11þ2 β12 þ β66

β22

s
:

(22)

The unknowns C1-C3 and A must be found by the use of
boundary conditions. Strains and displacements can be
calculated utilizing the constitutive law (2) and the strain-
displacement relations (6).

Multi-Layered tube according to Xia et al.

Composites represent a multi-layer design with different
fiber angles and thus local coordinate systems for each layer.
Therefore, the Lekhnitskii tube model is used for each
individual layer and solved with continuity conditions on
the interphases for enhancements like the model by Xia
et al.39

Transformation and simplification of a single layer. The
compliances of each layer must be transformed from the
local (1, 2, 3) into the global coordinate system (r, θ, z)
around the related fiber angle α, see Figure 1.

The local compliances are indicated by [Lij] (i, j = 1-6) in
transversely isotropic form in accordance with equation (4).
The engineering constants can be used to express the
compliances of a unidirectional layer as

½Ltrans:iso:� ¼

2666666666666666664

1

E2
� ν23

E2
� ν12

E1
0 0 0

1

E2
� ν12

E1
0 0 0

1

E1
0 0 0

sym
2ð1� ν23Þ

E2
0 0

1

G12
0

1

G12

3777777777777777775

:

(23)

However, it should be noted that the local constituitve
law is formulated by Xia et al.39 using the permutated

notation fσ3, σ2, σ1, τ23, τ12, τ13gT instead of the common

notation fσ1, σ2, σ3, τ23, τ13, τ12gT used for example in
laminate theories. This also changes the positions of the
individual entries in the stiffness and compliance matrix.
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Transverse isotropy implies that E3 = E2, ν13 = ν12 and
G13 = G12. Further details on the necessity of transforming
the material properties for application to bending models
and another possibility of permutation can be found in
Siegl and Ehrlich.3 The global constitutive law of each
layer can be expressed by8>>>>>><>>>>>>:

εr
εθ
εz
γrθ
γθz
γzr

9>>>>>>=>>>>>>;
¼ �Qij

��1 �
Lij

��
Pij

�
8>>>>>><>>>>>>:

σr

σθ

σz

τrθ
τθz
τzr

9>>>>>>=>>>>>>;
¼ �Sij�

8>>>>>><>>>>>>:

σr
σθ
σz
τrθ
τθz
τzr

9>>>>>>=>>>>>>;
(24)

in which the transformation matrices are

�
Qij

�¼
26666664
1 0 0 0 0 0
0 c2α s2α 0 � cαsα 0
0 s2α c2α 0 cαsα 0
0 0 0 cα 0 � sα
0 2cαsα �2cαsα 0 c2α� s2α 0
0 0 0 sα 0 cα

37777775 (25)

and

�
Pij

�¼
26666664
1 0 0 0 0 0
0 c2α s2α 0 �2cαsα 0
0 s2α c2α 0 2cαsα 0
0 0 0 cα 0 � sα
0 cαsα � cαsα 0 c2α� s2α 0
0 0 0 sα 0 cα

37777775 (26)

Trigonometric functions in (25) and (26) are abbre-
viated with c = cos and s = sin. The global constitutive
law of each layer is further simplified by setting com-
pliances S16, S26, S36, S44, S55, S61, S62 and S63 equal to
zero. Coupling effects of a monotropic single layer and
shear stresses τzr and τθz as well as transverse contraction
effects are thus neglected. Note that Xia et al.39 also
permuted the global constitutive law according to
Lekhnitskii2 from fσr, σθ, σz, τθz, τrz, τrθgT to

fσr, σθ, σz, τrθ, τθz, τrzgT , which leads to the redefinition of
S66 to S44 in the equation for γrθ. For consistency, the
definition of Lekhnitskii2 is used and results in

εr ¼ S11 σr þ S12 σθ þ S13 σz,
εθ ¼ S21 σr þ S22 σθ þ S23 σz,
εz ¼ S31 σr þ S32 σθ þ S33 σz,
γrθ ¼ S66 τrθ:

(27)

By substituting the stress distributions for a single layer
under pure bending from equation (21) into the constitutive law
(27), the equations for the strains are obtained by Pavlou40 with

εr ¼ sinθfS11 ½rn�1C1�r�n�1C2þr�1C3þgrA
�

þ S12 ½ðnþ1Þrn�1C1þðn�1Þr�n�1C2þr�1C3þ3grA
�

þ S13
1

S33

��ðS13þS23þnS23Þrn�1C1

þ ðS13þS23�nS23Þr�n�1C2�ðS13þS23Þr�1C3

þðS33�S13g�3S23gÞrA�g,

εθ ¼ sinθfS21 ½rn�1C1�r�n�1C2þr�1C3þgrA
�

þ S22 ½ðnþ1Þrn�1C1þðn�1Þr�n�1C2þr�1C3þ3grA
�

þ S23
1

S33

��ðS13þS23þnS23Þrn�1C1

þ ðS13þS23�nS23Þr�n�1C2�ðS13þS23Þr�1C3

þðS33�S13g�3S23gÞrA�g,

εz ¼ sinθfS31 ½rn�1C1�r�n�1C2þr�1C3þgrA
�

þ S32 ½ðnþ1Þrn�1C1þðn�1Þr�n�1C2þr�1C3þ3grA
�

þ S33
1

S33

��ðS13þS23þnS23Þrn�1C1

þ ðS13þS23�nS23Þr�n�1C2�ðS13þS23Þr�1C3

þðS33�S13g�3S23gÞrA�g,

γrθ ¼S66cosθ½rn�1C1�r�n�1C2þr�1C3þgrA
�
:

(28)

The constant C3 is set equal to zero because of the fact
that the displacements are single-valued functions .2,39

Otherwise the system would give an infinite number of
solutions for C1-C3. In Zhang and Hoa41 it is assumed
that Lekhnitskii2 found this solution empirically. By
inserting the strains εr and εθ from (28) into the strain-
displacement relations (6), integration and conversion,
the displacements ur and uθ can be arranged to40

ur ¼ sin θ ðλ1 C1 þ λ2 C2 þ λ3 AÞ,
uθ ¼ cos θ ðλ4 C1 þ λ5 C2 þ λ6 AÞ: (29)

The abbreviations for the coefficents are

Kastenmeier et al. 9



λ1 ¼ �2
�
S2
13 þ ðnþ1ÞS23S13 � S33ðS12 þ nS12 þ S11Þ

�
r2n

�
�

r�n

2nS33

�
,

λ2 ¼ 2
��S2

13 þ ðn�1ÞS23S13 þ S33ðS12 � nS12 þ S11Þ
�

�
�

r�n

2nS33

�
,

λ3 ¼ nrnþ2½S33S13 þ gð�S13ðS13þ3S23Þ þ S33ð3S12 þ S11ÞÞ�

�
�

r�n

2nS33

�
,

λ4 ¼ 2r2n
�
n2
	
S2
23 � S33S22


� S13ðS13 þ S23Þ
þnðS23ðS13 þ S23Þ � S23S13 � S33ðS22þ2S12ÞÞ

þS33ðS12 þ S11Þ�
�

r�n

2nS33

�
,

λ5 ¼ 2
�
n2
	
S2
23 � S33S22


� S13ðS13 þ S23Þ
þnð�S23ðS13 þ S23Þ þ S23S13 þ S33S22Þ

þS33ðS12 þ S11Þ�
�

r�n

2nS33

�
,

λ6 ¼ nrnþ2½S33ðS13�2S23Þ þgððS13þ3S23Þð2S23 � S13Þ

þS33ð� 6S22 þ S12 þ S11ÞÞ�
�

r�n

2nS33

�
:

(30)

This rearrangement is also used for the stress distribu-
tions (21), which leads to

σr ¼ sin θ ðμ1 C1 þ μ2 C2 þ μ3 AÞ,
σθ ¼ sin θ ðμ4 C1 þ μ5 C2þ3 μ3 AÞ,

σz ¼ sin θ
S33

ðμ6 C1 þ μ7 C2 þ μ8 AÞ,

τrθ ¼ �cos θ ðμ1 C1 þ μ2 C2 þ μ3 AÞ,

(31)

using

μ1 ¼ rn�1,
μ2 ¼ �r�n�1,
μ3 ¼ g r,
μ4 ¼ ðnþ 1Þ rn�1,
μ5 ¼ ðn� 1Þ r�n�1,
μ6 ¼ �ðS13 þ S23 þ n S23Þ rn�1,
μ7 ¼ ðS13 þ S23 � n S23Þ r�n�1,
μ8 ¼ ðS33 � S13 g�3 S23 gÞ r:

(32)

Enhancements to the multi-layer composite. For a tube with a
multi-layer structure the constants C1, C2 and A from the

single-layer according to Lekhnitskii2 must be determined
for each layer from k = 1 to k = N. The radial positions of the
layer boundaries can be described by the respective inner
radius rk, outer radius rk+1 and layer thickness hk, see
Figure 2. It should be noted that the indexing of the indi-
vidual layers can be done in different ways. Almeida et al.4

numbers the individual layers from the inside of the tube
starting from one. The reference plane for the layer distances
is the mid-plane of the tube segment section, based on which
the distances ti are given vectorially as a function of the
z-axis, which is orthogonal to the laminate and oriented
upwards. This definition can be used directly, for example,
to determine the laminate properties using the Classical
Laminate Theory (CLT). Often the z-axis in the CLT is
defined for plates downwards in the laminate from the
reference plane, cf. Gibson,42 Ehrlich43 and Romano.44

This results in a system of equations with 3N unknowns,
which must be satisfied by 3(N � 1) boundary conditions at
the interphases and 3 boundary conditions at the outer
surfaces. The 3(N � 1) conditions on the interphases are
denoted by

σkr ðrkþ1Þ ¼ σkþ1
r ðrkþ1Þ, τkrθðrkþ1Þ ¼ τkþ1

rθ ðrkþ1Þ,
ukr ðrkþ1Þ ¼ ukþ1

r ðrkþ1Þ, ukθðrkþ1Þ ¼ ukþ1
θ ðrkþ1Þ:

(33)

The stresses σr and τrθ yield an identical boundary
condition, since their course is identical except for the sign
and a phase shift. In addition, both stresses must become
zero on the internal and external surface of the cylindrical
tube and the bending moment corresponds to the summed
surface integrals of the axial stress σz of all tube layers N.
The three obtained boundary conditions are

σ1r ðr1Þ ¼ τ1rθðr1Þ¼ 0,

σNr ðrNþ1Þ ¼ τNrθðrNþ1Þ¼ 0,

M¼ 2
XN
k¼1

Zπ
0

Zrkþ1

rk

σkz ðr, θÞ r2 sin θ dr dθ:
(34)

Figure 2. Indication of the layering with reference plane on the
inner radius.45

10 Journal of Composite Materials 0(0)



The equation for the bending moment can also be ex-
pressed by abbreviations of the coefficients of the unknowns
according to the procedure for the displacements and
stresses. This allows a conversion of the coefficents and
boundary conditions into matrix notation and thus a linear
system of equations for the three unknowns can be set up.40

Therefore, a simple calculation of the solution vector,
containing all unknowns, is possible. Stresses, strains and
displacements can be computed with known constants.

Multi-Layered tube according to Jolicoeur and Cardou. Unlike
Xia et al.,39 who are considering pure bending, Jolicoeur
and Cardou46 use a more general formulation of the multi-
layer tube based on the Lekhnitskii2 model. Axisymmetric
tensile and torsional loads are taken into account, even
though there is no coupling with bending.

Reformulation of the governing equations. The global
constitutive law is used in monoclinic form, according to
equation (3), with 13 independent elastic constants. The
local constitutive law is not specified, but a permutation and
transformation from a transversely isotropic fomulation is
given by Siegl and Ehrlich.3 The procedure of Jolicoeur and
Cardou46 follows the approach of Lekhnitskii, except for a
reformulation of the initial function for the axial strain εz as a
function of the constant curvatures κx and κy as well as the
nominal axial strain ε due to axial loads. Equation (9) then
follows to

εz ¼ κx r sin θ � κy r cos θ þ ε: (35)

A comparison of equations (9) and (35) provides the re-
lations κx = A/S33, κy = � B/S33 and ε = C/S33. Using this
reformulated approach and the global monoclinic constitutive
law, the governing system of equations (15a) and (15b) is
simplified to

LI
4FþLI

3Ψ¼ 2

r

S13�S23
S33

	
κx sinθ�κycosθ



,

LII
3 FþLI

2Ψ¼ S34
S33

�
2κxsinθ�2κycosθþε

r

�
�2q,

(36)

using differential operators

LI
2 ¼�β44

∂2

∂r2
�β55

1

r2
∂2

∂θ2
�β44

1

r

∂
∂r
, (37a)

LI
3 ¼ β24

∂3

∂r3
þ ðβ14 þ β56Þ

1

r2
∂3

∂r∂θ2

þðβ14�2 β24Þ
1

r

∂2

∂r2
,

(37b)

LII
3 ¼ β24

∂3

∂r3
þ ðβ14 þ β56Þ

1

r2
∂3

∂r∂θ2

þðβ14 þ β24Þ
1

r

∂2

∂r2
� ðβ14 þ β56Þ

1

r3
∂2

∂θ2
,

(37c)

LI
4 ¼ �β22

∂4

∂r4
� ð2 β12 þ β66Þ

1

r2
∂4

∂r2∂θ2

�β11
1

r4
∂4

∂θ4
�2 β22

1

r

∂3

∂r3

þð2 β12 þ β66Þ
1

r3
∂3

∂r∂θ2
þ β11

1

r2
∂2

∂r2

�ð2 β11þ2 β12 þ β66Þ
1

r4
∂2

∂θ2
� β11

1

r3
∂
∂r
:

(37d)

Here, the additional term q is introduced, which symbolizes
the relative twisting angle due to a torsional load. The
superscripts ()I and ()II are used for numbering, whereas the
subscripts represent the order.

General solution of governing equations. A trigonometric
solution f1(r) and f1(r) for bending loads in dependence of the
curvatures and a constant solution f2(r) and f2(r) for axisym-
metric loads are sought separately and then added up in the form

F ¼ f1ðrÞ
	
κx sin θ � κy cos θ


þ f2ðrÞ,
Ψ ¼ f1ðrÞ

	
κx sin θ � κy cos θ


þ f2ðrÞ: (38)

For each load case, homogeneous and particulate solu-
tions are searched for the two functions and subsequently
superposed. The general solution for the stress functions
results after inserting equations (37) and (38) into equation
(36) according to Jolicoeur and Cardou46 in

F ¼
X4
i¼1

Ki

mi
rmiþ1 þ K5 r þ K6 r ln r þ μ1

2
r3

 !

� κx sin θ � κy cos θ
	 
þX2

i¼1

KI
i

mI
i þ 1

rm
I
iþ1

þKI
3 þ KI

4 r þ
KI

5

2
r2 þ μ3

3
q r3,

Ψ ¼
X4
i¼1

Ki gi r
mi þ K6

β56
β66

þ μ2 r
2

 !
κx sin θ � κy cos θ
	 


þ
X2
i¼1

KI
i g

I
i

mI
i

rm
I
i þ KI

4

β11
β14

ln r þ KI
5

β14 þ β24
β44

r

þKI
6 þ

S34
S33β44

εr þ μ4
2
qr2:

(39)
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Ki for i = 1-6 represents the integration constants. The
abbreviations gi and mi for i = 1-4 from the homogeneous
solution as well as μ1 and μ2 from the particulate solution
under pure bending are

gi¼β24m
2
i þ β14þβ24ð Þmi�β56

β44m
2
i �β55

,

mi¼±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4ac

p

2a

s
,

a¼β22β44�β224,

b¼β24 2β14þβ24þ2β56ð Þ�β44 β11þ2β12þβ22þβ66ð Þ
�β22β55þβ214,

c¼β55 β11þ2β12þβ22þβ66ð Þ�β256,

μ1

μ2

( )
¼

�2β14�6β24þβ56 4β44�β55

�β11�2β12þ3β22�β66 2β14�2β24þβ56

" #�1

� 1
S33

2S34

S13�S23

( )
:

(40)

The abbreviations gIi and mI
i for i = 1-2 from the ho-

mogenous solution as well as μ3 and μ4 from the particulate
solution under axisymmetric loads are

gI
i ¼

β14 þ β24 m
I
i

β44
,

mI
i¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β11 β44 � β214
β22 β44 � β224

s
,

(
μ3

μ4

)
¼
"
β14þ2 β24 �β44

4 β22 � β11 β14�2 β24

#�1(
1

0

)
:

(41)

The unknownsK5,KI
3 andK

I
6 are set to zero because their

associated stresses disappear when they are derived.46

Compliance of the fourth equation of the reduced consti-
tutive law (10) leads to K6 = 0 and the condition that the
displacements are single-valued functions to KI

4 ¼ 0 and
KI
5 ¼ ε μ5 with

μ5 ¼
S34 ðβ24 � β14Þ þ β44 ðS13 � S23Þ
S33 ½β214 � β224 þ β44 ðβ22 � β11Þ�

: (42)

Stresses are obtained by substituting equation (39) into
(12). Strains and displacements can be expressed using the

fundamental equations. The previously unknown terms Ur,
Uθ and Uz from (14) follow to

Ur ¼
	
κx sinθ�κy cosθ


 X4
i¼1

KiU
I
i r

mi þUI
5 r

2

!

þ
X2
i¼1

KI
i U

II
i rmi þUII

3 qr2þUII
4 εr,

Uθ ¼
	
κx cosθþκy sinθ


 X4
i¼1

Ki V
I
i r

mi þV I
5 r

2

!
,

Uz ¼
	
κx cosθþκy sinθ


 X4
i¼1

KiW
I
i r

mi þWI
5 r

2

!
,

(43)

with the subexpressions

UI
i ¼

1

mi
½β11þβ12 ðmiþ1Þ�β14gimi�; ði¼ 1;2;3;4Þ,

(44a)

UI
5 ¼

1

2

�
μ1 ðβ11þ3 β12Þ�2 β14 μ2 þ

S13
S33

�
, (44b)

UII
i ¼ 1

mI
i

	
β11 þ β12 m

I
i � β14 g

I
i



; ði¼ 1; 2Þ, (44c)

UII
3 ¼ 1

2
½μ3 ðβ11þ2 β12Þ � μ4 β14�, (44d)

UII
4 ¼ 1

S33

�
S13 � β14

β44
S34

�
þμ5

�
β11 þ β12 � β14

β14 þ β24
β44

�
,

(44e)

V I
i ¼ 1

mI
i

½β11 þ β12 � β22 ðmiÞ ðmiþ1Þ

�gi mi ðβ14 � β24 m1Þ�; ði¼ 1; 2; 3; 4Þ,
(44f)

V I
5 ¼ 1

2
½μ1 ðβ11 þ β12�6 β22Þ�2 μ2 ðβ14 � β24Þ

þS13�2 S23
S33

�
,

(44g)

WI
i ¼ 1

mi
ðβ55 gi � β56Þ; ði¼ 1; 2; 3; 4Þ, (44h)
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WI
5 ¼ 1

2
ðβ55 μ2 � β56 μ1Þ: (44i)

These are explicitly mentioned at this point because
they are necessary for establishing the continuity con-
ditions and the determination of the remaining unknown
constants K1-K4 as well as KI

1-K
I
2. The function Uz rep-

resents warping and rotation of the cross section,
wherefore the Euler-Bernoulli hypothesis is not
applicable.47

Enhancements to the multi-layer composite. Rigid body
motions, see equation (14), are usually set equal to zero for
this kind of problem, but here the two translational com-
ponents u0 and v0 are required to take the effect of Poisson
ratios into account.46 They can be expressed by an unknown
constant ν and the curvatures as

u0¼ �ν κy; v0 ¼ ν κx (45)

To determine the unknown constants, Jolicoeur and
Cardou46 distinguish two cases of boundary conditions
between the individual layers: ’No Slip’, or rather ’Perfect
Bonding’, and ’No Friction’. In the first case all displace-
ments ur, uθ and uz as well as the radial stress components σr,
τrθ and τrz are considered to be continous and all single
layers are in contact, which implies sufficient prestress.
Therefore seven conditions, because continuity of ur leads
to two different equations, for the interphases can be es-
tablished to

X4
i¼1

Ki, k r
mi, k�1
kþ1 � Ki, kþ1 r

mi, kþ1�1
kþ1

¼ ðμ1, kþ1 � μ1, kÞ rkþ1,

(46a)

X2
i¼1

KI
i, k r

mI
i, k�1

kþ1 � KI
i, kþ1 r

mI
i, kþ1�1

kþ1

¼ ðμ3, kþ1 � μ3, kÞq rkþ1 þ ðμ5, kþ1 � μ5, kÞ ε,
(46b)

X4
i¼1

Ki, k gi, k r
mi, k�1
kþ1 � Ki, kþ1 gi, kþ1 r

mi, kþ1�1
kþ1

¼ ðμ2, kþ1 � μ2, kÞ rkþ1,

(46c)

νk � νkþ1 þ
X4
i¼1

Ki, k U
I
i, k r

mi, k

kþ1 � Ki, kþ1 U
I
i, kþ1 r

mi, kþ1

kþ1

¼
�
UI

5, kþ1 � UI
5, k

�
r2kþ1,

(46d)

X2
i¼1

KI
i,k U

II
i,k r

mI
i,k

kþ1�KI
i,kþ1U

II
i,kþ1 r

mI
i,kþ1

kþ1

¼
�
UII

3,kþ1�UII
3,k

�
qr2kþ1þ

�
UII

4,kþ1�UII
4,k

�
εrkþ1,

(46e)

νk � νkþ1 þ
X4
i¼1

Ki, k V
I
i, kr

mi, k

kþ1 � Ki, kþ1 V
I
i, kþ1 r

mi, kþ1

kþ1

¼
�
V I
5, kþ1 � V I

5, k

�
r2kþ1,

(46f)

X4
i¼1

Ki, k W
I
i, kr

mi, k

kþ1 � Ki, kþ1 W
I
i, kþ1 r

mi, kþ1

kþ1

¼
�
WI

5, kþ1 �WI
5, k

�
r2kþ1

(46g)

In the second case of ’No Friction’, a sliding of the
single layers along θ and z on the interphases is
allowed. Hence, the displacements uθ and uz can be
discontinous and the stresses τrθ and τrz become zero on
the layer boundaries. This leads to the following four
conditions

X4
i¼1

Ki, k r
mi, k�1
kþ1 ¼ �μ1, k rkþ1, (47a)

X4
i¼1

Ki, kþ1 r
mi, kþ1�1
kþ1 ¼ �μ1, kþ1 rkþ1, (47b)

X4
i¼1

Ki, k gi, k r
mi, k�1
kþ1 ¼ �μ2, k rkþ1, (47c)

X4
i¼1

Ki, kþ1 gi, kþ1 r
mi, kþ1�1
kþ1 ¼ �μ2, kþ1 rkþ1, (47d)

which are used in addition to the already established
equations (46b), (46d) and (46e). Thus, 7(N� 1) conditions
exist regardless of the contact type for 7N unknowns K1,k-
K4,k, KI

1, k -K
I
2, k and νk. The remaining boundary conditions

of σr = τrθ = τrz = 0 on the outer and inner surface of the tube
are providing the remaining seven equations with (47a) and
(47c) for r1 and rN+1 as well as

X2
i¼1

KI
i,N r

mI
i,N�1

Nþ1 ¼ �μ3,N q rNþ1 � μ5,N ε, (48a)

X2
i¼1

KI
i, 1 r

mI
i, 1�1

1 ¼ �μ3;1 q r1 � μ5;1 ε: (48b)
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The constant ν1 is set equal to zero for the first layer to gain
the seventh equation. The obtained system of linear equations
is divided into two subsystems. Firstly, the subsystem for
bending loads is build using either interphase conditions (46a),
(46c), (46d), (46f) and (46g) for ’No Slip’ or (46d) and (47a-
47d) for ’No Friction’ to obtain K1,k-K4,k and νk. Equations
(47a) and (47c) are used on the external surfaces independent
of the interphase boundary conditions. Secondly, the sub-
system for axisymmetric loads and the determination ofKI

1-K
I
2

can regardless of the contact type be solved for known ε and q
using equations (46b), (46e) on the interphases and (48a),
(48b) on the external surfaces. The external force F and
moments T,Mx,My are expressed by the summation of surface
integrals of the cross sections of each individual layer by

F ¼
XN
k¼1

Z2π
0

Zrkþ1

rk

σz r dθ dr, (49a)

T ¼
XN
k¼1

Z2π
0

Zrkþ1

rk

τθz r
2 dθ dr, (49b)

Mx ¼
XN
k¼1

Z2π
0

Zrkþ1

rk

σz r
2 sin θ dθ dr, (49c)

My¼ �
XN
k¼1

Z2π
0

Zrkþ1

rk

σz r
2 cos θ dθ dr: (49d)

The equations associated with the respective loads are
integrated into the corresponding linear equation system.
Both can be solved separately using matrix form. There is no
coupling between axisymmetric loads and bending loads.
This also applies to the bendingmomentMx and the curvature
κy and vice versa.46 In addition, both curvatures are constant
along the z axis. The solution procedure ist similar to the
previously described procedure according Xia et al.39 The
final stresses according to Jolicoeur and Cardou46 result in

σr ¼
	
κx sin θ � κy cos θ


 X4
i¼1

Ki r
mi�1 þ μ1 r

!

þ
X2
i¼1

KI
i r

mI
i�1 þ μ3 q r þ μ5 ε,

(50a)

σθ¼
	
κxsinθ�κycosθ


 X4
i¼1

Ki ðmiþ1Þrmi�1þ3μ1 r

!

þ
X2
i¼1

KI
i m

I
i r

mI
i�1þ2μ3qrþμ5 ε,

(50b)

σz¼ 1

S33

�
κxrsinθ�κyrcosθþε�S13σr�S23σθ�S34τθz

�
,

(50c)

τrθ ¼
	
κx cosθ�κy sinθ


 �X4
i¼1

Ki r
mi�1�μ1 r

!
, (50d)

τθz¼
	
κx sinθ�κycosθ


 �X4
i¼1

Kigimi r
mi�1�2μ2 r

!

�
X2
i¼1

KI
i g

I
i r

mI
i�1�μ4qr

�
�
μ5
β14þβ24

β44
þ S34
S33þβ44

�
ε,

(50e)

τzr ¼
	
κx cosθ�κy sinθ


 X4
i¼1

Ki gi r
mi�1þμ2 r

!
: (50f)

Further enhancements regarding tubes under bending
loads. According to Zhang and Hoa41 all models based on
Lekhnitskii formalism share the disadvantage that, for C3 ≠
0 and fiber angles of 0° or 90°, fewer unknowns than
equations are present and therefore several solutions for the
stress field exist. While the models according to Lekhnit-
skii2 and Xia et al.39 circumvent this problem by the ne-
glection of C3, the model of Jolicoeur and Cardou46 is fully
exposed to it. For example, the continuity conditions of τrz,
τθz and uz are satisfied identically and simplify to identities
for K3 ≠ 0. This drawback is solved by Zhang and Hoa41

using a limit-based approach with an approximation by
Taylor series of expansion for identically solved continuity
conditions. In a subsequent paper by Zhang et al.48 this
approach is advanced to composites with arbitrary lay-ups
and fiber angles using the introduced unified and unknown

coefficients K*3 and K*4 , which become K3 and K4 for fiber
angles of neither 0° nor 90°. In the other case, these co-
efficients turn into approximated constants which are de-
rived using the Taylor series of expansion for compliances,
reduced compliances as well as all terms depending on them
(i. e. gi and mi for i = 1, 2, 3, 4 and μi i = 1, 2). This includes
the coefficients themselves.

Using a reformulation of the model of Xia et al.,39

Menshykova and Guz49 examined the difference between
an innermost metallic and an axially oriented carbon
composite layer. In the model description, two winding
layers are combined to an orthotropic layer [±α], a for-
mulation of an isotropic layer is established and new ab-
breviations of the compliances are used for a better
representation. A comparative study of the lay-ups [steel/
±α/0] and [0/±α/0] under varying fiber angles α and pure
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bending is carried out using the program Matlab. The focus
of this investigation lies on the normal stress curves across
the thickness at the point θ = π/2 of the highest positive axial
stress. The tubes have an internal radius of 2.5 mm and an
external radius of 7.5 mm, making them thick-walled.
Menshykova and Guz49 showed that an increase in the layer
thickness of the innermost layer, steel and carbon com-
posite, or a decrease in the fiber angle ±α of the central layer
results in higher stress jumps between the layers. In addi-
tion, the isotropic innermost layer displaced the highest
jump in the axial and circumferrential normal stresses from
the transition between the ±α- and the outer 0°-layer to the
transition between the inner, isotropic layer and the ±α-
layer.

Based on the tube model of Jolicoeur and Cardou,46 and
thus Lekhnitskii,2 Chouchaoui and Ochoa47 use a new
variant of the boundary condition ’No Slip’ between the
layers. In addition to the conditions of the underlying model
that the stresses σr, τrθ, τrz and displacements ur, uθ, uz show
a continuous course over the thickness of the laminate, the
shear stresses τrθ, τrz become zero at the interphases. Joli-
coeur and Cardou46 more reasonably employed this zeroing
in combination with allowing a slip and therefore dis-
continous course of displacements ur and uθ calling it ’No
Friction’. So for the subsystem of linear equations and
bending loads the conditions (47a-47d) are used in com-
bination with (46d), (46f) and (46g) instead of (46a) and
(46c) in the ’No Slip’ case of Jolicoeur and Cardou.46

Furthermore, for the model of Chouchaoui and Ochoa47

the radial stress σr at the outer surfaces corresponds to the
respective internal or external pressure p or -q and does not
become zero. This is taken into account in the boundary
conditions (48a) and (48b) in the following way

X2
i¼1

KI
i,N r

mI
i,N�1

Nþ1 þ μ3,N q rNþ1 þ μ5,N ε¼ �q, (51a)

X2
i¼1

KI
i, 1 r

mI
i, 1�1

1 þ μ3;1 q r1 þ μ5;1 ε¼ p : (51b)

Further enhancements regarding tubes under
axisymmetric loads

There are significantly more models dealing with axisym-
metric loads and in particular internal pressure, than those
dealing with bending loads. This is due to the further
simplification of the uniform load over the circumferential
direction θ and the frequent use of composites in pipeline
and tank applications. The basic formulation can also be
traced back to general and axisymmetric formulations by
Lekhnitskii,2 but there are also approaches from laminated
plate theories. The extension to the multi-layer composite of

Jolicoeur and Cardou46 applies, as already described in the
section Multi-Layered tube according to Jolicoeur and
Cardou, for both bending and axisymmetric loads. They
gave a more general formulation than Lekhnitskii, who
separated each specific load case.

Furthermore, Ting50 developed a variant of the Lekhnitskii
formulation for a single-layered tube with cylindrical an-
isotropy where stresses, strains and displacements only de-
pend on the radial coordinate r. The model applies for given
uniform stresses σr, τrθ, τrz on the external surfaces aswell as a
uniform axial strain or torsion. In contrast to Lekhnitskii,2 the
compliance terms and therefore the constitutive law also
occurs in a double-reduced form, which allows a more
compact and simple system description. The two reductions
are possible due to the specification of known deformations εz
and γθr. The publication is an extension of an earlier publi-
cation by Ting,51 which solves the same problem by using the
Stroh26 formulation. The description, however, is less
complex and physically more tangible.50

For the same model boundaries and load conditions,
Chen et al.52 have adapted the model of Ting51 almost
simultaneously to Ting50 into a Lekhnitskii formulation. As
a novelty towards Ting, the load case of a constant tem-
perature change is added and the system is described
without the necessity of a superposition of the basic
equations. This gives a more direct applicability.

Displacement-Based approaches

Displacement-based tube models, found in the literature, do
not provide exact solutions in all coordinate directions for
the load case of pure bending. However, the models of the
state-space approach, which are presented in section State-
Space Approaches, usually use a displacement approach in
combination with stresses. In addition to a few short de-
scriptions of models with axisymmetric loads, this section
presents the displacement-based approximity solutions
according to Sarvestani et al.45,53–57 for tubes under dif-
ferent bending loads. Displacement-based approaches
provide a compatible displacement field for the continuum
derived from the fundamental equations, which must be
solved to obtain strains and stresses.

Axisymmetric loads

Ting51 formulated a single-layered, orthotropic tube model
based on the Stroh formulation for axisymmetric loads
using a special matrix form for the equilibrium equations
with the stress vectors

ftrg ¼
8<: σr

τrθ
τrz

9=;; ftθg ¼
8<: τθr

σθ

τθz

9=;; ftzg ¼
8<: τzr

τzθ
σz

9=; (52)
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and the coefficent matrix

½K� ¼
24 0 �1 0
1 0 0
0 0 0

35 (53)

the equilibrium equation (5) can be represented by the
matrix equation

∂rfr trg
∂r

þ ∂ftθg
∂θ

þ ½K� ftθg r ∂ftzg∂z
¼ 0: (54)

An independence of z simplifies this equation to

∂rfr trg
∂r

þ ∂ftθg
∂θ

þ ½K� ftθg¼ 0: (55)

Using the strain-displacement relations (6), the three
stress vectors can be related to the displacements via
stiffness terms. If these relations are employed in equation
(55) for cylindrical anisotropy, a single system of equations
for the displacement vector {u} is obtained. In the used
form, which is simplified to the sole dependence on co-
ordinate r, this results in

r ½Q�
∂r

∂fug
∂r

∂r
þ r

	½R� ½K� þ ½K� ½R�T
 ∂fug
∂r

þ½K� ½T � ½K� fug¼ 0:

(56)

The matrices [Q] = [Ci1k1], [R] = [Ci1k2] and [T] = [Ci2k2]
are submatrices of the stiffness matrix [Cijkl].

Substituting the equation (57) in equation (56) yields six
eigenvalues and eigenvectors, which must be determined
separately for each load case, taking into account the re-
spective boundary conditions. A system of diffential
equations depending on the displacement vector {u} is
formed using these equilibrium equations, the kinematic
relations and the full tensor notation of the material law. The
solution is then searched in the form

fug ¼ rλifgig, (57)

where λi are eigenvalues and {gi} eigenvectors of the
system. For each load case these eigenvalues and -vectors
are determined using boundary conditions. The load cases
under consideration are internal and external pressure in
radial direction, a predetermined shear load for τrθ and τrz
on the inner and outer radius as well as torsional and axial
extension, all distributed uniformly over the hoop direction
θ. In the case of the latter two, a dependency on coordinate
z is taken into account for the displacements but not for the
stresses. For the respective load case, all six stress and

three displacement curves can be calculated. A superpo-
sition of the results of the individual load cases is also
possible.

A multi-layer tube model under internal pressure based
on the classical laminated plate theory was developed by
Xia et al.58 The fundamental equations are independent of z
and θ, what simplifies them and the system of governing
equations. This system of partial differential equations is
described for the displacements ur and uθ using global
stiffnesses [Cij] for (i, j = 1-6) in monotropic form. It is
solved using continuity conditions for ur, uθ, σr, τrθ and τrz
as well as boundary conditions σr(r1) = � p and σr(rN+1) =
τrθ(r1) = τrθ(rN+1) = τrz(r1) = τrz(rN+1) = 0.

Zu et al.59 established a thick-walled, multi-layered tube
model, defined by a ratio of radius to thickness of 10, under
internal pressure and expanded it for an isotropic, metallic
innermost layer. Compared to Xia et al.,58 they simplified
the model by neglecting the stresses τrθ, τrz and the related
conditions. In analytical investigations the model was
compared with the results of Xia et al.58 and the influence of
the metallic inner layer was investigated. Adding an in-
nermost metal layer of up to 4 mm layer thickness to a
laminate structure [54/� 54/� 54/54] with a constant inner
radius of 50 mm and a layer thickness of 0.5 mm resulted in
a reduction of the axial stresses by up to 70%.59 The twist
angle and the failure according to the Tsai-Wu criterion were
also reduced.

Cantilever tube under bending according to
Sarvestani et al.

Sarvestani et al.56 developed an approach for an orthotropic
tube which is clamped on one end and loaded with the
transverse force F on the other end using the cylindrical
coordinate system (z, θ, r), see Figure 3. The general
procedure has already been worked out in publications by
Sarvestani and Sarvestani53 as well as Sarvestani and
Sarvestani54 for plates.

It should be pointed out, that by comparsion with
Lekhnitskii2 a permutated notation of material law and
elastic constants is used. The first and third as well as the
fourth and sixth entries of the stress and strain vectors are
interchanged, whereby the rows and columns of the stiffness
matrix are also adjusted. In contrast to the aforementioned
models, the displacements, strains and stresses are dis-
cretized or interpolated over the radial component. Theo-
retical approaches are used for the other directions.56

Although there is no real variation along the axial com-
ponent z, since only different shear load values are used for
different positions. Based on the strain-displacement rela-
tions (6) the following displacement field is obtained by
integration and rearrangement
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uz,kðz,θ,rÞ¼ zr ðC5 cosθþC4 sinθÞ
þC6 zþuz,kðθ,rÞ,

uθ,kðz,θ,rÞ¼ zðC1 cosθ�C2 sinθ�C3 rÞ

� 1

2
z2 ðC4 cosθ�C5 sinθÞþuθ,kðθ,rÞ,

ur,kðz,θ,rÞ¼ zðC1 cosθþC2 cosθÞ

� 1

2
z2 ðC5 cosθþC4 sinθÞþur,kðθ,rÞ:

(58)

Moreover it is important that the unknown integration
constants C1-C6 are the same for each layer k to ensure
continuity of the displacements. In the so-called layerwise
theory (LWT) with index k = 1 to N + 1 for the layer
boundaries, the displacements of a general point are rep-
resented by

uzðz, θ,~rÞ ¼ uz, kðz, θÞVkð~rÞ,
uθðz, θ,~rÞ ¼ uθ, kðz, θÞVkð~rÞ,
urðz, θ,~rÞ ¼ ur, kðz, θÞVkð~rÞ:

(59)

The parameter N represents the total number of numerical
layers in the laminate, Vkð~rÞ the Lagrange interpolation
formula to discretize along the coordinate ~r of the k-th po-
sition and ~r the coordinate of thickness direction originated in
the center plane of the laminate. The local unknown functions
uz,k(z, θ), uθ,k(z, θ) and ur,k(z, θ), which are only dependent on
two coordinates, are found by re-formulating the displace-
ment field (58) using the principle of (59) to

uz, kðz, θ,~rÞ ¼ z ðRþ ~rÞðC5 cos θ þ C4 sin θÞ
þC6 zþ uz, kðθÞΨkð~rÞ,
uθ, kðz, θ,~rÞ ¼ z ðC1 cos θ � C2 sin θ � C3 ðRþ ~rÞÞ

�1

2
z2 ðC4 cos θ � C5 sin θÞ þ uθ, kðθÞΨkð~rÞ,

ur, kðz, θ,~rÞ ¼ z ðC1 cos θ þ C2 cos θÞ

�1

2
z2 ðC5 cos θ þ C4 sin θÞ þ ur, kðθÞΨkð~rÞ:

(60)

Note that the relation r ¼ Rþ ~r with mean radius R of
the tube was applied. The linear interpolation function
Ψkð~rÞ provides a continuous displacement behavior across
the thickness, but the transverse strains remain discontin-
uous. By increasing the polynomial of the interpolation, the
accuracy of the solution is increased. For linear interpola-
tion, the equations are56

Ψkð~rÞ ¼

8>>>>>>>><>>>>>>>>:

0 ~r ≤~rk�1,

Ψ2
k�1ð~rÞ ¼

1

hðk�1Þ ð~r � ~rk�1Þ ~rk�1 ≤~r ≤~rk ,

Ψ1
kð~rÞ ¼

1

hk
ð~rkþ1 � ~rÞ ~rk ≤~r ≤~rkþ1,

0 ~r ≥~rkþ1:

(61)

The parameter hk corresponds to the layer thickness of
the k-th position and Ψ1

kð~rÞ and Ψ2
k�1ð~rÞ to local linear

Lagrange interpolations. By using equation (60) with the
strain-displacement relations (6), the strains can be ex-
pressed in dependence of the integration constants, the
global lagrange interpolation and the unknown displace-
ments uz,k(θ), uθ,k(θ) and ur,k(θ) as functions only of hoop
direction θ. Subsequently, the equilibrium equations are
established by employing the strains to the principle of
minimum potential energy. This results in an equation
system with 3(N + 1) local equilibrium equations and un-
known local displacements. In addition, the unknown
displacements and constants C1-C6 can be represented as
functions of the stresses and the given shear load F0, which
is assumed to be uniformly distributed over the radius, see
Figure 3.

Finally the system of governing equations for the
displacements is obtained using the global constitutive law
in monotropic form and is solved by the use of boundary
conditions. For model verification, the axial stress was
compared with the model according to Lekhnitskii2 and
showed good agreement. An increase of fictious layers, by
additionally dividing the physical layers in the analysis,
showed an approximation of the stresses in thickness di-
rection in comparison to a finite element (FE) calculation.
A good agreement was also found to experimental studies

Figure 3. Cantilever tube model according to Sarvestani and Hojjati.45
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regarding three-point bending tests on pipes. Advantages
of using the LWT for the cylindrical, orthotropic tube are
simpler input values compared to FE calculations and a
more accurate representation of the stresses and defor-
mations in thickness direction compared to other tube
models.

Curved tube under bending according to Sarvestani
et al.

Furthermore, a new displacement-based model of an or-
thotropic, curved tube with a single layer was developed by
Sarvestani et al.57 for pure bending using the toroidal
elasticity and the method of successive approximation. The
toroidal elasticity (TE) is a known three-dimensional ap-
proach for the static analysis of thick-walled, curved tubes
and was developed i. a. by the authors Lang60 as well as Zhu
and Redekop.61 In contrast to cylindrical approaches of
straight pipes, the longitudinal axis is represented by an axis
of rotation Φ instead of a cartesian coordinate z, see
Figure 4.

The toroidal equilibrium equations can be established
using this coordinate system according to Sarvestani and
Gorjipoor55 with ρ = Rc + r cos θ to

∂σr
∂r

þ 1

r

∂τrθ
∂θ

þ 1

r
ðσr � σθÞ

þ1

ρ

�
∂τrΦ
∂Φ

þ ðσr � σθÞ cos θ � τrθ sin θ

�
¼ 0,

∂τrθ
∂r

þ 1

r

∂σθ

∂θ
þ 2

r
τrθ

þ1

ρ

�
∂τθΦ
∂Φ

þ τrθ cos θ � ðσθ � σΦÞ sin θ
�
¼ 0,

∂τrΦ
∂r

þ 1

r

∂τθΦ
∂θ

þ 1

r
τrΦ

þ1

ρ

�
∂σθ
∂Φ

þ2 τrΦ cos θ�2τθΦ sin θ

�
¼ 0,

(62)

The strain-displacement relations are

εr ¼ ∂ur
∂r

, (63a)

εθ ¼ ur
r
þ 1

r

∂uθ
∂θ

, (63b)

εΦ ¼ 1

ρ

�
ur cos θ � uθ sin θ þ ∂uΦ

∂Φ

�
, (63c)

γrθ ¼
1

2

�
1

r

∂ur
∂θ

þ ∂uθ
∂r

� uθ
r

�
, (63d)

γrΦ ¼ 1

2

�
∂uΦ
∂r

þ 1

ρ
∂ur
∂Φ

� uΦ
ρ
cos θ

�
, (63e)

γθΦ ¼ 1

2

�
1

r

∂uΦ
∂θ

þ 1

ρ
∂uθ
∂Φ

þ uΦ
ρ
sin θ

�
: (63f)

In contrast to the stress-based models, the material law
is used in stiffness formulation according to Her-
akovich62 for orthotropy. With permutation of the fourth
and sixth row as well as column towards Lekhnitskii,2 it
results in

8>>>>>><>>>>>>:

σr

σθ

σΦ

τrθ
τrΦ
τθΦ

9>>>>>>=>>>>>>;
¼

26666664
C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

37777775

8>>>>>><>>>>>>:

εr
εθ
εΦ
γrθ
γrΦ
γθΦ

9>>>>>>=>>>>>>;
: (64)

From the connection of the equilibrium equation (62)
and the stress-displacement relations, again obtained from
the strain-displacement relations (63a-63f) and the consti-
tutive law (64), the system of descriptive Navier equations
of the toroidal coordinate system is obtained as

Figure 4. Curved tube according to Sarvestani et al.57
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Uθ þ
�
1

ρ
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�
1

ρ

�2 bUΦ¼ 0:

(65)

The geometric parameter ρ = Rc + r cos θ follows from
the radius of the tube curvature Rc and the radial coordinate
of the tube r. As can be seen, the displacements can be
divided into a part independent of ρ, a linear-dependent, and
a nonlinear-dependent part. The coefficients in (65) are

Ur,n ¼ 1

2
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∂2ur,n
∂r2

þ 1

2r
C11
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∂2ur,n
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(66a)
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(66b)
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2
cosθ

∂uΦ,n
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�
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(66c)
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�
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∂Φ
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�
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UΦ,n ¼ 1

2
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2
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(66h)

bUΦ, n ¼ C33

2

∂2uΦ, n
∂Φ2 þ

�
C55

�
1

2
cos2 θ � cos θ

�
þC66

�
1

2
sin2 θ � sin θ

��
uΦ, n

þ ∂
∂Φ

��
C33 þ C55

2

�
ur, n cos θ

�
�
C33 þ C55

2

�
uθ, n sin θ þ C33

2

∂uΦ, n
∂Φ

�
:

(66i)

For equation (65) the subscripts n, which correspond to
the order of the coefficients and displacements, vanish and
for the later equation (68) they are used with n = 0-3. There
is no exact solution for the Navier equations of toroidal
elasticity, which is why the solution is approximated by the
method of successive approximation.57 The displacement
terms are obtained using the geometry parameter ε = ri/Rc

with

ur ¼ ur, 0 þ ε ur, 1 þ ε2 ur, 2 þ ε3ur, 3þ…,
uθ ¼ uθ, 0 þ ε uθ, 1 þ ε2 uθ, 2 þ ε3 uθ, 3þ…,
uΦ ¼ uΦ, 0 þ ε uΦ, 1 þ ε2 uΦ, 2 þ ε3 uΦ, 3þ…:

(67)
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For the displacement parts of the Navier equations, the
following equations are gained

Ur ¼ Ur, 0 þ ε Ur, 1 þ ε2 Ur, 2 þ ε3 Ur, 3þ…,
Ur ¼ Ur, 0 þ ε Ur, 1 þ ε2 Ur, 2 þ ε3 Ur, 3þ…,bUr ¼ bUr, 0 þ ε bUr, 1 þ ε2 bUr, 2 þ ε3 bUr, 3þ…:

(68)

Analogously, the equations forUθ,Uθ, bUθ andUΦ,UΦ, bUΦ

are obtained. ATaylor series approach is used for the terms
with ρ in the form

1

ρ
¼ ε� ε2 r cos θ þ ε3 r2 cos2 θ�…,

�
1

ρ

�2

¼ ε2�2 ε3 r cos θþ3 ε4 r2 cos2 θ�…:

(69)

After the equations (68) and (69) are inserted into the
equation system (65), the terms of the different orders of ε
are ordered and their coefficients are set to zero. This
results in equation systems for the displacements of the
respective order, which must be solved. The equation
system of zeroth order only consists of a homogeneous
solution, while the equation systems of higher order also
have a particulate solution. Both are found using initial
functions in trigonometric form. The general solution is
obtained by considering all single solutions in the general
displacement equations. For smaller geometric ratios ε
the first terms of low order already provide a good ap-
proximation of the exact solution. In their paper, Sar-
vestani et al.57 verify their model by matching the curved
isotropic case to literature values, the curved orthotropic
case to FE simulations and the straight orthotropic case to
the calculation method of Lekhnitskii.2 The straight tube
is approximated with a ratio of Rc/ri = 75 and all veri-
fications showed good agreement.

In Sarvestani and Hojjati,45 the displacement-based
model of Sarvestani et al.57 is extended to a multi-layer
composite using a layerwise theory and Lagrange inter-
polation functions in a similar way as described in section
Cantilever tube under bending according to Sarvestani et al.
for a straight cantilever tube.

State-Space approaches

In the state-space approach the governing system of
equations of a continuum is formulated in matrix form
and in dependence of a state vector. Even though the
state vector may only consist of stresses or displace-
ments, the common approach is to use a combination of
both. It is further appropriate to use state variables, that
are needed for continuity conditions over the radial
direction.

Axisymmetric tube formulations

In the research group surrounding Fan, Sheng and Ye, nu-
merous publications were developed to the state-space ap-
proach of thick-walled plates, shells or cylindrical shells
(tubes), see i. a. Fan and Sheng63 and Sheng and Le.64 In Fan
and Ding,65 a pipe or closed cylindrical shell clamped on both
sides under internal pressure is analytically described. How-
ever, this model applies only to axisymmetric loads, no
changes over θ and an approximation of the thickness direction
r using the method of successive approximation with N thin-
walled subcylinders. The exact solution is thus approximated,
but small errors remain. Compared to the FE solution, how-
ever, the stresses and displacements of the state vector can be
displayed continuously over the laminate thickness.65 The
method of successive approximation was introduced for iso-
tropic shells by Soldatos and Hadjigeorgiou66 and has been
extended to orthotropic shells by Hawkes and Soldatos.67

Since the differential equation system has variable co-
efficents for these models by virtue of the term 1þ ~r=R�1,
depending on the ratio of thickness coordinate~r to mean radius
R, a power series expansion for this term is used in the form
1þ ~r=R�1 ¼ 1�~r=Rþ ~r2=R2 to obtain constant coeffi-
cients.66 If the number of sublayers N tends to infinity, the
thickness of each subcylinder approaches zero and the usage of
the power series becomes more insignificant.67 Many of the
models are suitable for static as well as dynamic investigations
due to the formulation as an eigenvalue problem.

Sheng and Ye68 formulated a three-dimensional, semi-
analytic model of a multi-layer tube under axisymmetric
bending. In this case, the tube is clamped on both sides, as a
result of which the displacements become zero, and is
stressed over the entire length and circumferential direction
with a uniform internal or external pressure. Due to the
coupling between longitudinal and torsional deformation, the
3D analysis is used only for axisymmetric loads and the
stresses do not change over the circumferential component
θ.68 The displacements ur, uθ, uz and the stresses τrz, τrθ, σr in
thickness direction are used as state variables. First, the state
equation for a thin-walled single-layer tube is set up using a
displacement approach and a Fourier series approximation in
axial direction. Thinness is here defined by a ratio of wall
thickness to radius smaller than 0.01.68 The expansion to
thick-walled, multi-layered pipes is achieved by a radial
subdivision into N sub-tubes, each of which satisfies thinness
and adds fictive interphases within the layers to the real
interphases at the layer boundaries. The system can be solved
via continuity conditions of the state vector for all interphases
and boundary conditions at the uniformly stressed or fixed
envelope surfaces. The remaining three stresses can be dis-
continous. Analytical examples show the displacement and
stress course over the axial and radial component. The basis
for the approach by Sheng and Ye68 is the use of a recursive
formulation of the state equations and continuity conditions at
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the interphases introduced in Fan and Ye69 for thick-walled
plates. By this notation, the order of the state equation of the
entire laminate is independent of the number of sub-layers N
since the interphase boundary conditions must not be inte-
grated into the global equation.64

In Ye and Soldatos70 the recursive algorithm according to
Fan and Ye69 is also used in combination with the division
into N sub-tubes for the fulfillment of thinness in each
fictitious layer. As the continuum used, an open as well as a
closed cylindrical shell is described under general surface
traction. The respective loads are usually applied in dy-
namic form as harmonics via Fourier series. The core of the
paper is the convergence consideration of the displacement
and stress profiles with increasing number of sub-layersN. It
is expected that as the number increases, the approximate
solution approaches the exact solution of three-dimensional
elasticity. It was found that for more complex loads, such as
bending, convergence occurs much later, even though the
examples explained in Ye and Soldatos70 only represent
internal and external pressure considerations. Ye and Sol-
datos70 validate their approach by comparison with other,
exact models of cylindrical shells under radial pressure.

Tube under bending according to Tarn and Wang

In addition to axisymmetric loads, Tarn and Wang30 are
treating the load case of pure bending in their tube model
formulated in state-space. As inmost pipemodels, the loads do
not vary along the axial coordinate and the bending load is not
coupled to the other loads. An innovation is the formulation of
the state vector as a function of r. Thus, the system matrix of
the state equation becomes independent of r and a solution by
ordinary matrix algebra is made possible. The state vector {R}

becomes ur, uθ, uz, r σr, r τrθ, r τrzf gT . The equilibrium
conditions (5), as also used in Lekhnitskii,2 are obtained by
reformulation with the multiplication of r and ∂/∂z = 0 to

∂r σr
∂r

þ ∂τrθ
∂θ

� σθ ¼ 0,

∂r τrθ
∂r

þ ∂σθ
∂θ

þ τrθ ¼ 0,

∂r τrz
∂r

þ ∂τθz
∂θ

¼ 0:

(70)

Using the monotropic material law in stiffness formu-
lation and strain-displacement relations (6), the material law
of each layer k can be expressed by

8>>>>>>>>>>><>>>>>>>>>>>:

σr

σθ

σz

τθz

τrz

τrθ

9>>>>>>>>>>>=>>>>>>>>>>>;
k

¼

2666666666664

C11 C12 C13 C14 0 0

C21 C22 C23 C24 0 0

C31 C32 C33 C34 0 0

C41 C42 C43 C44 0 0

0 0 0 0 C55 C56

0 0 0 0 C65 C66

3777777777775
k

�

�

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:
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r

∂uθ
∂θ
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r
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∂z

∂uθ
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þ 1

r

∂uz
∂θ
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þ ∂ur
∂z

1

r

∂ur
∂θ

þ ∂uθ
∂r

� uθ
r

9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>;
k

:

(71)

Note again the notation sequence, which corresponds
without permutation to the notation of Lekhnitskii.2 From
the first equation of (71) follows

∂ur
∂r

¼
� bC12 �

�bC12
∂
∂θ

þbC14 r
∂
∂z

�
�
�bC14

∂
∂θ

þbC13 r
∂
∂z

�
8>>><>>>:

9>>>=>>>;�

8><>:
ur
uθ
uz

9>=>;þ 1

C11
σr,

(72)

whereby for i, j = 1-4. With this equation (72) inserted into
the second, third and fourth equations of (71), the stresses
are expressed by
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with reduced stiffnesses Qij = (Cij � C1i C1j)/C11 for i, j = 1-
4. The fifth and sixth equation of (71) yield
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And equations (72) to (73) applied to the new equilibrium
equation (70) provide
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Finally, writing equations (72) to (75) in matrix form
leads to the state equations in the form of equation (8) to

∂
∂r

ur

uθ

uz

r σr

rτrθ

r τrz

8>>>>>>>>>>><>>>>>>>>>>>:

9>>>>>>>>>>>=>>>>>>>>>>>;
¼ 1

r

�bC12 d12 d13
1

C11
0 0

� ∂
∂θ

1 0 0 C55 C56

�r
∂
∂z

0 0 0 C56 C66

Q22 d42 d43 bC12 � ∂
∂θ

0

�Q22
∂
∂θ

d52 d53 �bC12
∂
∂θ

�1 0

�Q24
∂
∂θ

d62 d63 �bC14
∂
∂θ

0 0

26666666666666666666664

37777777777777777777775

�

ur

uθ

uz

r σr

r τrθ

r τrz

8>>>>>>>>>>><>>>>>>>>>>>:

9>>>>>>>>>>>=>>>>>>>>>>>;
,

r σθ

r σz

r τθz

8>><>>:
9>>=>>;¼

Q22 Q22
∂
∂θ

þQ24 r
∂
∂z

Q24
∂
∂θ

þQ23 r
∂
∂z

Q23 Q23
∂
∂θ

þQ34 r
∂
∂z

Q34
∂
∂θ

þQ33 r
∂
∂z

Q24 Q24
∂
∂θ

þQ44 r
∂
∂z

Q44
∂
∂θ

þQ34 r
∂
∂z

266666664

377777775

�
ur

uθ

uz

8>><>>:
9>>=>>;þ

bC12bC13bC14

8>><>>:
9>>=>>;r σr

(76)

with
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and�
C55 C56

C56 C66

�
¼ 1

C55 C66 � C2
56

�
C66 �C56

�C56 C55

�
: (78)

After substituting the displacement field according to
Lekhnitskii2 into the state equation (76), the solution is
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searched for using the following initial functions for the
state vector8>>>>>>>><>>>>>>>>:

ur
uθ
uz

r σr
r τrθ
r τrz

9>>>>>>>>=>>>>>>>>;
¼

8>>>>>>>><>>>>>>>>:

U1ðrÞ
V1ðrÞ
W1ðrÞ
X1ðrÞ
Y1ðrÞ
Z1ðrÞ

9>>>>>>>>=>>>>>>>>;
þ

8>>>>>>>><>>>>>>>>:

U2ðrÞ cos θ
V2ðrÞ sin θ
W2ðrÞ sin θ
X2ðrÞ cos θ
Y2ðrÞ sin θ
Z2ðrÞ sin θ

9>>>>>>>>=>>>>>>>>;

þ

8>>>>>>>><>>>>>>>>:

U3ðrÞ sin θ
V3ðrÞ cos θ
W3ðrÞ cos θ
X3ðrÞ sin θ
Y3ðrÞ cos θ
Z3ðrÞ cos θ

9>>>>>>>>=>>>>>>>>;
:

(79)

This results in three sets of uncoupled first-order dif-
ferential equations separated into axisymmetric loads (index
’1’) and bending loads around x as well as y axes (indices ’2’
and ’3’), which have to be solved separately. The unknown
coefficients U1(r)-Z3(r) are determined in the solution
procedure. Thus a constant distribution over θ for axi-
symmetric and a trigonometric distribution for bending
loads is given by the initial functions. The solution of the
single systems is again achieved by the search for a ho-
mogeneous and particulate solution and the use of boundary
conditions. For a multi-layer composite, the state equation
for each layer k has to be solved, where continuity con-
ditions of the state vector are used as additional boundary
conditions.

Determination of an equivalent
flexural stiffness

In addition to the elastic constants of the individual layers,
many compliance-based models also provide an equivalent
bending stiffness hEIi. In general this equivalent stiffness is
represented by the relationship between bending moments
and curvatures, for example in the model of Jolicoeur and
Cardou46 in section Multi-Layered tube according to Joli-
coeur and Cardou, by

Mx ¼ hE Ii κx,
My ¼ hE Ii κy: (80)

There is no coupling between Mx and κy or My and κx,
which means that the curvatures only occur in the plane
perpendicular to the bending load axis.46 Using the
equation (49c) the moment Mx can be represented as a
function of the stress σz. Considering that there are no
axisymmetric loads, and thus ε, q and the constants -KI

1-K
I
2

become zero, the equivalent bending stiffness follows

from integration of the applied stresses and a reformulation
of (80) to

hEIi¼
XN
n¼0

π
S33,n

(X4
i¼1

Ki,n ½S13,nþS23,n mi,nþ1ð Þ

� S34,n gi,nmi,n

�rmi,nþ2
n �rmi,nþ2

nþ1

mi,nþ2

þ μ1,n S13,nþ3S23,nð Þ�2μ2,n S34,n�1
� � r4n�r4nþ1

4

�
:

(81)

The abbreviations gi,n, mi,n and μ1,n can be found from
the equation (40) and Ci,n are known for each layer n after
solving the model.

Geuchy Ahmad and Hoa71 are comparing the approach
for the equivalent bending stiffness of an anisotropic tube
using the three-dimensional elasticity theory according to
Jolicoeur and Cardou,46 see equation (81), with the classical
approach from isotropic strength of materials and beam
theory

E Icircular ring ¼ E
π
64

D4
a � D4

i

	 

: (82)

The surface moment of inertia I is directly applied for a
circular ring with the inner and outer diameter Di, Da. This
approach has only a limited validity for transversely iso-
tropic and orthotropic materials such as composites. The
global bending stiffness EzI of the multilayer composite can
be calculated by summing the bending stiffnesses of the
individual layers of the pipe Ez,nIn to

Ez I ¼
XN
n¼1

Ez, n In

¼
XN
n¼1

E1

cos4αn þ E1

G12 � 2 ν12
cos2αn sin

2αn þ E1

E2
sin4αn

In:

(83)

The global elastic modulus of a pipe layer Ez,n is de-
termined by the engineering constants of the single layer E1,
E2, G12, ν12 and the respective fiber angle αn according to
the approach of Hyer.72 However, this approach does not
consider the interaction of the individual layers.

For thick-walled pipes of carbon fiber-reinforced plastic
with layer structure [α/� α] the computed flexural stiff-
nesses following equations (81) and (83) showed a good
agreement for fiber angles of α = 0° as well as α > 50°.
However, in the 0° < α < 50° section, significantly higher
values were found for the calculation according to Jolicoeur
and Cardou46 with a maximum deviation of approximately
250 % at fiber angle 15°.71 In bending tests on thick-walled
tubes (outer diameter 61.1 mm, wall thickness 11.5 mm,
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length 1016 mm) with layering of [2545/(�25)45] and [25/
�25]90 the equivalent bending stiffness hEIi was deter-
mined by the maximum axial strain εmax

z ðsÞ in the pipe
center at a deflection s and the adjacent bending moment
Mx(s) using

hE Ii ¼ MxðsÞ
εmax
z ðsÞ

Da

2
: (84)

The experimentally obtained equivalent bending stiff-
nesses of the two pipes according to (84) are denoted by hE
Ii1 = 29.1 kNm2 and hE Ii2 = 32.3 kNm2.71 The values for the
approach of strength of materials (83), calculated under the
same assumptions, are clearly below the test results with Ez
I = 13.5 kNm2, while the values calculated using equation
(81) according to Jolicoeur and Cardou46 with hE Ii1,jol =
33.6 kNm2 and hE Ii2,jol = 35 kNm2 are 8-14 % above the
experimental results.71 The model according to Jolicoeur and

Cardou46 thus provides usable values which are not fully
achieved in the experiment due tomanufacturing inaccuracies
and errors such as porosities and angular deviations.

Furthermore, Shadmehri et al.73 are concerned with the
comparison of the bending stiffness from the classical
approach using the moment of inertia according to Hyer72

with an equivalent bending stiffness derived from the non-
classical laminated beam theory. This approach is based on
the first-order shear deformation theory (FSDT) and con-
siders transverse shear deformations, a coupling between
tension and torsion and a coupling between bending and
transverse shearing, but no deformations and thus ovali-
zation in the cross-section. By utilizing the elements of
the ABD-matrix of the non-classical laminate theory,
the mean radius R of the tube and the simplification
A ¼ A11 A33 � A2

13, the equivalent bending stiffness can be
expressed by

hEIi ¼ Rπ


R2

�
A22 � A12ðA33 A12 � A13 A23Þ

A

� A23ðA23 A11 � A13 A12Þ
A

�
�
A66 � A16ðA33 A16 � A13 A36Þ

A
� A36ðA11 A36 � A13 A16Þ

A

�
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�
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A

�
�
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A44
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45

A55
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Four different pipe structures [9020/020], ½ð9010=010Þ3= ±
4525�, [9030/±2545/905/±3020/905/±4520] and [Aluminum 1mm/
9020/±2520/905/±3025/905/±4510] of carbon fiber-reinforced
plastic were examined and compared with three-point and
four-point bending tests, respectively. The two theories agree
well for pipe type 1 with only approx. 2 % deviation.
Shadmehri et al.73 are linking this to the cross-ply lamination,
leaving out the fact that this tube type is the only onewhich can
nearly be assumed thin-walled with a ratio of thickness to
mean radius of t/Dm = 0.07. Thinness is given by Zhang et al.

48

at a ratio of less than 0.05, whichmeans that all tubes examined
by Shadmehri et al.73 must be considered thick-walled. Al-
though, compared with the cross-ply laminated tubes all other
types show significantly higher values of 0.15 to 0.27, which is
why an influence can not be ruled out. In bending tests a
somewhat lower bending stiffness is achieved than predicted
by the non-classical laminated beam theory.

The equivalent bending stiffness from the non-classical
laminate theory according to Shadmehri et al.,73 see equation

(85), is compared by Derisi et al.74 with a simulation technique
in which an equivalent aluminum tube is assigned to a com-
posite pipe and the flexural stiffness is determined by equation
(82). First, the composite pipe with inner diameter Di and wall
thickness h is transferred to an equivalent sandwich plate with a
core layer of thickness Di and a respective laminate height h on
both sides. This plate has a unit width and the stiffness of the
core layer is assumed to be zero. Via classical lamination theory
the flexural stiffness is determined for the plate according to

hEIiplate,CLT ¼ 1

d11
¼ detD

D22D66�D2
26

¼D11 D22D66�D2
26

	 
�D12 D12D66�D26D16ð Þ
D22D66�D2

26

þD16 D12D26�D22D16ð Þ
D22D66�D2

26

:

(86)

Figure 5. Schematic representation of the determination of the equivalent flexural rigidity by a comparative method according to Derisi
et al.74
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This bending stiffness of the plate does not correspond to
the equivalent bending stiffness of the composite pipe, but is
proportional to it.74 This bending stiffness is then equated with
the bending stiffness of an aluminum sandwich plate of un-
known thickness t and unit width. This bending stiffness is

hE Iiplate, alu ¼ hE Iiplate, CLT¼ 1
ðDiþ2tÞ3 � D3

i

12
Ealu: (87)

The sole unknown is the thickness t. Assuming that the
core thickness Di again corresponds to the inner diameter of
an aluminum tube with wall thickness t, the equivalent
bending rigidity hEIi of the equivalent aluminum tube and
therefore the composite tube can now be calculated with
equation (82). The procedure is illustrated in Figure 5.

For three different laminates and lay-ups both methods
were compared with one another and three-point or four-
point bending tests, respectively. In the experiment, the
force on the compression die and the axial strain on the
center of the opposite tube side were recorded. The bending
stiffness was then calculated by equation (84). For all types
of tubes, which were also used in Shadmehri et al.,73 the
closed analytical method according to equation (85) and the
comparative technique according to Derisi et al.74 only
showed about 2 % difference, while both showed 5-10 %
deviation to the experimental results.

Conclusion

All presented tube models have three-dimensional stress,
strain and displacement distributions, but show no changes
over the tube axis. The approaches for only axisymmetric
loads as well as the state-space approaches are furthermore
independent of the circumferential coordinate θ. However,
even if a dependency is present for the models regarding
bending loads, the courses are given by trigonometric initial
functions with unknown amplitudes, which is only feasible
in tube sections where the St. Vernant principle is appli-
cable. Therefore, the main focus of the models is on the
differences in the gradients over the thickness direction r
and their formulations of the continuity conditions at the
layer transitions, whether their fictious or real. For tubes
under bending loads only the stress-based models based on
the Lekhnitskii formulation are delievering exact solutions
in all three directions without approximations in form of
interpolations, series expansions or numeric methods. Be-
side the differences in the radial distribution and the basic
formulation, a distinction of the models in form of the used
displacement field is possible. Thus the model of Jolicoeur
and Cardou46 allows a warping and rotation of the pipe
cross-section that the models of Lekhnitskii2 and Xia et al.39

are not considering. Further limitations for all models are
the assumptions of small deformations and a constant
curvature as well as the fact that different load cases are only
superposed but not coupled.

In the literature there is no comparison of the different
pipe models to be found. Validations of bending models
with finite element calculations, if at all, are delivered only
for the simplest case of pure bending. An exception to that
rule are Sarvestani et al.,56 who deal with a tube under
cantilever load, although their model is also only applicable
in the mid section of the tube far away from load intro-
duction or mounting. Experimental studies are even rarer.
Derisi et al.,74 Geuchy Ahmad and Hoa71 as well as
Shadmehri et al.73 compared different methods to calculate
an equivalent bending stiffness and therefore the deflection
with three- or four-point bending tests. Only one of these
methods is based on an anisotropic, three-dimensional tube
model by Jolicoeur and Cardou.46 A more detailed com-
parison of bending tests on tubes and analytical formula-
tions by Jolicoeur and Cardou46 was carried out by Derisi
et al.74 The described models and papers by
Sarvestani45,53–57 included validations with finite element
method and experimental studies. Potential for future re-
search work thence lies in the comparison and validation of
these models as well as the extension to more complex load
cases, such as coupled loads, and the consideration of
singularities or inhomogeneities. In addition, it is useful to
investigate different symmetry effects of the layer structure
and, for example, to consider the influence of the ondulation
of the individual layers in the winding process, which turns
the positive and negative individual layers into bi-
directional individual layers. More on how the winding
process of fiber-reinforced plastic tubes affects the bi-
directional layers can be read at Kastenmeier.75 Addi-
tional studies on the effects of scale reduction can also be
carried out. Even though in most cases, calculations using
the finite element method are more feasible and accurate.
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