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Research question

Motivation

• How can one achieve maximal model accuracy?

• What is the data available for that task?

Research question

• What data-driven modeling approach (low- or 

high-dimensional) will return maximal model 

accuracy in a limited data environment?

Fig. 1: Schematic trends of potential low- and high-dimensional 

model accuracies over an increasing number of training samples.
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Mechanical application

Deep drawing in car manufacturing

• Structural sheet metal parts of a car 

chassis

• High complexity and contrastive 

requiremenets

• Only a small fraction of topologically 

different structural deep drawn parts per 

chassis [1]

Data-driven drawability assessment

• Reduce iterations for manual geometry 

modifications

• Quantify assessment in the early-stage 

development phase

Fig. 2: Car chassis composed out of structural sheet metal parts. 

Adopted from [1].

Fig. 3: Schematic deep drawing setup. Modified from [2].
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Problem interpretation
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Interpretation

• Drawability assessment as binary classification between drawable 

or non-drawable

Definitions and assumptions

• Constant material properties for all parts (cold-rolled steel: CR1)

• Drawability assessment solely based on simulation

• purely mechanical manufacturability prediction (crack formation, 

wrinkling) for structural sheet metal parts

• One drawing operation per part
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Dataset generation
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Label (output) generation

Design of Experiments 

(Latin Hypercube)

n
samples 

= 1700

Parametric CAD model  

U-Topo-1

Finite-Element 

simulations

(„One-step“) [4]

Forming Limit Diagram-

based drawability 

assessments [5, 6]

Feature (input) generation

Set of Features 

and Point Clouds

Workflow

• Generation of per-part 

Input Features and 

Label for supervised 

learning [3]
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Low-dimensional Linear Support Vector Classification

• Fits hyper-surface which separates the classes 

(manufacturable, non-manufacturable)

• Separation surface is fitted with the maximum 

possible distance to data points (components)

Feature Engineering

• Features inspired by the drawing process and 

differential geometry [3]

• Principal Component Analysis (PCA) to reduce 

colinearity between features

• Normalization (min-max) of the features

Low-dimensional models - features

Fig. 4: Schematic Multiclass Classification using 

Linear Support Vector. Modified from [7].
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High-dimensional model

• Invariance regarding translations

and rotations (T-Net) [8]

• Modification concerning binary 

classification (sigmoid instead of 

softmax layer)

Point Clouds

• Curvature-based meshing with subsequent random 

subsampling of FEM-nodes as points

• n
points  

= 1024

High-dimensional models – point clouds

Fig. 5: Architecture of  PointNet model. Adopted from [8].

Fig. 6: Point Cloud sample of the generated dataset 

with 1024 points.
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https://arxiv.org/pdf/1612.00593, Accessed 23.08.2023.



9

Model comparison

Comparison

➢Model accuracies intersect at around 

500 parts

Fig. 7: Model accuracy over an increasing number of training samples.
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Training and Testing

• Consistent test set comprising 200 

parts for all models

• Training sets are subsampled from 

the remaining 1500 parts in the total 

training set

• High- and Low-dimensional models 

utilize the same parts for training (per 

number of training samples)
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Topology generalizability
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Second U-Topology dataset

• Identical material properties and sheet thickness

• N
U-Topo-2  

= 96

Generalizability

• Training on U-Topo-1 and subsequent testing on 

U-Topo-2

• No cross-validation

Fig. 8: Sample of the „U-Topo-2“ dataset. Compared 

to the hitherto geometry, there is an offset, deeper 

middle part and no curved feature lines.

➢No topology generalizability for both modeling 

approaches to similar, unseen geometries Fig. 9: Classification accuracies of both modeling 

approaches with U-Topo-2 test set.
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Conclusion

➢ High-dimensional approach demonstrates enhanced performance in drawability 

assessment from 500 (geometrically similar) sheet metal parts onwards

➢ Both modeling approaches are infeasible to generalize on topologically similar parts

Outlook

➢ Incorporating material and process influences into the high-dimensional model

➢ Introducing Geometric Data Augmentation methods

➢ Exploring the synergistic potential of combining low- and high-dimensional models

➢ Broadening geometry generalizability with (dis)similarity measures and transfer learning 

techniques

Conclusion and Outlook
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