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Abstract
The LuGre model is widely used in the analysis and control of systems with friction. Re-
cently, it has even been made available in the commercial multibody dynamics simulation
software system Adams. However, the LuGre model exhibits well-known drawbacks like too
low and force rate-dependent break-away forces, drift problems during sticking periods, and
significant differences in non-stationary situations between the pre-defined friction law and
the one produced by the LuGre model. In the present literature, these problems are supposed
to come from the model dynamics or its nonlinear nature. However, most of these drawbacks
are not simple side effects of a dynamic friction model but are caused in the LuGre approach,
as shown here, by a too simple and inconsistent model of the bristle dynamics. Standard ex-
amples and a more practical application demonstrate that the LuGre model is not a “what
you see is what you get” approach. A dynamic friction model with accurate bristle dynamics
and consistent friction force is set up here. It provides insight into the physical basis of the
LuGre model dynamics. However, it results in a nonlinear and implicit differential equation,
whose solution will not be easy because of the ambiguity of the friction characteristics. The
standard workaround, a static model based on simple regularized characteristics, produces
reliable and generally satisfactory results but definitely cannot maintain a stick. The paper
presents a second-order dynamic friction model, which may serve as an alternative. It can
maintain a stick and produces realistic and reliable results.

Keywords Dynamic friction model · LuGre model · Asymmetric regularization ·
Break-away force · Stick-slip · Multibody dynamics

1 Introduction

The LuGre friction model has become very popular for the analysis of stick-slip phenomena
and has recently been launched in the commercial multibody dynamics simulation software
system Adams [1]. The first version of the LuGre friction model [2] published in 1995 claims
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that this new model is based on the average behavior of elastic bristles. A first-order bristle
dynamics is proposed but not derived from a real bristle model. This first paper has already
reported the dramatic loss of the break-away force with an increasing rate of the applied
force. The revisited version of the LuGre model [3] focuses on the stick-slip motion and the
rate dependency. A demonstration example unveils the drift problem of the LuGre model. A
force significantly lower than the sticking limit applied to a body resting on a rough surface
moves the body slightly forward. However, the body does not return to its original position
when the applied force is set back to zero.

A non-smooth friction characteristics, including the sudden change from sticking to slid-
ing, specifies the input to the LuGre model. However, the LuGre model dynamics transfers
this non-smooth to very smooth friction characteristics, which differs in parts considerably
from the specification. As reported but not further investigated in [4] this severe drawback
also holds for other standard dynamic friction models.

Most of these drawbacks are not inevitable side effects but are caused in the LuGre
approach by too poor a model of the bristle dynamics. As demonstrated here, the LuGre
approach represents just a simplified first-step approximation of an accurate bristle model.
The setup of a model with accurate first-order bristle dynamics and a consistent friction force
is a straightforward task. It results in a nonlinear and implicit differential equation whose
solution will not be easy because of the ambiguity of the friction characteristics. However,
the implicit bristle model provides at least some insight into the physical basis of the LuGre
model dynamics.

Standard examples and a more practical application demonstrate that the LuGre model
is not a “what you see is what you get” approach. The standard workaround, a standard
static friction model based on regularized friction characteristics, produces reliable and gen-
erally satisfactory results, but it definitely cannot maintain a stick. The paper presents a
second-order dynamic friction model, which applies a more sophisticated and asymmetric
regularization of general friction characteristics. It corresponds in the results to the implicit
bristle-based friction model, can maintain a stick, and may serve as a practical alternative to
the LuGre approach or other standard dynamic friction models.

2 Bristle-based dynamic friction modeling

2.1 General approach

As reported in [2] and [3], the LuGre friction model is supposed to be based on the average
behavior of elastic bristles. Figure 1 shows two bodies, which have contact in point Q, where
the broken line indicates the contact plane. Body i moves relative to body j, resulting in the
velocity component vij measured in the contact plane. A fictitious bristle mounted at body i
models potential shear deformations of body i and j in the contact area. The top of the bristle
slides along the contact plane with the velocity

vS = vij − ż (1)

The coordinate z represents the bristle deformation, and ż names its time derivative. The
friction force FR acting in the contact point Q is transferred via the bristle force

FB = σ0 z + σ1 ż (2)

to body i, where the parameters σ0 and σ1 model the visco-elastic properties of the fictitious
bristle.
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Fig. 1 Bristle-based dynamic friction model and general friction characteristics, where FRi = FR and
FRj = −FR define the forces applied to body i and j , and FR = FB represents the force balance at the
top of the massless bristle

Analytical friction force models have become a standard in multibody or control appli-
cations [5] and are also applied in commercial products [6]. In a more general approach, the
friction force

FR(vS) = vS

|vS | μ(|vS |) FN (3)

is modeled here as the product of the velocity-dependent friction coefficient μ = μ(|vS |)
and the normal force FN . The term vS/|vS | correlates the sign of the friction force to the
sign of the sliding velocity vS because the model approach in Fig. 1 implies that the sliding
velocity and the friction force act in the opposite direction. The friction force FR(vS) remains
undefined at vanishing sliding velocities vS = 0, where the inequality |FR| ≤ μs FN just
limits the ambiguity of the friction force according to Coulomb. The friction characteristics
depending on the velocity

μ(|vS |) = μd + (μs − μd) e−(|vS |/vA)α + ν |vS | (4)

combines the Coulomb friction with the Stribeck effect. The first two parts correspond to
the standard LuGre model, where, similar to [7], the friction force is replaced by the fric-
tion coefficient. A parameter ν > 0 finally adds a simple viscous component. The velocity
parameter vA > 0 and the exponent α ≥ 1 model the attenuation pattern of the static friction
value μs to the dynamic friction value μd thus describing the Stribeck affect. The viscous
component ν |vS | takes into account the hydrodynamic lubrication for larger sliding veloc-
ities |vS | � vA. Note that, in addition, this simple model supplement will affect the attenu-
ation pattern of the friction characteristics. In practical applications, this influence is hardly
noticeable because the Stribeck effect takes place in a very low velocity range, where the
viscous part is still very small. The friction characteristics defined in (4) is computed by the
Matlab function uty_mu provided in Listing 8.

According to (1) and (3), the friction force FR is a function of the relative velocity vij

and the time derivative ż of the bristle deformation. The bristle force FB as defined in (2)
depends on the bristle deformation z and its time derivative. Then, the force balance at the
top of the bristle FR = FB or f = FR −FB = 0, respectively, results in an implicit first-order
differential equation

f = FR(vij − ż) − (σ0 z + σ1 ż) = 0 (5)

which defines the dynamics of the bristle deformation. The differential equation is strongly
nonlinear and, due to the Coulomb friction, also ambiguous, which makes its general solu-
tion a challenging task.
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Liftoff situations, which in multibody simulations cannot be ruled out in general, are
characterized by a vanishing normal force FN = 0, which implies a vanishing friction force
FR = 0. In this special case, the differential equation (5) is simplified to

−(σ0 z + σ1 żFR=0) = 0 or żFR=0 = −(σ0/σ1) z (6)

Hence, the bristle eigen-dynamics or the decay of an existing bristle deformation z �= 0
during liftoff is controlled by the ratio bristle stiffness σ0 over bristle damping σ1.

The function fzero, which uses a combination of bisection, secant, and inverse
quadratic interpolation methods, is applied in Matlab as a standard for solving nonlinear
equations in one variable. It can solve (5), although the friction force characteristics FR(vS),
as defined by (3) and (4), exhibits a discontinuity at vanishing sliding velocities vS = 0
where the top of the fictitious bristle sticks to the contact plane. However, the Matlab func-
tion fzero requires an appropriate initial guess ż = żA, which is already sufficiently close
to the expected solution. Depending on the complexity of the friction force characteristics,
the force balance (5) can have several solutions. However, a nonlinear equation solver like
fzero delivers just one of it, which makes the implicit friction model in this straightfor-
ward application of less practical use. That is why the implicit bristle model is just applied in
Sect. 4.3 within the pulse load example as a reference for the second-order bristle model. It is
represented by the Matlab functions uty_fr_impl and uty_bforce_bal as provided
in the Listings 6 and 7.

Structural tire models incorporate the dynamics of bristle-like contact elements described
by implicit differential equations similar to (5). The structural tire model FTire [8] uses an
additional discrete state variable to distinguish between possible stick and slip solutions and
applies a fully implicit formula to achieve a reliable representation of the nonlinear bristle
dynamics.

2.2 Approximate solution

The Newton-Raphson algorithm provides another approach to solving nonlinear equations.
Applied to (5), it yields the iteration scheme

żk+1 = żk −
(

df

d ż

)−1

f (żk) for k = 0,1,2, . . . (7)

Taking (1) into account, the function derivative results in

df

d ż
= d

d ż

(
FR(vij − ż) − (σ0 z + σ1 ż)

)
= dFR(vS)

dvS

dvS

d ż
− σ1

= dFR(vS)

dvS

(−1) − σ1 = −
(

dFR(vS)

dvS

+ σ1

) (8)

The friction force FR(vS) defined by (3) and (4) exhibits a sharp bend at vanishing sliding
velocities vS = 0. That is why the discontinuous derivative of the friction force with respect
to the sliding velocity is approximated, similar to [9], by its global derivative

dFR(vS)

dvS

≈ FR(vS)

vS

=
vS

|vS | μ(|vS |)FN

vS

= μ(|vS |)FN

|vS | (9)
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Then, the iteration scheme (7) results in

żk+1 = żk −
(

−
(

μ(|vij −żk|)FN

|vij −żk| + σ1

))−1(
FR(vij −żk) − (σ0 z + σ1 żk)

)

= żk +
(
vij −żk

)
μ(|vij −żk|)FN − (σ0 z + σ1 żk) |vij −żk|
μ(|vij −żk|)FN + σ1 |vij −żk|

(10)

where the definition of the friction force (3) is also taken into account. As a matter of fact,
the iteration formula (10) is of little practical use because it is close to sticking situations,
characterized by vij − żk → 0, and its convergence is poor. However, it can be started with
the trivial guess żk=0 = 0 and delivered in the first step of the approximation

żA = ż1 = vij μ(|vij |)FN − σ0 z |vij |
μ(|vij |)FN + σ1 |vij | (11)

where the velocity-dependent friction characteristics μ defined in (4) is evaluated for the
bristle in a steady-state where ż = 0, and vS = vij will hold. The first-step approximation
(11) provides at least an initial guess ż ≈ żA for the Matlab solver fzero applied to (5).

Neglecting in the denominator of (11) the dissipative term σ1|vij | in comparison to the
steady-state friction force μ(|vij |)FN , the first-step approximation is simplified to

żA ≈ vij μ(|vij |)FN − σ0 z |vij |
μ(|vij |)FN

= v − σ0
|v|

μ(|v|)FN

z (12)

where, in the final version, v abbreviates the symbol vij . As shown in Sect. 2.3, this further
simplified first-step approximation corresponds to the bristle dynamics as defined in the
LuGre friction model. However, it requires FN �= 0 and is therefore not valid at liftoff.

2.3 The LuGre approach

In the revisited version [3], the LuGre friction model is defined as

ż = v − σ0
|v|

g(v)
z (13)

g(v) = Fd + (Fs − Fd) e
−

(
v/vA

)α

(14)

where the relative velocity of body i relative to body j, measured in the contact plane, is just
named v instead of vij as used here. In contrast to the notation applied in [3], the Coulomb
friction force Fc is substituted by the dynamic friction force Fd , and the fictitious velocity,
which determines how quickly g(v) approaches the dynamic friction force Fd , is named vA

instead of vs to avoid a confusion with the sliding velocity vS as defined in (1).
The velocity-dependent function g(v) implies g(v) > 0, which is automatically granted

for the often applied exponent α = 2. The use of arbitrary exponents α ≥ 1 requires that (14)
is evaluated with |v| and not with the sign-dependent velocity v.

The LuGre approach in [3] defines the dynamic friction force as

F
dyn

R = σ0 z + σ1 ż + f (v) = FB + f (v) (15)

where FB names the bristle force as specified in (2), and f (v) models the viscous part.
According to Fig. 1, the bristle force acts as a dynamic buffer, which transfers the friction
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force generated in the contact point Q to the body. Hence, from a physical point of view,
the viscous part of the friction force should be considered via the friction characteristics, as
done in (4), and not simply added to the dynamic bristle force, as proposed in the LuGre
approach (15).

The function g(v) or g(|v|) represents the steady-state friction force. Similar to (3) and
as done in [7], it can be separated into the product of the friction coefficients μ(|v|) and the
normal force FN

g(v) → g(|v|) = μ(|v|)FN =
(

μd + (μs − μd) e
−

(|v|/vA

)α
)

FN (16)

Then, the LuGre bristle dynamics (13) can be written as

ż = v − σ0
|v|

μ(|v|)FN

z (17)

A comparison with the simplified first-step approximation (12) reveals that the LuGre bristle
dynamics represents just a first and, in general, poor guess to the solution of the bristle
dynamics defined by (5). As a consequence, the LuGre model generates dynamic friction
forces, which differ in parts considerably from the pre-defined friction characteristics and
cause the drawbacks reported in literature and demonstrated here.

The Matlab function in Listing 5 provides the LuGre friction model as defined by (15)
and (17), where the viscous part is modeled by f (v) = νFNvij . The slightly modified LuGre
approach

ż = v μ(|v|)FN − |v|σ0 z

μ(|v|)FN + |v|σ1
(18)

μ(|v|) = μd + (μs − μd) e− (|v|/vA)α + ν |v| (19)

F
dyn

R = σ0 z + σ1 ż = FB (20)

includes liftoff situations (FN =0) and is consistent to the bristle model described in Sect. 2.
But, even the modified bristle dynamics (18) represents just a rather poor first-step approxi-
mation and does not eliminate any of the reported drawbacks of the LuGre approach.

3 Regularized friction models

3.1 Standard and enhanced regularization

Figure 2a illustrates a standard regularization of the friction force characteristics. The am-
biguous part at vS = 0 is stretched to a finite velocity interval −vr ≤ vS ≤ +vr , where vr > 0
is a small fictitious velocity parameter, and FR(±vr) = ±Fs define the friction force values
which correspond to the static values Fs = ±μsFN . A simple straight line from (−vr ,−Fs)

to (+vr ,+Fs) or the parabolic approach

FR(vS) = μs

vS

vr

(
2 − |vS |

vr

)
FN for |vS | ≤ vr (21)

provides the friction force values in the regularization range −vr ≤ vS ≤ +vr . Outside the
regularization range, the friction force is obtained by (3) and (4), where the friction char-
acteristics μ = μ(|vS | − vr) provides a smooth transition to the regularization range. The
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Fig. 2 Standard and enhanced regularization of the friction force characteristics

regularized friction force characteristics is continuous and ready for use in general multi-
body simulations. However, it approximates stick by slow creep and cannot maintain stick.

Similar to the enhanced dry friction model, which is used in [10] to simulate lockable
braking torques, the regularized friction characteristics is shifted in Fig. 2b horizontally
such that it intersects the ordinate at the force value F0 required to maintain stick. The
parabolic regularization (21) provides the horizontal shift of the regularized friction force
characteristics FR(vS) as

�vS = F0

|F0| vr wF with wF =
{

1 − √
1 − |F0|/Fs if |F0| ≤ Fs

1 elsewhere
(22)

where the term F0/|F0| adjusts the shift to the sign of the sticking force value. The regu-
larization velocity vr > 0 defines the shift limits |�vS | ≤ vr . The enhanced regularization
is asymmetric but able to maintain stick. The Matlab function uty_fr_enh provided in
Listing 4 performs the corresponding computation.

3.2 Second-order bristle model

The first-order dynamics of a massless fictitious bristle is defined by the force balance FR =
FB , which results in the nonlinear and implicit differential equation (5). Approximating the
inertia force of the fictitious bristle by mb z̈, a second-order bristle dynamics is defined by

mb z̈ = FR − FB = FR(v − ż) − (σ0 z + σ1 ż) (23)

where mb denotes the fictitious bristle mass, and (1) to (3) are used to model the friction and
bristle forces FR and FB . The parameters σ0 and σ1 defining the visco-elastic properties of
the bristle are introduced in Sect. 2 and visualized in Fig. 1. At liftoff (FR = 0) the bristle
dynamics (23) is reduced to the homogeneous second-order differential equation mbz̈ +
σ1 ż + σ0 z = 0. A fictitious bristle mass of

mb = σ 2
1

4σ0
(24)

results in two real and identical eigenvalues λ1 = λ2 = −σ1/(2mb) = −2σ0/σ1, which rep-
resent the aperiodic case and avoid unwanted oscillations of the fictitious bristle.
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The top of the bristle slides with the velocity vS along the contact area (see Fig. 1). It
sticks at vS =0, which according to (1), is the case if ż=vij will hold. To maintain stick,
the friction force FR(vS =0) must equal the bristle force FB(z, ż=v) as defined by (2). As a
consequence

F0 = FB(z, ż=v) = σ0 z + σ1 vij (25)

provides the force required for the enhanced regularization of the friction characteristics,
illustrated in Fig. 2b and defined by the horizontal shift (22). The computation of the second-
order bristle model is straightforward and performed by the lines 22 to 26 in the Matlab
function friction_models provided in Listing 3.

4 Standard demonstration models

4.1 Model setup

Figure 3 presents two standard demonstration models to study friction phenomena. Each
model consists of a mass, which can move just in horizontal direction. The mass is in
contact with a fixed plate or a moving belt, respectively. The weight of the mass defines
the normal force FN = mg and the friction between mass and fixed plate or mass and belt,
respectively, is characterized by a friction characteristics μ = μ(|vS |), which depends on the
velocity as defined in (4). Newton’s law provides the dynamics of the mass as

mẍm = F − FR where FR =FR(vS)=FR(vij −ż) and at model
1: F = FE(t)

2: F = −k xm

(26)

The coordinate xm describes the horizontal displacements of the mass m and ż denotes
the time derivative of the bristle deformation. The external pulse load FE(t), the spring
stiffness k, and the relative velocity vij are defined in Fig. 3. The friction and bristle pa-
rameters used within the two demonstration models are provided in Fig. 4. The weight
of the mass determines in both cases the normal force, FN =mg = 9.81 N. The friction
characteristics μ = μ(|v|) and the resulting friction force FR = FR(v) are plotted in the ve-
locity ranges of 0 ≤ |v| ≤ 3vA and −vA ≤ |v| ≤ +vA, respectively. The plots on the right of
Fig. 4 show the standard friction force characteristics FR = v

|v| μ(|v|)FN as solid black, the
simple regularized characteristics as dashed, and the asymmetric regularized ones as dotted
lines. The asymmetric regularization were performed just for demonstration purpose at fixed
positive and negative static force values of F0 = +4.7 N, F0 = −3.5 N and F0 = +1.2 N,
F0 = −0.9 N, respectively.

Fig. 3 Standard models to demonstrate friction phenomena
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Fig. 4 Friction and bristle parameters for model 1 (pulse load) and model 2 (conveyor belt) as well as the
corresponding friction force characteristics FR(v) in the velocity range of −vA ≤ v ≤ +vA , including their
regularizations indicated by dashed and dotted lines. (Color figure online)

Demonstration model 1 applies the exponent α = 1, which results in a monotonous decay
of the friction characteristics μ = μ(|v|) from μ(0)=μs =0.6 to μ(∞)=μd =0.3. The
parameter ν = 0 takes no viscous friction component into account.

Demonstration model 2 uses the exponent α = 2, which is often applied as a standard.
It results in a s-shaped transition from the static friction coefficient μ(0)=μs =0.15 to the
dynamic friction coefficient μ(∞)=μd =0.1. A parameter ν �= 0 takes a viscous friction
component into account, which according to (4), is defined by the term ν |v|. Due to the
small value of ν = 0.0102 s/m, the viscous component ν v in the friction characteristics
μ = μ(|v|) is not noticeable in the plotted velocity range.

The fictitious velocity vr required for the regularization of the friction characteristics, as
described in Sect. 3, is simply adjusted by vr = vA/10 to the velocity vA, which characterizes
the attenuation of the friction characteristics or the Stribeck effect, respectively.

The friction characteristics, defined in Fig. 4 by the parameters α, μs , μd , vA, and ν,
differ significantly but may approximate measured friction behaviors.

The Matlab script app_examples.m in Listing 1 provides the simulation environment
for the standard examples, where the Matlab function model_dynamics in Listing 2
computes the dynamics of the mass and the different friction models.

4.2 Bristle model parameters

The parameters σ0 and σ1 describe the stiffness and damping properties of the fictitious
bristle. The values defined in Fig. 4 for σ0 and σ1 indicate a connection to neither the normal
force FN nor the static friction value μs or the static friction force Fs = μs FN , respectively.
Even the bristle eigen-dynamics, characterized by the ratio σ0/σ1, differs from model 1 to 2.
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The visco-elastic properties of a fictitious bristle, which is introduced to model the fric-
tion force in rigid body contacts, are also fictitious. Hence, an appropriate guess is required
to specify the stiffness σ0 and the damping σ1 of the fictitious bristle. A bristle stiffness
σ0 and a bristle damping σ1 proportional to the static friction force are proposed in [5],
where a test case with three friction coupled single mass oscillators is investigated. The
time constant or the ratio of stiffness to damping, which according to (6), defines the bristle
eigen-dynamics, was set hereby to T =σ0/σ1 =2000 s without any further comment. How-
ever, relating the fictitious bristle stiffness to the static friction force means that changes in
the lubrication and the environmental conditions, which strongly affect the friction, would
also affect the stiffness and damping of the fictitious bristle.

The standard models applied in the literature to study friction phenomena usually consist
of a single mass m, which is in contact with a fixed or moving plate or belt, respectively.
Then, the weight of the mass FN =mg provides the component of the contact force normal
to the contact plane. In general multibody applications, however, the normal force FN is
neither constant nor simply defined by the weight of one single mass. That is why, the
visco-elastic properties of the fictitious bristle can hardly be related to the normal force.

For a more practical approach, one could specify a reference bristle force FBr and a
reference bristle deformation zr caused in a steady-state by the reference bristle force. Then,
the relation σ0=FBr/zr provides the corresponding bristle stiffness. For simple applications,
the reference bristle force and the reference bristle deformation may be related to the weight
and the static friction parameter, as well as to the body dimensions. In the simplest case,
the normal force is related via FN =mg to the body mass. Similarly, the fictitious mass
mr =FBr/g is connected to the reference bristle force. During sticking, the fictitious mass
and the fictitious bristle may be considered a single mass oscillator. A bristle damping of
σ1=√

4mr σ0 may serve as a first guess. It represents in analogy to (24) the aperiodic limit
case for the oscillator reference mass mr and fictitious bristle.

For example, a reference bristle force of FBr =4 N and a reference bristle deformation
of zr =5.0 e−5 m will provide a bristle stiffness of σ0 =4/0.00005=80 000 N/m, which
is in the range of the corresponding values defined in Fig. 4. The corresponding reference
mass mr =FBr/g=4/9.81=0.41 kg delivers the bristle damping σ1 =2

√
0.41 ∗ 80 000=

362 Ns/m as a first guess, which is also close to the corresponding values defined in Fig. 4.

4.3 Pulse load

The demonstration model 1 in Fig. 3 is used in [3] to simulate a start-stop experiment. The
mass m is exposed to a pulse load FI , which is twice switched on and off. The relative
velocity between the mass and the fixed horizontal plane is defined by vij = vm, where
vm = ẋm describes the velocity of the mass. The experiment was simulated in Matlab with
different friction models.

The results are obtained with the standard implicit solver ode15s, where similar to [4],
the fault tolerances were reduced to abstol=reltol=1e-8 to produce time histories
of sufficient accuracy.

The pulsating load, with FI =2 N even below the dynamic friction force of Fd =2.943 N,
makes the mass drift at each loading cycle, when simulated with the LuGre approach and
the static regularized friction force, top left plot of Fig. 5. The regularized friction force as
defined and illustrated in Fig. 4 for the demonstration model 1 requires a sliding velocity of
vS0=0.1875 mm/s to generate a friction force, which counteracts the load. The first impulse
with the force magnitude of FE =FI lasts for �t=0.1 s and results in the body displacement
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Fig. 5 Pulse load simulation results with an impulse of FI =2 N and a column by column comparison of
the LuGre model (solid lines) with different friction models plotted as dashed lines. The abbreviations static,
impl., and bm2 name the simple static regularized friction model, the implicit bristle model, and the second-
order bristle model with asymmetric regularized friction. Small circles mark the differences in the peak values
of the body velocity

of �xm=0.01875 mm. The amount of pre-sliding, and as a consequence, the drift per load
cycle directly depends on the regularization velocity vr , which is here adjusted via vr =
vA/10 to the attenuation velocity vA.

The LuGre approach, which is supposed to maintain a stick, also generates a remaining
body drift at each loading cycle. The LuGre drift, here �xm=0.02129 mm, in a hardly pre-
dictable manner depends on the visco-elastic properties of the fictitious bristle. The implicit
(impl.) and the second-order bristle model (bm2), which are entirely based on the same
model parameters as the LuGre approach, exhibit no drift at all, the second and third plots
in the top row of Fig. 5. The body velocities vm(t), plotted in the second row of Fig. 5,
reveal that the LuGre approach reacts with different sensitivities when the load is applied
or released. This is the consequence of the very poor approximation of the bristle dynamics
and not, as stated in [3], the consequence of the nonlinear nature of the LuGre approach.

All dynamic friction models (LuGre, impl., asym.) generate a steady-state bristle defor-
mation of zst =FE/σ0 =0.0513 mm and exhibit overshoots in the time histories of the fric-
tion forces FR = FR(t), the third and forth rows of Fig. 5. The implicit bristle model requires
additional efforts to solve the nonlinear and ambiguous first-order differential equation. The
second-order bristle model is just as easy to use as the LuGre approach and is therefore
applied as reference for further studies.

If the pulse load is increased to the value of FI ==4.5 N, which is larger than the dy-
namic friction force Fd =2.943 N, but still significantly smaller than the static friction force
Fs =5.886 N, the LuGre approach fails (see Fig. 6). The poor approximation of the bristle
dynamics results in a very low break-away force, which makes the LuGre approach to slip
rather than to maintain stick. As a consequence, the resulting drift of the body amounts to
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Fig. 6 Pulse load simulation results with an impulse of FI =4.5 N and comparison of LuGre versus second-
order bristle model with asymmetric regularized friction (bm2)

Fig. 7 Pulse load simulation results with an impulse of FI =5.6 N and comparison of LuGre versus second-
order bristle model with asymmetric regularized friction (bm2) at bristle damping σ1 = 395 Ns/m and
σ1 = 790 Ns/m

�xm ≈20 mm after two load cycles, the right plot in top row of Fig. 6. The second-order
bristle model (bm2) still produces results as expected. The time histories of the friction
force FR(t) and the bristle deformation z(t) look like a scaled version of the ones plotted in
Fig. 5. The load increase from FI =3 N to FI =4.5 N results in increased steady-state bristle
deformation of zst =0.1154 mm.

The influence of the bristle damping on the amount of overshoot in the dynamic friction
force is illustrated in Fig. 7. The impulse load is further increased to FI =5.6 N, which
corresponds to 95% of the static friction force of Fs = 5.886 N. The dashed black lines
in the top plots show the time history of the corresponding external load FE(t). A bristle
damping of σ1=395 Ns/m used so far in the demonstration model 1 produces in the second-
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order bristle model with asymmetric regularized friction force (bm2) a dynamic overshoot
in the friction force, which equals the static friction force and causes the mass to slide. In
this case, the LuGre approach and the second-order bristle model generate similar results, as
illustrated in the left plots of Fig. 7. The steady-state bristle deformation of zst =0.0755 mm
just corresponds to the dynamic friction force, hereby.

An increased bristle damping reduces the dynamic overshoot. For demonstration pur-
pose, the bristle damping was simply doubled. Now, the second-order bristle model with
asymmetric regularized friction force (bm2) maintains a stick by increasing the steady-state
bristle deformation to zst =0.1436 mm, as shown in the right plots of Fig. 7. However, the
LuGre approach still produces a too-low break-away force and fails to maintain stick re-
gardless of the bristle damping.

4.4 Stick-slip

The demonstration model 2 in Fig. 3 is used in [4] to simulate a stick-slip experiment. At
the beginning, the mass is placed at the position xm(t =0)=0, where the spring with the
stiffness k is unloaded, and the mass moves with the belt velocity vm(t =0)= ẋm(t =0)=
vb in the horizontal direction. The results, obtained with the LuGre approach, the static
regularized friction model (static), and the second-order bristle dynamics with asymmetric
regularized friction force characteristics (bm2), are plotted in Fig. 8. The time histories of
the mass displacement xt , the mass velocity vm(t) = ẋm(t), and the friction force FR(t) are
supplemented by the computed friction force characteristics FR(vS). According to Fig. 3,
the sliding velocity is defined for the demonstration model 2 by vS = vij − ż = vm−vb − ż,
where vb denotes the belt velocity, and ż is the time derivative of the bristle deformation. As
long as the mass sticks to the moving belt its displacement is simply defined by xm = vb t ,
the spring with the stiffness k generates the force F(t) = k xm(t). At t = tba , the spring force
equals the static friction force, and k xm(tba) = k vb tba = Fs = μs FN provide the time tba =
μs FN/(k vb), where the first transition from stick to slip will occur. The parameters provided
in Figs. 3 and 4 for the model 2 result in a break-away time of tba = 7.3575 s. As indicated
by the time histories of the velocity vm(t) and the friction force FR(t), all friction models
can reproduce this break-away event fairly well. However, a closer inspection of the zoomed
part of the friction force FR(7.0≤t≤8.0) reveals that the LuGre approach (solid black line)
delivers a too-early break-away. The friction characteristics for the demonstration model 2
applies the standard attenuation exponent of α=2, which makes the friction characteristics
μ = μ(v) start with a horizontal tangent as indicated in the lower left plot of Fig. 4. As a
consequence, the transition from stick to slip is slightly delayed when simulated with the
second-order dynamic bristle model (solid blue line). The simple regularization applied to
the static friction model (static) delays this transition even more (dotted red line).

At t ≈10 s the first slip to stick event takes place. The lower right plot of Fig. 8 shows
the friction force FR(t) in the zoomed time interval of 16.5 s≤ t ≤17.5 s where the mass
merges the second time from slip to stick. Due to accumulated time lags, the LuGre result
(solid black line) differs significantly from the results of the static friction model (dotted red
line) and the second-order bristle model (solid blue line). But worse, as indicated by far too
low peak in the friction force time history, the LuGre approach cannot make use of the fric-
tion force potential, which is here characterized by a static friction force of Fs =1.47 N.
The plots in Fig. 8 encompass all successful integration time steps. Hence, even single
peak events would be visible. The upper right plot in Fig. 8 shows the computed friction
characteristics FR(vS). The solid blue line represents the results of the second-order bris-
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Fig. 8 Time histories and computed friction characteristics of a stick-slip simulation performed with the
LuGre approach, a static model with a regularized friction characteristics (static), and a second-order bristle
model with asymmetric regularized friction (bm2). (Color figure online)

tle model. The asymmetric regularization can fully reproduce the friction characteristics as
defined for the demonstration model 2 in Fig. 4. The dotted red line holds for the static fric-
tion model. The simple regularization significantly deviates just at small sliding velocities
vS <vr from the pre-defined one. The solid black line applies for the LuGre results. The
too poor approximation of the bristle dynamics in the LuGre approach generates a rather
strange and ambiguous characteristics, which deviates remarkably from the pre-defined one.
It even produces sliding friction forces significantly smaller than the dynamic friction force,
FR(vS �=0)<Fd . This severe drawback of the LuGre approach has been already detected
in [5]. Oddly enough, the friction force FR is plotted there not versus the sliding velocity
vS but versus the relative velocity vij between the body and the belt, which neglects the
deformation of the fictitious bristle and holds just for a steady-state sliding.
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5 Festoon cable system model as a more practical application

5.1 Modeling approach

Figure 9 shows a typical festoon system, which consists of a cable, a rail, end clamps, cable
trolleys, and a towing trolley. The weight of the cable festoons make the cable trolleys follow
the movements of the towing trolley. Rubber buffers soften potential collisions of the cable
trolleys. In a multibody approach, each festoon is modeled by a simple lumped mass system
consisting of a point mass and two rope elements.

The coordinate uT T describes the horizontal motions of the towing trolley, which is sim-
ply pre-defined as a function of time uT T = uT T (t) in this example. The cable trolleys of
mass mT move along the horizontal rail. The coordinates xT 1 and xT 2 define their momen-
tary positions. The positions of the lumped cable masses mC are described by xC1, zC1 to
xC3, zC3. The parameters �0, k+, c+ define the unloaded length as well as the stiffness and
damping of each cable section. The superscript + indicates that each cable section is mod-
eled as a rope, which just can transmit tension forces. For a continuous transition from an
unstressed to a stressed rope, the dissipative part of each rope force is limited to the elastic
part as described in Sect. 3.3.3 of [11] by the example of a bungee jumper.

Figure 9 also provides the parameters describing the multibody festoon system and
the friction between the cable trolleys and the rail. The normal forces FN1 = FN2 =
(mT + mC)g =22 N are applied to each cable trolley in a steady-state. A reference bris-
tle force can be estimated by FBr = 2 N because the static friction value μs is compar-
atively small in this application. The roughly estimated reference bristle deformation of
zr =5.0 e−5 m provides the bristle stiffness of σ0=2/0.00005=40 000 N/m. The reference
mass of mr =2/9.81=0.2 kg derived from the reference bristle force finally delivers the
aperiodic bristle damping σ1=2

√
0.2 ∗ 40 000≈180 Ns/m.

Fig. 9 Typical crane festoon system, corresponding multibody model, and parameters



G. Rill et al.

5.2 Simulation example

For a demonstration example, the movement of the towing trolling is defined by its velocity
vT T = u̇T T . The rightmost plots of Fig. 10 provide the time histories of the towing trolley
velocity vT T (t) and its displacement uT T (t). At the beginning (t = 0), the towing trolley is
placed at uT T (t =0)=1.5529 m, and the festoon cable system is in a steady-state position.
The horizontal distances of cable trolley T1 to the end clamp, cable trolley T2 to T1, and
towing trolley TT to T2 are equally spaced, and the lumped cable masses C1, C2, and C3
are centered in between with equal sags of zC1 =zC2 =zC3 =0.967 m. The towing trolling
movement consists of a small and slow to and fro motion (0 s ≤ t ≤ 14 s) followed by a
rather fast festoon expansion maneuver (14 s ≤ t ≤ 24 s).

As done in Sect. 4.4, the friction forces between the cable trolleys and the rail are com-
puted by three different friction models: the LuGre approach (solid black line), the static
friction model (dotted red line), and the second-order bristle model (solid blue line). Some
results are plotted in Fig. 10. At a first glance, the different friction models yield the same
time histories of the cable trolley velocities vT 1(t), vT 2(t), the cable trolley displacements
xT 1(t), xT 2(t), and the normal forces FN1(t), FN2(t) acting in the contacts between the cable
trolleys and the rail. The motions of the trolleys xT 1(t), xT 2(t), and uT T (t) cause the lumped
cable masses C1, C2, and C3 to perform horizontal and vertical motions. The latter result in
variations of the normal forces about the steady-state values of FN1=FN2=22 N.

However, during the to and fro motion, the time histories of the cable trolley velocities
vT 1(t) and vT 2(t), computed with LuGre approach, show some small but distinct deviations
from the results obtained by the static friction and the second-order bristle model. The de-
viations at t ≈10.3 s and t ≈2.8 s as well as t ≈11 s correlate with variations in the normal

Fig. 10 Trolley velocities and displacements as well as normal forces between the cable trolleys and the rail.
(Color figure online)
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Fig. 11 Pre-defined and computed friction characteristics during festoon cable system simulation. (Color
figure online)

forces as indicated by their time histories FN1(t) and FN2(t) plotted in the lower row of
Fig. 10.

According to the upper right plot in Fig. 8, the LuGre approach cannot reproduce the
pre-defined friction characteristics dynamically. In the case of the festoon cable system,
this drawback results in significant deviations between the pre-defined friction characteris-
tics and the one computed via the LuGre approach (See Fig. 11). Even worse, a simple
inspection of the dynamic friction characteristics μ1(vS1) and μ2(vS2) reveals differences,
although the friction between the cable trolleys and the rail was modeled by the same set
of parameters, as specified in Fig. 9. Hence, the LuGre friction approach is not reliable be-
cause it generates dynamic friction forces, which deviate from the pre-defined ones, and,
in addition, it depends on the dynamics of the contacting bodies, in this example, the dy-
namic motions of the two cable trolleys are in contact with the rail and the oscillations of
the lumped cable masses.

The plots in the center and right column of Fig. 11 show the comparison of the pre-
defined friction characteristics to the ones computed via the static and the second-order
dynamic bristle model (bm2). The pre-defined friction relation μ1 =μ2 is reproduced by
both of these friction models. The friction characteristics generated by the static friction
model deviates just slightly from the pre-defined one, in particular, in the regularization
ranges, |vS1| ≤ ±vr and |vS2| ≤ ±vr . The friction characteristics computed via the second-
order dynamic bristle model, which incorporates the asymmetric regularization, matches
without any visible deviation the pre-defined friction characteristics.

The ratio of friction force over normal force provides the dynamic friction values as
μ1 = FR1/FN1 and μ2 = FR2/FN2. The velocities of the cable trolleys vT 1 and vT 2 as well
as the time derivatives of the bristle deformations ż1 and ż2 define the sliding velocities by
vS1 = vT 1 − ż1 and vS2 = vT 2 − ż2, where the trivial relations ż1 = 0 and ż2 = 0 hold for the
static friction model.

The plots in the lower row of Fig. 10 provide the time histories of the normal forces
FN1(t) and FN2(t). The time histories of the friction forces FR1(t) and FR2(t) are plotted in
Fig. 12. The second-order bristle model (bm2) and the static model generate nearly identical
results, as illustrated in the plots in the top row of Fig. 12. Just minor deviations are visible at
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Fig. 12 Friction forces between the cable trolleys and the rail computed with different friction models

the end of the simulation interval. According to the velocity vT T (t), pre-defined in the upper
right plot of Fig. 10, the towing trolley comes to a sudden stop (vT T (t)=0) at t =19 s. As
a consequence, the lumped cable masses as well as the cable trolleys perform oscillations,
which result in a series of stick-slip events, indicated by impulse-like changes in the friction
forces. The stick-slip phenomena, studied in Sect. 4.4 by the rather simple standard example
of a conveyor belt, incorporates just a “single-sided” event, where the friction force FR ,
displayed in Fig. 8, exhibits sudden changes but not a change of sign. This practical and
more complex example of a festoon cable system includes “two-sided” stick slip events
characterized by sudden sign changes in the time histories of the friction forces FR1(t) and
FR2(t) at the end (t > 19 s) of the expansion maneuver. The LuGre approach cannot handle
these sudden sign changes properly. Throughout this paper, a friction force FR = FR(vS)

is defined to act into the opposite direction of the sliding velocity vS . Hence, the relations
FR(vS) > 0 if vS > 0 and FR(vS) < 0 if vS < 0 will apply for realistic friction forces. The
green lines in Fig. 11 represent the pre-defined friction characteristics μ1(vS1) = μ2(vS2).
They are entirely located in the first and third quadrant of the μ(vS)-diagrams. The LuGre
approach produces friction values μ1 and μ2, which do not only differ in magnitude but
are also partly located in the second and fourth quadrant, thus contradicting the dissipative
nature of friction.

The festoon cable system approaches at t ≈23 s a steady-state position, where the static
friction model mainly operates in the regularization range by approximating stick by creep.
The friction forces computed by the LuGre approach differ in parts considerably from the
ones generated by the second-order bristle model (bm2), plots in the bottom row of Fig. 12.
As already discussed in Sect. 4.4, the LuGre approach is not able to make use of the friction
force potential, which, in particular, results in significantly lower peak values during the
stick-slip events in the time interval 19 s≤t≤23 s. In addition, the magnitude of the LuGre
friction forces differ in the time intervals 4 s≤t≤11 s and 12 s≤t≤14 s considerably from
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Fig. 13 Friction forces at cable trolley 1 and 2 computed with the LuGre friction model in Adams and Matlab
as well as the steady-state friction limits. (Color figure online)

the ones generated by the second-order bristle model. Both time intervals are related to the
to and fro motion, which is studied in the following in more detail.

The Matlab implementation of the LuGre approach is double-checked by a festoon model
realized in Adams, where the LuGre friction model is now available as a standard friction el-
ement. For simplicity, the cable sections were modeled in Adams by simple spring damper
elements because, in this particular application, the rope feature was not activated at all.
Figure 13 shows perfectly consistent time histories of the friction forces FR1 and FR2 be-
tween the cable trolley and the rail, which verifies the Matlab results by system relevant
signals. The broken lines mark the friction potential, defined by the static and dynamic fric-
tion forces, which in a steady-state are given here by |F st

s | = μs FN2 = 0.08∗22 N = 1.76 N
and |F st

d | = μd FN2 = 0.05 ∗ 22 N = 1.10 N. The LuGre approach realizes just a poor ap-
proximation of the bristle dynamics and cannot make use of the full friction potential, not
even during the rather slow to and fro motion in the time interval 0 s≤t≤14 s.

The runtime performance of the three friction models is quite similar. It takes a small
personal computer 1.151 s to perform the festoon cable simulation with the LuGre friction
model, 0.901 s with the static friction model, and 1.292 s with the second-order bushing
model. As done in Sect. 4.3, the Matlab standard implicit solver ode15s with reduced fault
tolerances of abstol=reltol=1e-8 was used to carry out the simulations.

5.3 To and fro motion in more detail

Figure 14 provides a zoomed view on the cable trolley displacements during the to and fro
motion of the towing trolley. In the time interval 0 s≤ t ≤14 s, the towing trolley performs
a to and fro movement with an amplitude of �uT T =0.5 m as defined by the corresponding
plot in Fig. 10. This movement is designed such that the cable trolley 2 executes a similar
but scaled motion, whereas the cable trolley 1 remains in a sticking position. The to and fro
motion of the cable trolley 2 induces horizontal and vertical motions of the lumped cable
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Fig. 14 Trolley displacements during to and fro motion. (Color figure online)

mass 2. As a consequence, the cable section 3 applies a pulse load to the cable trolley 1,
which in this particular case does not exceed the static friction force.

The second-order bristle model (bm2) reproduces this sticking event perfectly. The move-
ments of the cable trolley 1 resulting from the displacement of the fictitious bristle are not
visible even in the zoomed view on the left of Fig. 14. The cable trolley 2 is forced to
copy the to and fro motion of the towing trolley, but the ambiguity of the Coulomb fric-
tion prevents the cable trolley 2 from returning into the initial position. The second-order
bristle model (bm2) as well as the static friction model computes this remaining displace-
ment as �xT 2 =0.0179 m=17.9 mm. The static friction model approximates stick by a
small creepage, which results here in a hardly visible displacement of the cable trolley 1 of
�xT 1=0.0004 m=0.4 mm at the end of the to and fro time interval.

The LuGre approach results in cable trolley displacements xT 1(t) and xT 2(t), which
differ in the magnitude of centimeters from the ones obtained by the second-order bris-
tle model (bm2). It makes the cable trolley 1 to break-away from its initial position
xT 1(t=0 s)=0.5176 m to xT 1(t=14 s)=0.5384 m. The break-away takes place at t≈10.3 s
where, according to the lower left plot of Fig. 10, the normal force FN1 starts to perform
some fluctuations. It is indicated in Fig. 10 by a small impulse in the time history of the
velocity vT 1(t) but not visible in the time history of the cable trolley displacement because
the overall movement xT 1(t) is plotted in the range from 0 to 6 m and not, as done in the left
plot of Fig. 14, zoomed to the interval 0.51 m≤xT 1≤0.54 m.

The too poor first-step approximation of the bristle dynamics in the LuGre approach and
no physical reason are responsible for this sudden and unexpected break-away.

The LuGre approach delivers in comparison to the second-order bristle model (bm2) a
smaller amplitude and finishes the to and fro motion with a much larger offset. The larger
offset of the cable trolley 2 at t =14 s is also a consequence of the break-away event of the
cable trolley 1 at t≈10.3 s.

Figure 15 shows the influence of the friction parameters μs and μd on the displacements
xT 1 of the cable trolley 1. The friction parameters, defined in Fig. 9, are hereby slightly
(±10%) decreased or increased. The to and fro motion starts, according to Fig. 10, at t=3 s.
Shortly afterward, the cable trolley 1 begins to move, when the friction level is reduced
by 10%. This movement is reproduced by each of the friction models. The results for the
standard friction values, plotted in Fig. 15 as solid gray lines, are already discussed and
serve just as a reference. The standard friction values (μs =0.080 and μd =0.050) are large
enough to keep the cable trolley 1 sticking to the rail throughout the to and fro motion. The
static friction model and the second-order bristle model (bm2) can approximate or reproduce
this situation, as illustrated in Fig. 14 and by the solid gray lines in the center and right plots
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Fig. 15 Influence of the friction parameters μs and μd on the displacements xT 1 of cable trolley 1 computed
with different friction models. (Color figure online)

of Fig. 15. As stick means stick, a friction level increased by 10% has no visible influence
on the results obtained by the static and the second-order bristle model (bm2). This fact is
demonstrated by the coincidence of the dotted brown and the solid gray lines in the center
and the right plot of Fig. 15.

The LuGre results differ significantly. The too poor approximation of the bristle dy-
namics cannot reproduce the pre-defined friction characteristics, as demonstrated for the
standard friction values by the plots in the left column of Fig. 11. As a consequence, the
sticking situation of the cable trolley 1 is not maintained, but transferred to a break-away
event, partly induced by small fluctuations of the normal force. Increasing the friction level
by 10% just reduces the break-away amplitude, but does not eliminate the event. It turned
out, that the break-away event becomes insignificant only if the friction level is increased by
25% in this example. Hence, the sharp stick slip decision is softened in the LuGre approach
to no or insignificant break-away, break-aways with increasing amplitudes, and immediate
slip. This is not in conformity to the discrete nature of the Coulomb friction.

6 Conclusion

The LuGre approach is supposed to be based on the average behavior of elastic bristles.
The setup of an implicit and nonlinear bristle model with a consistent dynamic friction
force demonstrates that the LuGre approach just provides a first-step approximation to the
nonlinear bristle dynamics and generates a fictitious dynamic friction force that deviates in
parts strongly from the pre-defined friction characteristics.

In general, the implicit bristle model requires additional effort to solve the nonlinear and
mostly ambiguous force balance at the top of the fictitious bristle. That is why the implicit
bristle model is applied here just in rather simple standard examples.

A regularized static friction model is used as standard in many multibody system appli-
cations. The simple regularization approximates stick by slow creep and, therefore, cannot
maintain long-term sticking periods. However, apart from the small regularization range,
it reproduces the pre-defined friction characteristics quite well. The second-order bristle
model, presented here, maintains long-term stick because it applies a sophisticated and
asymmetric regularization of the friction characteristics. It reproduces the pre-defined fric-
tion characteristics extremely well, including the stick-slip transition. Both friction models
perform, regarding the quality and reliability of the results as well as the computation effort,
extremely well in the standard examples, as well as in the practical application of a festoon
cable system.
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The LuGre approach incorporates many drawbacks that are reported in the literature and
demonstrated here by the standard examples as well as the practical application of a fes-
toon cable system. Due to the too poor first-step approximation of the bristle dynamics,
the LuGre approach cannot reproduce pre-defined friction characteristics dynamically. As
demonstrated by the festoon cable system example, the LuGre friction forces are even in-
fluenced by the dynamics of the multibody system, which results in different friction forces
applied to separate bodies, even if only one friction characteristics is defined. A decreased
friction potential, which according to Coulomb results in a discrete switch from stick to slip,
is smoothened by the LuGre approach to stick, break-aways with increasing amplitudes, and
finally slip.

The LuGre approach generates just a friction-like behavior, which differs in part signif-
icantly from the reliable results obtained for example by the second-order bristle model. If
friction is a crucial part in a multibody system, the LuGre approach does not appear to be an
Engineer’s first choice because it is not a “what you see is what you get” model.

Appendix: Matlab script simulating the standard examples and
required Matlab functions

Listing 1 Matlab script: app_examples.m

1 clear, close all
2

3 % ode-solver options, friction model types, and line types
4 opts = odeset(’RelTol’,1.e-8,’AbsTol’,1.e-8);
5 mdltp = [ 1, 2, 3, 4 ];
6 txt = { ’static’; ’LuGre’; ’impl.’; ’bm2’ };
7 lc = { ’--k’, ’r’, ’:b’, ’g’ }; lw = [ 2, 1, 3, 1 ];
8

9 % default simulation parameter structure
10 sp.v = []; % belt velocity in m/s
11 sp.fi = []; % impulse load in N
12 sp.ti = []; % impulse duration in s;
13

14 % body parameter structure
15 bd.g = 9.81; % gravity in m/s^2
16 bd.m = 1; % mass in kg
17 bd.k = 2; % spring stiffness in N/m
18

19 % friction model parameter set 1
20 fp1.type = []; % friction type to be determined
21 fp1.sigma0 = 3.9e4; % stiffness of fictitious bristle in N/m
22 fp1.sigma1 = 395; % bristle damping in N/(m/s)
23 fp1.mus = 0.6; % static friction
24 fp1.mud = 0.3; % dynamic friction
25 fp1.va = 0.01; % attenuation velocity in m/s
26 fp1.al = 1; % attenuation exponent
27 fp1.nu = 0; % viscous component in 1/(m/s)
28 fp1.vr = fp1.va/10; % regularization velocity in m/s
29

30 % friction model parameter set 2
31 fp2.type = []; % friction type to be determined
32 fp2.sigma0 = 1.e5; % stiffness of fictitious bristle in N/m
33 fp2.sigma1 = sqrt(fp2.sigma0); % bristle damping in N/(m/s)
34 fp2.mus = 0.15; % static friction
35 fp2.mud = 0.10; % dynamic friction
36 fp2.va = 0.001; % attenuation velocity in m/s
37 fp2.al = 2; % attenuation exponent
38 fp2.nu = 0.1/(bd.m*bd.g); % viscous component in 1/(m/s)
39 fp2.vr = fp2.va/10; % regularization velocity in m/s
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40

41 disp(’pulse load excitation’) % ---------------------------------------
42

43 sp.fi = 2; % impulse load in N
44 sp.ti = 0.1; % impulse duration in s;
45 tspan = [ 0 , 4*sp.ti ]; % simulation interval
46
47

48 x0 = [ 0; 0; 0; 0 ]; % trivial initial conditions
49

50 hf1=figure(’Name’,’pulse load’);
51 hf1s(1)=subplot(3,2, 1); hold on; grid on
52 hf1s(2)=subplot(3,2, 2); hold on; grid on
53 hf1s(3)=subplot(3,2, 3); hold on; grid on
54 hf1s(4)=subplot(3,2, 4); hold on; grid on
55 hf1s(5)=subplot(3,2, 5); hold on; grid on
56 hf1s(6)=subplot(3,2, 6); hold on; grid on
57

58 for k = 1:length(mdltp)
59

60 fp1.type = mdltp(k); % assign friction model type
61 tic
62 [t,x] = ode15s( @(t,x) model_dynamics(t,x,bd,fp1,sp),tspan,x0,opts);
63 tc=toc; disp([’friction model ’,txt{1},’ | run time = ’,num2str(tc)])
64 if k==1; tspan = t; end
65 fr = zeros(size(t)); vij = fr; fe = fr; dzdt = fr;
66 for i=1:length(t)
67 [ dxdt, out ] = model_dynamics(t(i),x(i,:).’,bd,fp1,sp);
68 fr(i) = out.fr;
69 vij(i) = out.vij;
70 fe(i) = out.fe;
71 dzdt(i) = dxdt(3);
72 end
73

74 figure(hf1)
75 subplot(hf1s(1));plot(t,x(:,1),lc{k},’LineW’,lw(k)),title(’xb(t)/m’)
76 subplot(hf1s(2));plot(t,fe,’m’,’LineW’,1),title(’fe(t)/N’)
77 subplot(hf1s(3));plot(t,x(:,2),lc{k},’LineW’,lw(k)),title(’vb(t)/(m/s)’)
78 subplot(hf1s(4));plot(t,x(:,3),lc{k},’LineW’,lw(k)),title(’z(t)/m’)
79 subplot(hf1s(5));plot(t,vij,lc{k},’LineW’,lw(k)),title(’vij(t)/(m/s)’)
80 subplot(hf1s(6));plot(t,fr,lc{k},’LineW’,lw(k)), title(’fr(t)/N’)
81

82 end
83

84 subplot(hf1s(3)); legend(txt,’location’,’east’)
85

86 disp(’stick-slip’) % ---------------------------------------
87

88 % simulation control
89 sp.fi = 0; % reset impulse load in N
90 sp.v = 0.1; % belt velocity in m/s
91 tspan = [ 0 , 20 ]; % simulation interval
92

93 % initial conditions (body is initially moving with belt)
94 x0 = [ 0; sp.v; 0; 0; ];
95

96 hf2 = figure(’Name’,’stick-slip’);
97 hf2s(1)=subplot(6,2,[ 1, 3]); hold on; grid on
98 hf2s(2)=subplot(6,2,[ 5, 7]); hold on; grid on
99 hf2s(3)=subplot(6,2,[ 9,11]); hold on; grid on

100 hf2s(4)=subplot(6,2,[ 2, 4]); hold on; grid on
101 hf2s(5)=subplot(6,2,[ 6, 8,10,12]); hold on; grid on
102

103 for k = 1:length(mdltp)
104

105 fp2.type = mdltp(k); % assign friction model type
106 tic
107 [t,x] = ode15s( @(t,x) model_dynamics(t,x,bd,fp2,sp),tspan,x0,opts);
108 tc=toc; disp([’friction model ’,txt{1},’ | run time = ’,num2str(tc)])
109 fr = zeros(size(t)); vij=fr; dzdt=fr; fz=fr; n=length(t);
110 for i=1:n
111 [ dxdt, out ] = model_dynamics(t(i),x(i,:).’,bd,fp2,sp);
112 vij(i) = out.vij;
113 fr(i) = out.fr;
114 fz(i) = out.fz;
115 dzdt(i) = dxdt(3);
116 end
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117

118 figure(hf2);
119 subplot(hf2s(1));plot(t,x(:,1),lc{k},’LineW’,lw(k)),title(’xb(t)/m’)
120 subplot(hf2s(2));plot(t,x(:,2),lc{k},’LineW’,lw(k)),title(’vb(t)/(m/s)’)
121 subplot(hf2s(3));plot(t,-fr,lc{k},’LineW’,lw(k)), title(’fr(t)/N’)
122 subplot(hf2s(4));plot(t,-fz,lc{k},’LineW’,lw(k)),title(’fz(t)/N’)
123 vs = vij-dzdt; % sliding velocity
124 subplot(hf2s(5));plot(-vs,-fr,lc{k},’LineW’,lw(k)),title(’fr(vs)/N’)
125

126 end
127

128 subplot(hf2s(5)); legend(txt,’location’,’southeast’)
129 subplot(hf2s(5)), xl=xlim; xlim([xl(1),3*fp2.va])

Listing 2 Matlab function: model_dynamics

1 function ... % in (-->) and out (<--) in SI-Units
2 [ xdot ... % <-- state derivatives
3 , out ... % <-- additional output structure
4 ] = model_dynamics ... % === dynamics of body on plate or belt
5 ( t ... % --> time
6 , x ... % --> states
7 , bp ... % --> body parameter structure
8 , fp ... % --> friction model parameter structure
9 , sp ... % --> simulation control structure
10 )
11

12 % states (body + bristle)
13 xb = x(1); vb = x(2); s = x(3:4);
14

15 % external force applied to body
16 fe = 0.0; fz = 0.0;
17 if sp.fi > 0
18 vij=vb; % just body is moving
19 if sin(pi*(t/sp.ti)) > 0
20 fe = sp.fi; % pulse load triggered by sign of sin
21 end
22 else
23 vij=(vb-sp.v); % body moves relative to belt
24 fz = -bp.k*xb; % tie rod force
25 end
26

27 % normal force fn and friction force fr
28 fn = bp.m*bp.g;
29 [sdot,fr] = friction_models(fn,vij,s,fp);
30

31 % body acceleration and state derivatives
32 ab = ( fz+fe - fr ) / bp.m;
33 xdot = [ vb; ab; sdot ];
34

35 % additional output
36 out.vij=vij; out.fr=fr; out.fe=fe; out.fz=fz;
37

38 end
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Listing 3 Matlab function: friction_models

1 function ... % in (-->) and out (<--) in SI-Units
2 [ sdot ... % <-- bristle state derivatives
3 , fr ... % <-- friction force
4 ] = friction_models ... % === different friction models (static & dynamic)
5 ( fn ... % --> normal force
6 , vij ... % --> relative velocity body i versus body j
7 , s ... % --> bristle states
8 , p ... % --> friction model parameter structure
9 )
10

11 z = s(1); zdot = s(2); % get bristle states
12 sdot = [ 0; 0 ]; % default derivatives
13

14 switch p.type % select friction model
15 case 1 % simple regularisation (f0=0), no dynamics
16 fr = uty_fr_enh( 0 ,fn, vij-zdot, p );
17 case 2 % LuGre: first order dynamic friction model
18 [ sdot(1), fr ] = uty_fr_LuGre( fn, vij, z, p );
19 case 3 % implicit bristle model
20 [ sdot(1), fr ] = uty_fr_impl( fn, vij, z, p );
21 case 4 % bristle with fictitious mass and acceleration
22 f0 = p.sigma0*z + p.sigma1*vij;
23 fr = uty_fr_enh( f0, fn, vij-zdot, p );
24 fb = p.sigma0*z + p.sigma1*zdot;
25 sdot(1) = zdot;
26 sdot(2) = (fr-fb)*(4*p.sigma0/p.sigma1^2);
27 case 5 % LuGre sigma_1(v): first order dynamic friction model
28 [ sdot(1), fr ] = uty_fr_LuGre( fn, vij, z, p );
29 end
30

31 end

Listing 4 Matlab function: uty_fr_enh

1 function ... % in (-->) and out (<--) in SI-Units
2 [ fr ... % <-- friction force
3 ] = uty_fr_enh ... % === friction force with enhanced regularization
4 ( f0 ... % --> friction force to maintain stick
5 , fn ... % --> normal force
6 , v ... % --> sliding velocity
7 , p ... % --> friction model parameter structure
8 )
9

10 if fn > 0 % contact
11

12 % shift characteristics according to a parabolic regularisation
13 dis = 1.0 - abs(f0)/(p.mus*fn);
14 if dis < 0; dis=0; end
15 dvs = p.vr * ( 1.0 - sqrt(dis) );
16 if f0 < 0; dvs=-dvs; end
17 vs = v+dvs;
18 vsa = abs(vs);
19

20 % force characteristic for vr > 0
21 if vsa < p.vr
22 xi = vsa/p.vr;
23 fr = p.mus*xi*(2.0-xi)*fn;
24 else
25 xi = vsa-p.vr;
26 mu = uty_mu (xi, p.mus, p.mud, p.va, p.al, p.nu );
27 fr = mu*fn;
28 end
29

30 % adjust sign
31 if vs < 0 ; fr = -fr; end
32

33 else % lift-off
34 fr = 0;
35 end
36

37 end
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Listing 5 Matlab function: uty_fr_LuGre

1 function ... % in (-->) and out (<--) in SI-Units
2 [ zdot ... % <-- time derivative of bristle deflection
3 , fr ... % <-- dynamic friction force
4 ] = uty_fr_LuGre ... % === LuGre standard model extended to fn=0
5 ( fn ... % --> normal force
6 , vij ... % --> relative velocity body i versus body j
7 , z ... % --> bristle deformation
8 , p ... % --> friction model parameter structure
9 )
10

11 if ( fn > 0 ) % contact
12

13 % friction characteristics without viscous part (nu=0)
14 mu = uty_mu ( vij, p.mus, p.mud, p.va, p.al, 0 );
15 fr = mu*fn;
16

17 % time derivative of bristle deflection
18 fbe = p.sigma0*z;
19 zdot = vij - abs(vij)*(fbe/fr);
20

21 % dynamic friction force with viscous part
22 if ( p.type == 2 )
23 fr = fbe + p.sigma1*zdot + p.nu*fn*vij;
24 else
25 fr = fbe + p.sigma1*exp(-(abs(vij)/p.va)^p.al)*zdot + p.nu*fn*vij;
26 end
27

28 % lift-off (fn=0)
29 else
30 tc = p.sigma1/p.sigma0; % time constant (tc>0 required)
31 zdot = -z/tc; % bristle dynamics
32 fr = 0; % friction force
33 end
34

35 end

Listing 6 Matlab function: uty_fr_impl

1 function ... % in (-->) and out (<--) in SI-Units
2 [ zdot ... % <-- time derivative of bristle deflection
3 , fr ... % <-- dynamic friction force
4 ] = uty_fr_impl ... % === implicit dynamics of bristle
5 ( fn ... % --> normal force
6 , vij ... % --> relative velocity body i versus j
7 , z ... % --> bristle deflection
8 , p ... % --> friction model parameter structure
9 )
10

11 if ( fn > 0 ) % contact
12

13 fbe = p.sigma0*z; % elastic part of bristle force
14

15 % one iteration step with dzdt0 = 0 provides initial guess
16 vs0 = vij;
17 mu = uty_mu(vs0,p.mus,p.mud,p.va,p.al,p.nu);
18 zdot1 = (vs0*mu*fn-fbe*abs(vs0)) / (mu*fn+p.sigma1*abs(vs0));
19

20 % solve fr-fb=0 and compute dynamic friction force fr=fb
21 vs1 = vij - zdot1;
22 vs = fzero( @(vs) uty_bforce_bal(fn,vs,vij,fbe,p), vs1 );
23 zdot = vij - vs;
24 fr = fbe + p.sigma1*zdot;
25

26 else % lift-off: direct solution possible
27

28 zdot = -p.sigma0*z/p.sigma1;
29 fr = 0.0;
30

31 end
32

33 end
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Listing 7 Matlab function: uty_bforce_bal

1 function ... % in (-->) and out (<--) in SI-Units
2 [ f ... % <-- force balance f = fb - fr
3 ] = uty_bforce_bal ... % <-- force balance at top of bristle
4 ( fn ... % --> normal force
5 , vs ... % --> sliding velocity
6 , vij ... % --> relative velocity body i versus j
7 , fbe ... % --> elastic part of bristle force
8 , p ... % --> friction model parameter structure
9 )
10

11 % bristle force and friction law
12 fb = fbe + p.sigma1*(vij-vs);
13 mu = uty_mu( vs, p.mus, p.mud, p.va, p.al, p.nu );
14 if vs < 0, mu=-mu; end
15

16 % force balance
17 f = fb - mu*fn;
18

19 end

Listing 8 Matlab function: uty_mu

1 function ... % in (-->) and out (<--) in SI-Units
2 [ mu ... % <-- friction coefficient mu = mu(|v|)
3 ] = uty_mu ... % === provide LuGre-like friction law
4 ( v ... % --> sliding velocity
5 , mus ... % --> static friction
6 , mud ... % --> dynamic friction
7 , va ... % --> attenuation velocity
8 , al ... % --> attenuation exponent
9 , nu ... % --> viscous part
10 )
11

12 absv = abs(v);
13 mu = mud + (mus-mud)*exp( -(absv/va)^al ) + nu*absv;
14

15 end
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