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Abstract: Osteoarthritis (OA) is a degenerative joint disease causing loss of articular cartilage and
structural damage in all joint tissues. Given the limited regenerative capacity of articular carti-
lage, methods to support the native structural properties of articular cartilage are highly antici-
pated. The aim of this study was to infiltrate zwitterionic monomer solutions into human OA-
cartilage explants to replace lost proteoglycans. The study included polymerization and deposition
of methacryloyloxyethyl-phosphorylcholine- and a novel sulfobetaine-methacrylate-based monomer
solution within ex vivo human OA-cartilage explants and the encapsulation of isolated chondrocytes
within hydrogels and the corresponding effects on chondrocyte viability. The results demonstrated
that zwitterionic cartilage–hydrogel networks are formed by infiltration. In general, cytotoxic effects
of the monomer solutions were observed, as was a time-dependent infiltration behavior into the
tissue accompanied by increasing cell death and penetration depth. The successful deposition of
zwitterionic hydrogels within OA cartilage identifies the infiltration method as a potential future
therapeutic option for the repair/replacement of OA-cartilage extracellular suprastructure. Due to
the toxic effects of the monomer solutions, the focus should be on sealing the OA-cartilage surface,
instead of complete infiltration. An alternative treatment option for focal cartilage defects could be
the usage of monomer solutions, especially the novel generated sulfobetaine-methacrylate-based
monomer solution, as bionic for cell-based 3D bioprintable hydrogels.

Keywords: osteoarthritis; human articular cartilage; chondrocytes; infiltration; zwitterionic monomers;
hydrogels

1. Introduction

Human articular cartilage (AC) is a unique tissue composed of extracellular matrix
(ECM), which mainly consists of water, type II collagen, negatively charged proteoglycans,
and chondrocytes embedded within it. AC tissue can be divided vertically into superficial
(SZ), transitional (TZ) and deep zones (DZ) and exhibits zonal mechanical as well as struc-
tural differences depending on the prevalent type and fibrillar arrangement of collagens,
type of proteoglycans and water content. Articular cartilage has a very limited intrinsic
regenerative capacity partly due to the lack of vascularization and innervation [1,2].
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Thus, it remains challenging to identify successful long-term treatment options for AC
defects. Osteoarthritis (OA) is one of the most prevalent age-related and/or trauma-induced
musculoskeletal diseases of the articular joint, characterized by cartilage degradation,
synovial inflammation, subchondral bone sclerosis, ligament calcification and osteophyte
formation [3]. The main risk factors besides age and joint injuries following traumata are
obesity, gender and genetics [4]. OA can lead to the irreversible destruction of AC and
other joint tissues, resulting in pain, swelling, inflammation and gradual stiffness of the
joint [5,6]. Due to the increasing prevalence of OA [7] and the significant limitations on the
quality of life of affected patients, novel therapeutic approaches such as disease-modifying
OA drugs (DMOADs) or regenerative therapies are urgently sought to achieve long-lasting
symptomatic relief [8].

Current treatment options mainly focusing on pain improvement are non-steroidal
anti-inflammatory drugs (NSAIDs), opioids, corticosteroids and other DMOADs [8–11].
Total joint replacement with an artificial prosthesis is still considered as the gold standard
in terms of recovering joint function, pain relief and quality of life, especially in patients
with progressive OA [8,12]. Instead of total or partial joint replacement, successful cartilage
structure-preserving treatments would be preferable. Currently, focal cartilage lesions are
surgically treated by microfracturing of the subchondral bone (bone-marrow stimulus),
chondroplasty (removal of damaged tissue) and transplantation of cartilage autografts or
allografts [13]. Other promising treatment options for trauma-induced cartilage defects are
cell-based therapies, such as autologous chondrocyte implantation (ACI); mesenchymal
stem cells (MSCs) and induced pluripotent stem cells (iPSCs) are potential candidates
for application in the future treatment of cartilage lesions. The number of autologous
obtainable primary chondrocytes is limited; thus, stem cell therapies (MSCs or iPSCs) are of
particular interest due to their pluripotent properties, allowing chondrogenic differentiation.
However, the use of allogenic MSCs in clinical applications remains challenging due to
several obstacles, including control of MSC differentiation and maintenance of growth and
passaging in vitro, immunogenicity and cell isolation from human tissues. Some studies
show great in vivo and in vitro potential of MSCs to generate hyaline cartilage, though
other studies suggest the adoption of a hypertrophic phenotype that precedes endochondral
ossification, a process that is not found in healthy articular cartilage and thus prevents the
formation of a stable chondrogenic phenotype [9,14–17].

To date, therapies that ensure the long-term functionality of macromolecular carti-
lage matrix components are lacking, as the characteristic supramolecular structure of the
cartilage tissue cannot yet be replicated and thus the biomechanical stability of the tissue
is not restored [18]. This problem has led to the development of approaches based on
hydrogel scaffolds that combine materials, cells and bioactive factors to create new op-
portunities for biomechanically functioning tissue replacement [19]. Hydrogels consist
of unique three-dimensional (3D) polymeric substances which are crosslinked at inter-
connection points [20,21]. Due to their mesh structure and water-binding capacity, hy-
drogels are particularly interesting for cartilage repair/replacement or as a supportive
biomaterial [21,22]. They enable material exchange and encapsulation of cells [23] (e.g.,
chondrocytes, MSCs [24]), bio-macromolecules (e.g., peptides, proteins, saccharides [25]),
active ingredients (e.g., loxoprofen [26], curcumin [27], rapamycin [28]) and drug delivery
systems [29] (Xianqin Tong et al., 2019). Natural biomaterials (e.g., collagens, hyaluronic
acid) offer superior potential for cell adhesion and biocompatibility, whereas synthetic
biomaterials (polymers, peptides) excel mainly in terms of definable biomechanical re-
quirements [30], although naturally based flexible hydrogels with adjustable mechanical
properties have already been developed [31] (Qi et al., 2020). In this context, biofouling,
i.e., microbial contamination of biomaterial surfaces, has an important impact, as microbial
contamination can lead to inflammatory responses in the recipient tissue [32,33]. In general,
non-fouling materials usually exhibit hydrophilic behavior [34]. Therefore, zwitterionic-
based hydrogels have attracted attention in research over recent years, as they exhibit
outstanding anti-fouling properties [33,35,36]. Zwitterionic polymers are characterized
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by their equal numbers of anionic and cationic groups. The most common of these hy-
drogels are based on polysulfo-, polycarboxy- or polyphosphobetaine. When zwitterionic
hydrogel surfaces are destroyed, the zwitterionic pairs attract electrostatically, resulting in
a self-healing capacity [36].

In addition, zwitterionic polymers exhibit excellent lubricating properties [37], which
is important in the context of articular cartilage function and pain-free movement. The loss
of the unique lubricity of healthy cartilage surfaces and the associated low friction between
joint surfaces is an important factor in the pathogenesis of OA. Increased friction results in
increased wear and pro-catabolic cell effects that promote OA progression [38].

Several studies have already achieved significant reductions in friction and the restora-
tion of cartilage-like lubricant properties by using zwitterionic polymers [39,40]. From a
biomechanical point of view, AC is composed of a complex and zone-dependent ECM
composite, in which collagen fibrils are responsible for the tensile strength and hydrated
proteoglycans for elasticity and compressive strength, allowing high load-bearing capacity
and low friction as a prerequisite for smooth movements [41,42]. The hydrophilic gly-
cosaminoglycan (GAG) chains of the proteoglycans are responsible for the compression
and recovery properties of the cartilage dimensions, as bound water molecules are forced
out upon compression and osmotically attracted upon release [43]. Loss of GAGs is an
early marker of OA and the concomitant loss of mechanical stability [44].

Several studies identified correlations between reduced GAG content and decreased
lubricity [45]. In an approach to recover the lost GAG content in the early stages of OA,
infiltration and polymerization of a 2-methacryloyloxyethyl phosphorylcholine (MPC)-
based zwitterionic hydrogel in bovine OA-structures was found to improve lubrication and
to increase mechanical stability [46,47]. This infiltration procedure as a natural–synthetic
GAG-replacement hybrid system suggests a potential treatment option for early OA [47].
However, the response of human articular cartilage to an MPC-based hydrogel treatment
has not yet been investigated.

Based on the promising results in terms of anti-fouling, lubricating and mechanical
properties of zwitterionic polymers as cartilage ECM support materials, the aim of this
in vitro study was to evaluate the in situ infiltration behavior of MPC- and novel sulfo-
betaine methacrylate (SBMA)-based hydrogels and to explore their effect on cell viability
of infiltrated human OA-cartilage explants and on isolated human OA chondrocytes. In
comparison to many other studies, the focus here was on human, naturally degraded
osteoarthritic articular cartilage explants, designed to preserve the patient’s native cartilage
and mimic the degenerated structures through in situ infiltration and polymerization,
rather than to replace the endogenous cartilage.

2. Materials and Methods
2.1. Isolation and Cultivation of Human OA-Cartilage Explants and Isolated OA Chondrocytes

Cartilage explants: Experiments for this study were performed by using human
cartilage explants and isolated chondrocytes from knee joints of OA patients (Table S1
in Supplementary Materials) that had been removed during knee replacement surgery.
The use of human tissue was approved by the ethics committee at the University of
Regensburg (ethics vote: 25-101-0189). For cartilage explant tissue culture, OA-cartilage
plugs were extracted from the subchondral bone by using a scalpel and a biopsy punch
with an 8 mm diameter. Subsequently, each plug was transferred to a sterile 24-well plate
and immediately supplied with 2 mL Dulbecco´s Eagle´s medium/F12 (DMEM/F12),
supplemented with 10 wt% fetal calf serum (FCS) and 1 wt% penicillin–streptomycin
(Sigma-Aldrich, Taufkirchen, Germany). Cartilage explant plugs were cultured at 37 ◦C,
5 v/v% CO2 and 95% humidity until further use.

Chondrocytes: Chondrocytes were isolated as published previously [48]. Cartilage
from OA patients was removed from the subchondral bone and cut into small pieces.
Cartilage was digested with sterile filtrated 0.2% type II collagenase (Worthington, Lake-
wood, CA, USA) in DMEM/F12 supplemented with 1 wt% penicillin–streptomycin by
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shaking the solution for 16 h at 37 ◦C. Isolated chondrocytes were seeded at a density of
6000–12,000 cells/cm2 and expanded in DMEM/F12 medium supplemented with 10 wt%
FCS and 1 wt% penicillin–streptomycin. Isolated chondrocytes were cultured at 37 ◦C,
5 v/v% CO2 and 95% humidity until further use. For all further experiments, chondrocytes
at passage 1 were used.

2.2. Synthesis of MPC and SBMA Hydrogels

Three different monomer mixtures were prepared and are denoted as follows: MPC60,
MPC30 and SBMA60. The MPC60 monomer solution was prepared according to the
method described by Cooper et al. [47]. The monomer solution consists of 400 mOsm
saline solution (Carl Roth, Karlsruhe, Germany) containing 0.6 g/mL MPC monomer, the
crosslinker 1% mol/mol ethylene glycol dimethacrylate (EGDMA), and a photoinitiating
system consisting of 115 mM triethanolamine (TEOA), 94 mM N-vinylpyrrolidone (NVP)
and 0.1 mM Eosin Y (Merck Millipore, Darmstadt, Germany).

The synthesis of MPC30 and SBMA60 monomer solutions was performed in the same
way, except the monomer component 0.6 g/mL MPC was replaced by 0.3 g/mL MPC
(MPC30) and 0.6 g/mL SBMA (SBMA60) (Merck Millipore, Darmstadt, Germany), respec-
tively. The monomer solutions were stored at 5 ◦C and protected from light exposure to
avoid premature polymerization. The monomer solutions were polymerized into hydro-
gels for 10 min using a Bluephase G4 polymerization lamp (Ivoclar vivadent, Ellwangen,
Germany) at 515 nm and an intensity of 1.200 mW/cm2, which guaranteed precise intensity.
A Translux Energy lamp (Heraeus Kulzer GmbH & Co. KG, Hanau, Germany) at 515 nm
and 900 mW/cm2 was applied only for the fluorescence study.

2.3. Preparation of Cartilage–Hydrogel and Chondrocyte–Hydrogel Composites

Cartilage–hydrogel composite: Human OA-cartilage tissue plugs were incubated in
and infiltrated with monomer solutions (MPC30, MPC60 or SBMA60) at 37 ◦C, 5 v/v% CO2
and 95% humidity protected from light for 24 h. In addition, infiltration behavior with
shortened infiltration times of 1, 5, 10 and 30 min in OA-cartilage explants was investigated
exemplarily for the MPC60 monomer solution. After infiltration, the cartilage–hydrogel
composites were irradiated with visible light (VL) for 10 min. After polymerization of
monomers, all samples were rinsed three times with phosphate-buffered saline (PBS)
(Thermo Fischer, Kandel, Germany) and cultured in DMEM/F12 medium supplemented
with 10 wt% FCS and 1 wt% penicillin–streptomycin for 1 and 3 days.

For single-component and parameter analysis, OA-cartilage explants were infiltrated
with individual components of the monomer solutions for 24 h. For this, components of
the monomer solutions were dissolved separately in saline solution at the appropriate
concentrations. Furthermore, untreated OA-cartilage explants (controls) were irradiated
with VL for 10 min.

Chondrocyte–hydrogel composite: Isolated human OA chondrocytes (500,000 cells)
were embedded in 50 µL of the respective monomer solution (MPC30, MPC60 or SBMA60).
The cell–hydrogel construct was formed by crosslinking with VL for 10 min. The poly-
merized chondrocyte-containing scaffolds were incubated in DMEM/F12 medium supple-
mented with 10 wt% FCS and 1 wt% penicillin–streptomycin at 37 ◦C, 5 v/v% CO2 and
95% humidity for 1, 3 and 7 days.

2.4. Fourier-Transform Infrared Spectroscopy (FTIR)

Monomers (MPC and SBMA), hydrogels (MPC30, MPC60 and SBMA60), human OA-
cartilage samples (control, without hydrogel) and OA-cartilage–hydrogel (MPC30, MPC60
and SBMA60) constructs were analyzed with FTIR to verify successful polymerization
and infiltration. The outermost layer of the infiltrated OA-cartilage plugs was removed to
exclude purely superficial deposition of the infiltrating hydrogels. All OA-cartilage samples
were fixed with 4 wt% PFA, subjected to an ethanol gradient (50 wt%, 70 wt%, 96 wt%
and 100 wt%) and washed with PBS. Hydrogel cylinders, infiltrated OA cartilage and non-
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infiltrated cartilage plugs (control) were dried to a constant weight. The potassium bromide
(Merck Millipore, Darmstadt, Germany) pellet method was used to identify functional
groups using an FTIR spectrometer (Tensor 27, Bruker, MA, USA). The evaluation was
performed with Opus Viewer (Bruker Corporation, Billerica, MA, USA).

2.5. Scanning Electron Microscopy (SEM)

The microstructure of human OA cartilage was studied with SEM and compared
with cartilage–hydrogel composite samples, with MPC60-containing explants serving
as examples. Samples were prepared with some modifications following the Electron
Microscope Unit procedure [49] and the Biological Sample Fixation for SEM protocol [50], as
described below. OA-cartilage samples were infiltrated with MPC60 monomer solution and
polymerized as described above. After infiltration and polymerization, they were cultured
in DMEM/F12 medium supplemented with 10 wt% FCS and 1 wt% penicillin–streptomycin
for 24 h at 37 ◦C. For SEM imaging, prepared human OA cartilage samples containing
MPC60 hydrogel and control human OA-cartilage samples were fixed by immersion in
2 wt% glutaraldehyde solution (Merck Millipore, Darmstadt, Germany) dissolved in 0.1 M
sodium cacodylate buffer (pH 7.4) (Alfa Aesar, Ward Hill, MA, USA) for 24 h at room
temperature. The OA-cartilage samples were then washed two times with 0.1 M sodium
cacodylate puffer, 15 min per wash. They were post-fixed in 1 wt% osmium tetroxide
(Merck Millipore, Darmstadt, Germany) dissolved in sodium cacodylate buffer (pH 7.4)
for 2 h. After post-fixation, the samples were washed three times with deionized water,
5 min per wash. They were dehydrated for 5 min with a specific series of ethanol (Carl
Roth, Karlsruhe, Germany) (50 wt%, 70 wt% and 95 wt%) and two times for 10 min with
100 wt% ethanol. The samples were dried using a chemical drying method with 1, 1, 1, 3,
3, 3-Hexamethyldisilazan (HMDS) (Acros Organics/Thermo Fisher Scientific, Waltham,
MA, USA). Dried OA-cartilage samples were immersed in a mixture of ethanol and HMDS
(2:1, 1:1, 1:2) for 15 min in respective concentrations followed by three immersions for
15 min each in pure HMDS; the last samples in HMDS were then left under a fume hood
for 24 h. After drying, the cartilage samples were attached to aluminum stubs and viewed
using a scanning electron microscope (1.00 kV, Auriga 40, Carl Zeiss Microscopy GmbH,
Jena, Germany).

2.6. Fluorescence Microscopy

In order to investigate the infiltration behavior of the MPC and SBMA monomer
solutions in OA-cartilage explants, the fluorescent monomer methacryloyloxyethyl thiocar-
bamoyl rhodamine B (MTR) (Polysciences Inc., Warrington, PA, USA) was added to the
monomer solutions MPC30, MPC60 or SBMA60 (1:100). Following incubation, infiltration
and polymerization, the hydrogel–cartilage plugs were fixed with 4 wt% paraformaldehyde
(PFA) (Sigma-Aldrich, Taufkirchen, Germany) for 24 h. After fixation, the samples were
washed three times in PBS, 5 min each, embedded in TissueTek (Sakura Finetek Germany
GmbH, Umkirch, Germany) and frozen for at least 24 h at −80 ◦C. Thereafter, embedded
samples were cut into 10 µm thick cryosections using a microtome (CM 1950, Leica Camera,
Wetzlar, Germany). After rehydration in PBS for 5 min, cell nuclei were counterstained with
DAPI (1:1000 in PBS, 10 min, protected from light). Subsequent to the final washing steps,
sections were covered with Dako Fluorescence Mounting Medium (Agilent Technologies
Inc., Santa Clara, CA, USA) and dried for several hours at 4 ◦C. Images were taken with an
all-in-one fluorescence microscope (Keyence BZ-X810, Nikon, Tokyo, Japan).

2.7. Live/Dead Cell Staining of Encapsulated Chondrocytes in Hydrogels and
Cartilage–Hydrogel/Component Composites

Chondrocyte–hydrogel composite: Isolated human OA chondrocytes were encapsu-
lated for 1, 3 or 7 days in different zwitterionic hydrogels (MPC60 and SBMA60 hydrogels)
to determine potential cytotoxic effects by using a LIVE/DEAD Viability/Cytotoxicity kit
(Invitrogen/Thermo Fisher Scientific, Waltham, MA, USA). Living cells were stained with
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calcein-AM (Ca-AM), and dead cells were stained with ethidium homodimer-1 (EthD-1).
The samples were washed with PBS and afterward incubated in a staining solution con-
taining 2 µM Ca-AM and 2 µM EthD-1 in PBS in a 6-well plate for 30 min protected from
light at 37 ◦C, 5 v/v% CO2 and 95% humidity. Subsequently, the hydrogel–chondrocyte
scaffolds were washed three times with PBS, applied onto slices, covered with cover glass
and imaged with a confocal laser scanning microscope (Eclipse E600, Nikon, Japan). Z-stack
images were taken using EZ-C1 software (Nikon, version 3.91) at 10× and 20× magnifi-
cation (z step size = 0.5 µm, approx. 80–100 slices per sample, approx. 50–60 µm deep).
The evaluation was performed with ImageJ/Fiji (National Institutes of Health, Bethesda,
MD, USA).

Cartilage–hydrogel/component composite: Potential cytotoxic effects of infiltrated
(24 h) and polymerized monomer solutions (MPC30, MPC60, SBMA60) in human OA-
cartilage explants and the individual components of the monomer solutions (24 h infiltra-
tion) were analyzed by using a LIVE/DEAD Viability/Cytotoxicity kit. MPC60-containing
cartilage samples with reduced infiltration times (1, 5, 10 and 30 min) were also investigated
by using the LIVE/DEAD Viability/Cytotoxicity kit. Cross-sectional slices (<0.5 mm) of
the hydrogel–cartilage plugs were prepared using a blade. Slices were applied to a cannula
and covered with 1.5 mL LIVE/DEAD staining solution containing 2 µM Ca-AM and 2 µM
EthD-1 in PBS within a 15 mL falcon for 24 h protected from light at 37 ◦C, 5 v/v% CO2
and 95% humidity. After incubation, cartilage slices were washed three times with PBS and
imaged with a confocal laser scanning microscope (Eclipse E600, Nikon, Japan). Z-stack
images were taken at 4×, 10× and/or 20× magnification (z step size = 0.5 µm, approx.
80–100 slices per sample, approx. 50–60 µm deep). The evaluation was performed by using
ImageJ/Fiji.

2.8. CellTiter-Blue (CTB) Viability Assay

CellTiter-Blue Cell Viability Assay (Promega, Madison, WI, USA) was used to eval-
uate the metabolic activity of hydrogel-containing human OA-cartilage plugs. Human
cartilage plugs were covered with 30 µL CellTiter-Blue reagent and 300 µL DMEM/F12
supplemented with 10 wt% FCS and 1 wt% penicillin–streptomycin for 5 h at 37 ◦C, 5 v/v%
CO2 and 95% humidity. For the measurement, 100 µL protrusion of the used working
solution was placed in a black 96-well plate to be analyzed with a Tecan ELISA reader
(GENios, Maennedorf, Switzerland) with excitation of 560 nm and emission of 590 nm.

2.9. Statistical Analysis

Statistical analysis was performed using Prism8.0.2 software (GraphPad Software, San
Diego, CA, USA). Nonparametric, paired t-test (Mann–Whitney) or Kruskal–Wallis test
(Dunn’s multiple comparison) was used to compare the results. All data are expressed as
the mean ± standard deviation (SD).

3. Results

The ex vivo infiltration of zwitterionic monomer solutions into OA-cartilage plugs
and their in situ polymerization were investigated. Three zwitterionic monomer solutions
(MPC30, MPC60 and SBMA60) and their hydrogel synthesis and infiltration behavior in
OA-cartilage explants were investigated in detail.

3.1. Successful Polymerization and Infiltration of Monomer Solutions into Human OA-Cartilage Plugs

Hydrogel synthesis of the monomer solutions (MPC30, MPC60 and SBMA60) was
revealed as early as after 10 min irradiation with VL (515 nm) by a characteristic color
change from red to yellow, as the reddish Eosin Y was activated. The polymerization
of the MPC60 and SBMA60 monomer solutions resulted in a stable and high-viscosity
hydrogel, whereas the MPC30 monomer solutions formed a low-viscosity hydrogel. FTIR
was performed in addition to the optical analysis to confirm the polymerization of MPC
and SBMA monomer solutions to MPC60, MPC30 and SBMA60 hydrogels. For this, the
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FTIR spectra of the pure MPC and SBMA monomer powders (Figure 1A,D) and those of
the synthesized MPC60-, MPC30- and SBMA60-hydrogel samples (Figure 1B,C,E) were
compared. The highly reduced occurrence of the specific peak between 3020 and 3080 cm–1

and the shifted bands at 1280–1350 cm–1 and 1170–1190 cm–1 in the MPC-containing
hydrogels (Figure 1B,C) confirmed the successful polymerization of MPC30 and MPC60
hydrogels from the MPC monomers (Figure 1A). The absence of the absorption bands at
3020–3080 cm–1 and 1390–1420 cm–1 and the displaced vibrations between 1210–1280 cm–1

in the spectra of the SBMA hydrogel (Figure 1E) compared to the FTIR spectra of the SBMA
monomer (Figure 1D) indicated successful polymerization of SBMA60 hydrogels.
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Figure 1. FTIR spectra of MPC60-, MPC30- and SBMA60-hydrogel synthesis. Shown are characteristic
absorption bands of (A) MPC monomer, (B) MPC60 hydrogel, (C) MPC30 hydrogel, (D) SBMA
monomer and (E) SBMA60 hydrogel. Peaks which indicated the monomer bands have disappeared
or shifted towards the polymerized hydrogel bands, confirming successful hydrogel polymerization,
which is indicated by squiggles; n = 5.

To study the deposition of all three hydrogels (MPC30, MPC60 and SBMA60) into
the human OA-cartilage ECM, FTIR was used (Figure 2) and specific spectra for cartilage
samples were detected. The characteristic peaks of non-infiltrated OA cartilage (control)
were assigned to Amid I (≈1640 cm–1), Amid II (≈1520 cm–1) and Amid III (≈1250 cm–1),
which are significant for collagen fibrils of cartilage tissue [51–53] (Figure 2A). Amid I–III
peaks also appear in the spectra of the infiltrated OA-cartilage samples, but these are not
explicitly marked again (Figure 2B,C). Two significant peaks around 1720–1730 cm–1 and
970 cm–1 were detected in the spectra of the infiltrated OA-cartilage samples containing
MPC60, MPC30 and SBMA60 hydrogels (Figure 2B–D), compared to the non-infiltrated
OA-cartilage sample (Figure 2A). The vibrations at 1720–1730 cm–1 can be ascribed to
C=O stretching (ester group of hydrogels, Figure 2B–G, grey), and the peaks around
970 cm–1 are characteristic of N-CH3 (choline group of MPC hydrogels and the choline-type
group of SBMA hydrogels, Figure 2B–G, black). These peaks are found in the respective
five investigated hydrogel-containing OA-cartilage samples, as these functional groups
are related to the identical chemical compounds of the (Figure 2E–G). Depending on the
polymer component (MPC or SBMA), it was possible to identify additional specific peaks.
Cartilage samples containing MPC hydrogels exhibited a characteristic peak at 1240 cm–1,
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which belongs to P=O stretching, and oscillations around 1070–1080 cm–1, which are
assigned to P–O stretching of the phosphate functional group of MPC (MPC60: Figure 2B,E
pink and MPC30: Figure 2C,F light pink) [54]. In cartilage samples containing SBMA60
hydrogel, specific peaks are located between 1030 and 1040 cm–1 and between 1170 and
1190 cm–1, which belong to S=O symmetric stretching and S=O asymmetric stretching
vibrations of the sulfonate groups of SBMA (Figure 2D,G green) [51,55]. However, it should
be noted that the peak of Amid III (1250 cm–1) correlates with P=O (1240 cm–1), but the
Amid III vibration is superimposed by the characteristic vibrations of the polymers. These
data confirm the successful infiltration and deposition of all tested hydrogels throughout
the human OA-cartilage explants.

Bioengineering 2023, 10, x FOR PEER REVIEW 8 of 22 
 

To study the deposition of all three hydrogels (MPC30, MPC60 and SBMA60) into 

the human OA-cartilage ECM, FTIR was used (Figure 2) and specific spectra for carti-

lage samples were detected. The characteristic peaks of non-infiltrated OA cartilage 

(control) were assigned to Amid I (≈ 1640 cm–1), Amid II (≈ 1520 cm–1) and Amid III 

(≈1250 cm–1), which are significant for collagen fibrils of cartilage tissue [51–53] (Figure 

2A). Amid I–III peaks also appear in the spectra of the infiltrated OA-cartilage samples, 

but these are not explicitly marked again (Figure 2B–C). Two significant peaks around 

1720–1730 cm–1 and 970 cm–1 were detected in the spectra of the infiltrated OA-cartilage 

samples containing MPC60, MPC30 and SBMA60 hydrogels (Figure 2B–D),  compared 

to the non-infiltrated OA-cartilage sample (Figure 2A). The vibrations at 1720–1730 cm–1 

can be ascribed to C=O stretching (ester group of hydrogels, Figure 2B–G, grey), and the 

peaks around 970 cm–1 are characteristic of N-CH3 (choline group of MPC hydrogels and 

the choline-type group of SBMA hydrogels, Figure 2B–G, black). These peaks are found 

in the respective five investigated hydrogel-containing OA-cartilage samples, as these 

functional groups are related to the identical chemical compounds of the (Figure 2E–G). 

Depending on the polymer component (MPC or SBMA), it was possible to identify addi-

tional specific peaks. Cartilage samples containing MPC hydrogels exhibited a character-

istic peak at 1240 cm–1, which belongs to P=O stretching, and oscillations around 1070–

1080 cm–1, which are assigned to P–O stretching of the phosphate functional group of 

MPC (MPC60: Figure 2B, E pink and MPC30: Figure 2C, F light pink) [54]. In cartilage 

samples containing SBMA60 hydrogel, specific peaks are located between 1030 and 1040 

cm–1 and between 1170 and 1190 cm–1, which belong to S=O symmetric stretching and 

S=O asymmetric stretching vibrations of the sulfonate groups of SBMA (Figure 2D, G 

green) [51, 55]. However, it should be noted that the peak of Amid III (1250 cm–1) corre-

lates with P=O (1240 cm–1), but the Amid III vibration is superimposed by the character-

istic vibrations of the polymers. These data confirm the successful infiltration and depo-

sition of all tested hydrogels throughout the human OA-cartilage explants. 

 

Figure 2. FTIR analysis of non-infiltrated and infiltrated human articular OA-cartilage plugs. (A) 

Human non-infiltrated OA-cartilage plug (control) (black). In the spectrum, the Amides I–III, 
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Figure 2. FTIR analysis of non-infiltrated and infiltrated human articular OA-cartilage plugs. (A) Hu-
man non-infiltrated OA-cartilage plug (control) (black). In the spectrum, the Amides I–III, which are
characteristic of collagen fibrils within the cartilage tissue, are marked accordingly. (B–D) Polymer-
ized human OA-cartilage plugs infiltrated with MPC60 (B, pink), MPC30 (C, light pink) or SBMA60
(D, green) monomer solution. (E–G) Characteristic functional groups and chemical structures are
highlighted as evidence of successful infiltration: (E,F) zwitterionic MPC polymers with P–O and
P=O for phosphate group of MPC (pink); (G) SBMA polymer with S=O for sulfonate group of SBMA
(green). C=O for ester group (B–G, gray) and N–CH3 for choline group (B–D, black). n = 6. Created
with KingDraw.com.

Initially, SEM was used to study ex vivo OA-cartilage structures without hydrogel infil-
tration (Figure 3A–C). Thereby, the cartilage tissue cross-sections have been systematically
investigated in three regions: near the articular surface (superficial zone; Figure 3A), in the
middle of the cross-section (middle/transitional zone; Figure 3B) and near the subchondral
bone (deep zone; Figure 3C). In each zone of the OA-cartilage explant, fibrillar structures
and their orientation could be identified. The fibers are mostly randomly orientated; how-
ever, in the deep zone near the subchondral bone, the fibers are orientated perpendicular to
the articular surface. All fibers represent collagen fibrils, and the orientation of collagen
fibers determines typically the zone category of articular cartilage tissue, consisting of
the superficial zone (SZ) middle/transitional zone (TZ) and deep zone (DZ) [56,57]. The
SZ adjacent to the articular surface is characterized by an arrangement of the collagen

KingDraw.com
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fibers parallel to the surface, the TZ in the middle of the cartilage tissue is characterized
by randomly orientated fibers and the DZ adjacent to the subchondral bone is character-
ized by collagen fibers orientated perpendicular to the articular surface (Figure 3G). SEM
revealed TZ and DZ structures; however, SZ structures could not be identified in most
of the analyzed OA-cartilage explants, and the characteristic arrangement of the collagen
fibers parallel to the surface was not found. Therefore, this region can be assigned to the
TZ instead of the SZ. Based on these results, it can be assumed that due to the late stage of
OA, the SZ of the studied samples is mostly degraded.
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Figure 3. SEM cross-sections of human OA cartilage with and without hydrogel. Collagen fibers of
non-infiltrated OA-cartilage ECM (A) near the articular surface, (B) in the middle of the cartilage
sample and (C) near the subchondral bone. Collagen fibers of MPC60-containing OA-cartilage ECM
(D) near the articular surface, (E) in the middle of the cartilage sample and (F) near the subchondral
bone. The assignment of the images is based on the orientation of the collagen fibrils: (A,D) the
randomly orientated collagen fibers near the articular surface can be assigned to the transitional
zone (TZ), (B,E) the randomly orientated collagen fibers in the middle OA-cartilage sample can
be assigned to the transitional zone (TZ) and (C,F) the collagen fibers orientated perpendicular
to the articular surface can be assigned to the deep zone (DZ). (D–F) Successful infiltration from
hydrogel deposits within human OA-cartilage ECM structures is demonstrated in all regions. n = 6;
magnification 5000×. Scale bar 2 µm. (G) A schematic representation of articular cartilage collagen
fibril organization with the specific classification into SZ, TZ and DZ according to the alignment of
the collagen fibers. Created with BioRender.com.

Next, SEM was used to investigate the structural differences between non-infiltrated
and infiltrated OA-cartilage explants (Figure 3D–F). SEM imaging was performed for three
regions of the OA samples, as described above, and the same regions were compared
(Figure 3G). In comparison to non-infiltrated OA-cartilage samples (controls), infiltrated
OA-cartilage samples reveal characteristic deposits, which appear as part of a tissue–
hydrogel composite, confirming successful tissue infiltration. These deposits were observed
in all zones of MPC60-infiltrated OA-cartilage samples.

Representative, successful deposition of MPC60 hydrogel was observed in all inves-
tigated regions of the OA-cartilage plug (Figure 3D–F), whereas no such structures were

BioRender.com
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observed in the controls (Figure 3A–C). The deposition of the MPC60 hydrogel in the center
of the cartilage sample (TZ; Figure 3E) demonstrates exemplary complete infiltration for
the zone with the longest infiltration pathway to the middle of the sample cross-section.
Based on these results, we suggest that the infiltrated MPC60 monomer solution penetrates
the whole tissue within 24 h. Thereby, an interpenetrating cartilage–hydrogel network is
formed by the subsequent polymerization.

Additionally, fluorescence-based staining was performed to visualize the hydrogel-
containing OA explants, exemplarily shown for OA-cartilage tissue containing MPC30
(Figure 4). A strong cell- and tissue-associated fluorescence signal (red) was detected,
indicating successful and entire deposition of the hydrogel within the infiltrated cartilage
structures from the SZ to the DZ (Figure 4A). Intense hydrogel deposits could be detected
in the peripheries of the remaining SZ and the DZ (red, Figure 4A).
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Figure 4. Fluorescence-based staining of human articular cartilage sections. (A) Human OA-cartilage
explant, containing SZ, TZ and DZ, was entirely infiltrated with MPC30 monomer solution including
the fluorescent dye MTR (red). Magnification 10×. (B) Chondrocytes and lacunae from the TZ
(dashed box, A) infiltrated with MPC30 monomer solution (MTR, red) partially co-localized with cell
nuclei which were stained with DAPI (blue). (C) Deposition of the hydrogel (red component) around
the (D) cell nuclei (blue component). Magnification 40×. Scale bar 50 µm. n = 6. Magnification 4×.
Scale bar 50 µm.

Hydrogels were mainly deposited in the cytosol of the chondrocytes, partially co-
localized with the cell nuclei (Figure 4B,D) and pericellularly located in the chondrocyte
lacunae (Figure 4B,C). No unspecific staining or autofluorescence of the OA-cartilage tissue
and chondrocytes was detected when infiltrating OA cartilage with the monomer solutions
without adding the fluorescent dye MTR (hydrogel control, Figure S1B in Supplementary
Materials) or in OA-cartilage explants without hydrogel (OA-cartilage control, Figure S1B
in Supplementary Materials). We did not observe any differences in hydrogel deposition
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between MPC60-, MPC30- and SMBA60-containing OA-cartilage tissues obtained from
six patients.

In summary, these data from FTIR, SEM and fluorescence microscopy suggest success-
ful hydrogel synthesis and a successful process of infiltration of the different zwitterionic
monomer solutions (MPC30, MPC60, SBMA60) into human OA-cartilage explants within
24 h ex vivo.

3.2. Increased Toxicity of Monomer Solutions for Chondrocytes in 24 h Infiltrated OA-Cartilage
Explants Compared to Embedded Isolated Chondrocytes

Potential cytotoxicity of infiltrated and polymerized MPC30, MPC60 and SBMA60
monomer solutions in OA-cartilage explants was analyzed based on LIVE/DEAD cell stain-
ing (exemplarily shown for MPC60, Figure 5A–D), and metabolic activity of chondrocytes
in infiltrated OA-cartilage explants was measured using CTB assays (Figure 5E).
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Figure 5. LIVE/DEAD Viability/Cytotoxicity assay of human OA-cartilage explants. Living cells
of cross-sectional slices of human OA-cartilage tissue are stained with Ca-AM (green), and dead
cells are stained with EthD-1 (red). (A) Chondrocytes of an untreated OA-cartilage explant (control)
consist mostly of living cells after one day in culture, whereas (B) chondrocytes in OA-cartilage
explants infiltrated with MPC60 monomer solutions for 24 h were mostly dead after one day in
culture. (C) Chondrocytes of an untreated OA-cartilage explant (control) consist of living and dead
cells, whereas (D) chondrocytes in OA-cartilage explants infiltrated with MPC60 hydrogel for 24 h
were mostly dead after three days in culture. Human OA cartilage is classified into superficial zone
(SZ) and deep zone (DZ); n = 5. Scale bar 200 µm. Magnification 20×. (E) Metabolic activity (days 1
and 3 combined) of chondrocytes in hydrogel-containing OA cartilage was evaluated in comparison
to untreated OA cartilage (control, dotted line) using a CTB assay. Metabolic activity of chondrocytes
was significantly decreased in infiltrated OA-cartilage explants (MPC30 = 12.7%, MPC60 = 9.7%,
SBMA = 13.4%) compared to controls (100%). n = 5; * p < 0.05.

The chondrocytes in untreated OA-cartilage explants (controls) were mostly viable
after 1–3 days in culture (green, Figure 5A,C), although the number of dead cells was
increased on day 3 (Figure 6C) compared to day 1 (Figure 6A). In contrast, chondrocytes of
MPC60-containing OA explants were mostly dead 1 and 3 days in culture (Figure 5B,D). In
addition, the metabolic activity of chondrocytes in hydrogel-containing cartilage explants
was evaluated compared to the metabolic activity of chondrocytes in controls. MPC30
(12.7%), MPC60 (9.7%) and SBMA60 (13.4%) monomer solution infiltration and polymer-
ization decreased metabolic activity of chondrocytes in OA-cartilage explants compared
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to non-hydrogel-containing OA samples (Figure 5E). We did not observe any differences
in chondrocyte viability between MPC60-, MPC30- and SMBA60-containing OA-cartilage
tissue from five patients (Figure S2 in Supplementary Materials). These results indicated
cytotoxic effects of the infiltrated monomer solutions during 24 h prior to polymerization.
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Figure 6. LIVE/DEAD Viability/Cytotoxicity assay of hydrogel-encapsulated isolated chondrocytes.
Living cells of embedded chondrocytes were stained with Ca-AM (green), and dead cells were
stained with EthD-1 (red). (A) Chondrocytes embedded in MPC60 hydrogel were partly living
but mostly dead after one day in culture. (B) Chondrocytes embedded in SBMA60 hydrogel were
partly living but mostly dead after one day in culture; n = 5. Scale bar 200 µm. Magnification 10×.
(C) Ratio of living versus dead cells of all embedded chondrocytes (days 1–7 combined) in MPC60
and SBMA60 hydrogel showed significantly more dead cells (in MPC60 = 85%, in SBMA = 70%) than
living cells (in MPC60 = 15%, in SBMA60 = 30%). In SBMA60 hydrogel, embedded chondrocytes
showed a significantly (p = 0.0556) increased viability compared to embedded chondrocytes in MPC60
hydrogels; n = 5; ** p < 0.01; p = 0.0556.

In parallel to hydrogel-containing OA-cartilage explants, cell viability analysis us-
ing LIVE/DEAD cell staining assay was also performed for isolated primary OA chon-
drocytes embedded in MPC60 and SBMA60 hydrogels (Figure 6). The viability of the
hydrogel-encapsulated chondrocytes was analyzed after one, three and seven days (Figure 6,
Figure S4 in Supplementary Materials). Live and dead cells were observed in MPC60
and in SBMA60 hydrogels, representatively shown for day 1 (Figure 6A,B). However, the
number of dead cells was significantly increased when chondrocytes were embedded in
MPC60 and SBMA60 hydrogels compared to the number of living cells (Figure 6C). The
comparison of MPC60- and SBMA60-embedded chondrocytes revealed that the viabil-
ity of cells in SBMA60 hydrogels (30%) is significantly (p = 0.0556) higher than of the
chondrocytes encapsulated in MPC60 hydrogels (15%) (Figure 7C). A viability assay of
encapsulated chondrocytes in MPC30 hydrogels was not possible due to the low viscosity
of the MPC30 hydrogels.
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Figure 7. LIVE/DEAD Viability/Cytotoxicity assay of human OA-cartilage explants. Living cells in
cross-sectional slices of human OA-cartilage tissue are stained with Ca-AM (green), and dead cells are
stained with EthD-1 (red). (A) Chondrocytes of OA-cartilage explants were infiltrated with individual
monomer solution components (DMEM, NVP, MPC30, NaCl, EGDMA, MPC60, TEOA, SBMA60)
for 24 h (no light exposure) and subjected to irradiation with VL for 10 min. OA-cartilage tissues
infiltrated with DMEM, NVP, NaCl and VL contained mostly living cells, whereas chondrocytes in
OA-cartilage explants infiltrated with EGDMA, TEOA, MPC30, MPC60 and SBMA60 were mostly
dead. Percent cell viability is given in white text with mean ± standard deviation; n = 3. Magnification
10×. Scale bar 200 µm. (B) Chondrocytes of OA-cartilage explants infiltrated with MPC60 monomer
solution for different time periods (1, 5, 10 and 30 min) were mostly alive. With increased infiltration
time, progressive cell death proceeding from the marginal areas of the OA explant is shown; n = 3.
Magnification 4×. Scale bar 500 µm. (C) Living cells of chondrocytes in OA-cartilage explants
containing MPC60 hydrogel after infiltration (1, 5, 10 and 30 min) were decreased with increased
infiltration time (1 min = 75%, 5 min = 74%, 10 min = 73%, 30 min = 63%) compared to the total
number of OA chondrocytes (100%, dotted line); n = 3. No significance.

3.3. Time-Dependent and Component-Dependent Increase in Monomer Solution Cytotoxicity in
Human OA-Cartilage Explants

Due to the high number of dead chondrocytes in entire infiltrated and polymerized
cartilage–hydrogel composites, toxicity was also studied as a function of individual compo-
nents of the hydrogel synthesis and of different infiltration times (1, 5, 10 and 30 min).

Analysis of the individual hydrogel components (Figure 7A) revealed that the cytotoxic
effects can be attributed to the monomer solution components ethyleneglycol dimethacry-
late (EGDMA), triethanolamine (TEOA) and the unpolymerized MPC30, MPC60 and
SBMA60 monomers. However, a lower cytotoxicity was determined for the MPC30 solu-
tion (43 ± 21% viability) compared to MPC60 (9 ± 15% viability) and SBMA60 hydrogels
(0% viability). Incubation in DMEM, PBS and N-vinylpyrrolidone (NVP) showed no sig-
nificant influence on the cell viability, whereas irradiation with visible light had a slight
cytotoxic effect on the marginal zones of the cartilage sample, resulting in a viability of
74% ± 17 (Figure 7A). Due to the autofluorescence of inactivated Eosin Y, the effects on
chondrocyte viability could not be analyzed (Figure S3 in Supplementary Materials).

Since the single-component analysis for the different monomers, EGDMA and TEOA
tended to exhibit cytotoxic effects within 24 h in human OA explants, the effects of reduced
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infiltration time points (1, 5, 10 and 30 min) were exemplarily investigated for MPC60
monomer solution (Figure 7B,C). Reducing the time of infiltration (1, 5, 10 and 30 min)
resulted in increased cell viability but reduced infiltration depth compared to the samples
infiltrated for 24 h (Figure 7B). With increasing infiltration time, decreased chondrocyte
viability was observed (Figure 7C).

In summary, the monomer solutions have a component- and time-dependent effect on
the viability of chondrocytes in OA-cartilage explants. The monomer solutions contain toxic
components, the toxicity of which affects the whole tissue within 24 h. With a shortened
infiltration time, it can be assumed that the tissue was infiltrated only in the marginal
areas, which corresponds to the area of dead chondrocytes, although a vital tissue core was
also preserved.

4. Discussion

Untreated cartilage lesions can lead to serious joint disorders such as osteoarthritis
(OA). To date, there is no therapy available that is suitable as a treatment option in the
early OA stages. Therefore, the establishment of new treatment approaches is of cru-
cial importance. In this study, we developed a novel photo-crosslinking, zwitterionic
sulfobetaine-methacrylate (SBMA)-based hydrogel and compared it with already studied
2-methacryloyloxyethyl-phosphorylcholine (MPC)-based hydrogels in terms of ex vivo
infiltration into human OA-cartilage samples and their ability to encapsulate human iso-
lated chondrocytes. The results indicated successful infiltration of zwitterionic MPC and
SBMA monomer solutions into human OA-cartilage explants, and formation of a natural–
synthetic network between OA-cartilage ECM and hydrogel through polymerization with
visible light (VL). The evidence of complete deposition of the hydrogels within the OA-
cartilage ECM supports the hypothesis that this proteoglycan-replacement hybrid system
might be further optimized as a treatment option for cartilage defects to prevent or delay
OA development.

4.1. Evidence of Polymerization and Infiltration

Crucial for the experimental design in this study was the proof of successful synthesis
of MPC and SBMA hydrogels by polymerization of the monomer solutions with VL. The
successful polymerization was indicated by the characteristic color change, which was also
observed by Noshadi et al. [22]. Liquid monomer solutions are polymerized into hydrogels
in the presence of photo-initiators mainly by using ultraviolet (UV) light [58]. Compared
with the hazardous effects of UV radiation, such as damage to DNA and surrounding
tissue, including accelerated aging, minimal damage is caused when using VL [58]. There-
fore, VL is increasingly replacing UV light in in vitro and in vivo studies [59–61]. Cooper
et al. [47] showed successful polymerization with VL for MPC monomer solutions, and
Bahney et al. [62] reported the polymerization of hydrogels using VL with a photo-initiating
system similar to that used in the present study, consisting of Eosin Y, TEOA and NVP.

In this study, the successful polymerization of the MPC monomer solutions and a novel
SBMA monomer solution and their deposition within OA-cartilage explants were demon-
strated by FTIR in addition to optical confirmation, as in comparable studies [22,63–67].
FTIR spectra of monomers, hydrogels and OA-cartilage explants with and without hydro-
gels were analyzed. Since the spectra of the investigated substances (OA cartilage, MPC or
SBMA hydrogel) were known, the resulting peaks could be assigned to the characteristic
functional hydrogel groups. Thus, polymerization and molecular deposition of MPC and
SBMA hydrogels within the OA-cartilage explants were confirmed, in concordance with
other studies [47,68].

Results of SEM and fluorescence microscopy provide a detailed understanding of the
microstructure of infiltrated OA-cartilage explants. In the present study, the deposition
of zwitterionic hydrogels within human OA-cartilage structures using SEM is shown for
the first time. The observed orientation of the collagen fibers in the TZ (non-oriented) and
the DZ (vertically oriented) could be verified, in accordance with other studies [56,57].
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The initial parallel orientation of the collagen fibers, typical for the SZ, could not be
found, which might be due to increasing degradation of the SZ during OA progression, as
described in former studies [43,69,70]. Changoor et al. [57] were able to determine altered
proportions of cartilage zones in degraded articular cartilage, characterized by an increase
in the TZ. Hua et al. [68] demonstrated an interaction between porcine cartilage explants
and hydrogel by using SEM; however, the hydrogel was not infiltrated into the explants,
but solely applied to the cartilage surface.

For fluorescence microscopy. the MPC and SBMA monomer solutions were mixed
with the fluorescent dye MTR, which allowed a detailed localization of the deposited
hydrogels within the OA-cartilage zones, as already reported by Cooper et al. [47]. In the
present study, complete hydrogel deposition within the entire OA explant could be detected,
especially in and around chondrocytes and chondrons. The localization of the hydrogels
near chondrocytes was also observed by Kowalski et al. [71]. Their hyaluronic acid-based
hydrogel also accumulated in the region around the chondrocytes. It was reported that the
increased deposition of the methacrylated hyaluronic acid gel correlates with the presence
of type VI collagen within the ECM, which is an indicator for the pericellular matrix
(PCM) of the chondrocytes [71,72]. This suggests that the MPC30, MPC60 and SBMA60
hydrogels of the present study preferentially accumulated at the PCM; however, this was
not further investigated.

4.2. Biocompatibility

The used polymerized hydrogels appeared biocompatible, unlike the corresponding
non-polymerized monomer solutions. Geever et al. [73] referred to increased cell toxicity
due to monomer residues within polymerized hydrogels, but the cytotoxicity of zwitte-
rionic monomer solutions is also in contrast to other studies. Bai et al. [74] and Dong
et al. [35] showed a cell viability greater than 90% for encapsulated cells. In the present
study, we observed that the cytotoxic effects of MPC and SBMA monomer solutions are due
to one or more of the following non-polymerized components: TEOA, EGDMA, MPC60
and SBMA60. However, this is partly inconsistent with the results of other studies. Noshadi
et al. [22] reported high cell viability for cardiomyocytes by using 1.5% TEOA, whereas
Bahney et al. [62] confirmed a cytotoxic effect of TEOA for human mesenchymal stem cells.
They recommended using a concentration of 0.1% instead of 1.5% TEOA to avoid toxic ef-
fects despite successful polymerization. The cytotoxicity of non-polymerized EGDMA was
also determined by Bielecka et al. [75] for human gingival fibroblasts using an incubation
time of 24 h. In contrast, high cell viability of isolated murine and human chondrocytes
could be detected when EGDMA was pre-polymerized [76,77]. A study by Chien et al. [78]
demonstrated that SBMA and MPC monomers exhibited low cytotoxic effects for a murine
fibroblast cell line compared to other methacrylated monomers.

The predominance of encapsulated isolated dead chondrocytes in contrast to cartilage
explants might be due to visible light irradiation. The isolated chondrocytes are no longer
surrounded by their protecting ECM and are directly exposed to radiation which might be
toxic then even if it is visible light. Several studies demonstrated the cytotoxic effects of
blue light irradiation on isolated cells [79,80]. In contrast, the results of control OA-cartilage
explants showed only a slight toxic impact on chondrocyte viability after irradiation with
visible light for 10 min. Lim et al. [81] could also not find a negative influence of visible
light irradiation on chondrocytes located within cartilage biopsies.

The hypothesis based on our results is that the isolated encapsulated chondrocytes ex-
hibit increased cell viability compared to the chondrocytes located within the infiltrated OA-
cartilage explants, which could be due to the reduced contact time with non-polymerized
solutions. The infiltration and polymerization of hydrogels into human OA-cartilage ex-
plants within 24 h was successful, but the interaction of the unpolymerized monomer
solutions and the OA chondrocytes within the cartilage tissue resulted in cytotoxicity. In
comparison to cartilage explants, we observed an increased viability for the hydrogel-
encapsulated OA chondrocytes. Polymerization of the embedded chondrocytes in the
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MPC and SBMA monomer solutions was performed immediately after mixing cells and
monomer solutions, according to the literature [82]. Another study reported an incubation
time of 10 min for cells and monomer solutions which achieved high cell viability; however,
a different monomer solution was used [35]. A crucial contributing factor in this work was
the incubation time (24 h) of the OA-cartilage explants with the monomer solutions. The
focus of this work was a complete penetration of MPC and SBMA monomer solutions into
human OA-cartilage explants. Due to the high number of dead cells after 24 h infiltration,
some experiments were performed using reduced infiltration times (1, 5, 10 and 30 min).
A higher chondrocyte viability in the innermost cartilage core was reached and can be
considered as sealing or resurfacing of the degenerated OA-cartilage surface, as we assume
that a reduced infiltration time does not lead to complete infiltration of the cartilage explant.
Comparable studies used similar penetration time-points and detected also only a partial
infiltration of the cartilage structures at the surface [71,83,84].

4.3. Translational Aspects

Regarding the reconstitution of destroyed OA-cartilage layers such as the superficial
zone, or the encapsulation of chondrocytes within zwitterionic hydrogels, bioprinting is
another promising treatment option for cartilage defects and early OA prevention. Through
bioprinting, tissue structures can be generated in a defined manner. The composition of
these so-called “bionics” is mostly based on natural or synthetic polymers, such as hydro-
gels, and can be dotted with different cells or bioactive molecules [85]. Cell-supported
cartilaginous structures can be formed to support tissue regeneration by providing biome-
chanical stability. With regard to in situ treatments, a so-called “Biopen” has already
been developed, which allows preparing multiple layers of different biomaterials, with-
out or with cells (e.g., stem cells), to be inserted directly into the defect site and to be
polymerized by the integrated light source [86,87]. The Biopen was already used by
Onofrillo et al. [88] to generate human hyaline-like cartilage tissue by creating a scaffold
with human adipose-derived mesenchymal stem cells, chondrogenic stimuli and gelatin-
methacryloyl/hyaluronic acid methacryloyl hydrogels. Another regenerative strategy
(bionic: gelatin-methacryloyl/hyaluronic acid methacryloyl and MSCs) was published by
Di Bella et al. [87] who compared three methods for cartilage regeneration: 3D Biopen
printed scaffolds, pre-constructed printed scaffolds and microfracturing in vivo. The de-
fects treated with Biopen exhibited the highest amount of newly regenerated cartilage
tissue compared to the other groups [86,87].

Hydrogel treatments of cartilage defects mainly focus on cartilage repair or replace-
ment to replicate the biomechanical properties of the tissue, whereas chronic pain is also
a crucial symptom of OA that needs to be addressed. Structure-based therapies with
DMOADs, pain-based therapies with NSAIDs or opioids, and cell-based options with
stem cells represent promising treatment options [8]. Could a combined therapy involv-
ing DMOADs, NSAIDs and/or stem cells encapsulated in monomer solutions and/or
hydrogels to restore mechanical stability, repair and regenerate degenerated cartilage and
eventually relieve pain be a potential new treatment option for degenerative joint diseases?

5. Concluding Remarks

In summary, we have shown that zwitterionic-based hydrogels (MPC and SBMA)
are suitable for the infiltration of human OA-cartilage samples. The applied hydrogels
could completely infiltrate the human cartilage explants and still be polymerized by visible
light. The interpenetrating network of hydrogel and cartilage was shown by SEM and
fluorescence microscopy, and the polymerization was confirmed by FTIR. Furthermore, the
monomer solutions have shown a cytotoxic effect in viability tests during infiltration. This
effect could be reduced by sealing the surface instead of completing the entire infiltration.
Based on the results of the present study and the already-known advantages of zwitterionic
polymers (anti-fouling, lubricant, mechanical properties), we conclude that the generated
hydrogels have great potential in terms of sealing and resurfacing of degraded OA-cartilage
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explants. Further studies are needed to investigate the mechanical and swelling behavior,
as well as lubricating, anti-fouling and long-term infiltration properties of the hydrogel–
cartilage explants. The generated MPC and SBMA hydrogels might be also used as bionics,
with or without embedded chondrocytes, in terms of OA-cartilage regeneration.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering10070767/s1, Figure S1: Fluorescence-based staining
of human articular cartilage sections. Figure S2: LIVE/DEAD Viability/Cytotoxicity assay of human
OA-cartilage explants. Figure S3: LIVE/DEAD Viability/Cytotoxicity assay of unpolymerized Eosin
Y within human OA-cartilage explants. Figure S4: LIVE/DEAD Viability/Cytotoxicity assay of
isolated encapsulated OA chondrocytes in hydrogels. Table S1. Listing of used OA-patient samples
including sex, age, and associated experiment.
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