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ARTICLE INFO ABSTRACT

Keywords: Semantic segmentation is an essential task in medical imaging research. Many powerful deep-learning-based
Semi-supervised approaches can be employed for this problem, but they are dependent on the availability of an expansive
Segmentation

labeled dataset. In this work, we augment such supervised segmentation models to be suitable for learning from
unlabeled data. Our semi-supervised approach, termed Error-Correcting Mean-Teacher, uses an exponential
moving average model like the original Mean Teacher but introduces our new paradigm of error correction.
The original segmentation network is augmented to handle this secondary correction task. Both tasks build
upon the core feature extraction layers of the model. For the correction task, features detected in the input
image are fused with features detected in the predicted segmentation and further processed with task-specific
decoder layers. The combination of image and segmentation features allows the model to correct present
mistakes in the given input pair. The correction task is trained jointly on the labeled data. On unlabeled
data, the exponential moving average of the original network corrects the student’s prediction. The combined
outputs of the students’ prediction with the teachers’ correction form the basis for the semi-supervised update.
We evaluate our method with the 2017 and 2018 Robotic Scene Segmentation data, the ISIC 2017 and the
BraTS 2020 Challenges, a proprietary Endoscopic Submucosal Dissection dataset, Cityscapes, and Pascal VOC
2012. Additionally, we analyze the impact of the individual components and examine the behavior when the
amount of labeled data varies, with experiments performed on two distinct segmentation architectures. Our
method shows improvements in terms of the mean Intersection over Union over the supervised baseline and
competing methods. Code is available at https://github.com/CloneRob/ECMT.

Mean-Teacher
Pseudo-labels
Medical imaging

1. Introduction In medical imaging, data is commonly sparse, and its labeling is
costly. The sparsity applies to an even greater extent to semantic seg-
mentation problems. The manual annotation of such image data is time-
consuming, for it cannot be outsourced and must be conducted by med-
ical experts. Hence, medical image segmentation datasets have rarely
approached the expansiveness and quality of more general-purpose
datasets, and algorithms tackling these problems have to potentially

deal with scarce or noisy annotations [5].

Neural Networks enabled substantial advances in various domains
like computer vision and natural language processing. The countless
algorithmic advances were in part pushed by Krizhevsky et al. [1] with
significant improvements in classification accuracy on the ImageNet
dataset [2], the advances in automatic differentiation and GPU com-

puting. Apart from the technological progress that enabled pursuing
ideas infeasible before, an essential factor still is the availability of
a large labeled dataset for the underlying task. For general purpose
object detection or segmentation, such large datasets are available
[1,3,4]. However, in some vision domains, the availability still poses a
problem.
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Medical image segmentation problems appear in many different
forms. The tasks range from binary classification for detecting and
identifying dermoscopic lesions from 2D images to delineating and
assessing glioblastoma in MRI scans. There is a wide range of neural
network architectures commonly applied in the medical domain, rang-
ing from variations of the popular U-Net [6] to more general-purpose
segmentation architectures [7].
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Fig. 1. A high-level overview of the multi-task architecture. In both tasks, a large
majority of the parameters are shared. The correction task, C; and C, for student and
teacher, respectively, contains independent output layers as well as an additional set
of input layers. During the correction task, the model operates on features from both
the original image and the predicted segmentation learned for the segmentation task.

For a semi-supervised segmentation approach to be widely appli-
cable in the medical domain, it is essential to function independently
of the network architecture or the data domain, be it multi-class 2D
or binary 3D datasets. In the end, segmentation models are tools to
improve diagnostics or therapeutic treatments [8,9]. Their prevalence
will correlate with the quality and robustness of their outputs, and
we believe that semi-supervised methods can optimize both of these
metrics.

In this work, we propose to learn from unlabeled data with Error-
Correcting Mean-Teacher (ECMT). In ECMT, the base segmentation
network is extended to handle the task of spotting and correcting
errors in a predicted segmentation. Semantically, our model can be
categorized into three parts, shown in Fig. 1:

+ A base feature extractor that is active in both tasks.

» The segmentation task, where a segmentation decoder is applied
to the output of the feature extractor, producing a segmentation
map with depth N for N labels.

+ The correction task, where the model operates on both the image
and the predicted segmentation.

For the correction task, the model is extended with an additional set
of input and output layers. The input layers convolve the predicted
segmentation with depth N and concatenate the representation with
those returned by the shared feature extractor (Fig. 1). The final decod-
ing layers then produce a segmentation map with depth N + 1, where
the additional channel is used to indicate a matching between the
predicted segmentation and the content of the input image. Therefore,
the original N classes are used to correct perceived inaccuracies in the
given segmentation, while class N + 1 signifies agreement.
Mean-Teacher (MT) [10] models have proven to provide accurate
targets for semi-supervised tasks. However, those targets guiding the
optimization problem are most commonly based on consistency reg-
ularization. Within ECMT, the Mean-Teacher, an exponential moving
average of the weights of the primary model, builds pseudo-labels
from both the outputs of the segmentation and correction tasks. In
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Fig. 2. Conceptual view of the data flow in ECMT. MT models only map from image
to label space. In ECMT the corrector operates on a combined representation of image
and label spaces and predicts the offset from the given inputs to the predicted truth.

ECMT, if the teacher’s output has high entropy, the student will not
be optimized to match this distribution. Thus, ECMT represents a
shift from the paradigm of consistency regularization towards error-
correction. Depending on one’s viewpoint, it is possible to interpret
all consistency regularization or pseudo-labeling approaches as error
correction. As long as the outputs between student and teacher do not
perfectly match, following the teacher’s prediction always represents a
form of error correction. However, the proposed approach distinctly
differs from other methods by including both image and prediction
as inputs for the correction model enabling the nuanced distinction
between accurate and inaccurate regions. Fig. 2 highlights an abstract
view of these differences, showing the extension to map from labeled
space to correction space, which is missing from consistency-based
approaches.

By using both labeled and unlabeled data, our framework allows for
efficient utilization of all data available, which is especially important
in domains where data gathering is challenging.

In summary, our contributions are as follows:

Shifting the Mean-Teacher from consistency regularization to er-
ror correction for semi-supervised segmentation.

Proposing a multi-task architecture that leverages a shared fea-
ture extractor for the segmentation and correction tasks.
Utilization of fine-grained error correction maps to optimize the
secondary task on labeled data.

Extensive evaluation on 2D and 3D medical datasets and compar-
isons between competing semi-supervised learning concepts.
Analysis of the learned representations to reassure that ECMT
does not just reinforce the supervised signal.

We have introduced the concept of error-correction [11] recently.
Now, we propose a way to merge it with the Mean-Teacher model
for the first time and additionally transfer it to the medical imaging
domain. We provide granular evidence that the combination of segmen-
tation and correction delivers a more accurate approximation of the
unknown truth. Moreover, our analysis of the learned representations
shows that our model can effectively incorporate this information.
Further, we provide an ablation study of the main hyperparameters
of the model and show how increasing the number of labeled samples
develops the model’s accuracy.

2. Related work

Besides approaches of supervised segmentation, within the area of
semi-supervised segmentation the concept of Error-Correction is one
of the essential parts of the proposed approach. Therefore, the works
discussed in [11] are equally relevant in this setting. Additionally
the techniques for consistency regularization are highlighted in the
following.
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Fig. 3. Assigning a new label N + 1 where the segmentation y matches the ground-truth y, while keeping the labels of y where the prediction diverges, results in the targets for
the correction task y°”. (From left to right: input image, ground truth, predicted segmentation, difference between ground-truth and segmentation, and correction map).

2.1. Supervised semantic segmentation

Currently, segmentation models are mostly based on some form of
spatial pyramid pooling [12-14] or show an encoder—decoder [6,15]
structure or recently have started to include attention into the architec-
ture [16,17]. The underlying design decisions for both of those archi-
tectural choices build on the fully convolution composition, proposed
by Shelhamer et al. [18].

Applying pooling operations at various scales [14] results in out-
put features that depict the image’s content in diverse resolutions.
The DeepLab family [13,19,20] introduced an Atrous Spatial Pyramid
Pooling (ASPP) module. Here, dilated convolutions [21] track repre-
sentations at different scales without changing the features’ spatial
resolution. In recent iterations of the DeepLab model [20], both the
encoder—decoder and ASPP approaches were combined. The connection
between the features detected in early and later stages of the model
result in sharper object boundaries.

Transformer based approaches in 2D and 3D medical imaging often
rely on an hybrid architecture [22,23] or take inspiration from the skip
connections from established convolutional models [24].

A variety of the discussed segmentation models have been applied to
the Robotic Scene Segmentation Challenge [7] or dermoscopic datasets
like the ISIC 2017 Challenge [25]. Since their introduction U-Nets were
among the most commonly used models in medical image segmenta-
tion. Especially in 3D imaging problems variants of the U-Net have
achieved state of the art results on a large number of datasets [26]. But,
challenges like [7] show that architectures that are more commonly
used for general segmentation tasks are at least as competitive.

Apart from neural network based approaches, there is a large body
of work based on, for example, graph based algorithms [27], nature-
inspired methods [28,29], or hybrid applications that combine feature
engineering with deep learning models [30].

2.2. Semi-supervised segmentation

For semi-supervised segmentation, labeled as well as unlabeled sam-
ples can be employed to optimize the model. Two research directions
are starting to appear that operate on different principles.

Methods that feature an adversarial component, inspired by the
wide-spread framework of Generative Adversarial Networks [31], in-
corporate a second discriminator network that judges a given image
with varying granularity. Souly et al. [32] transferred the GAN frame-
work to semi-supervised segmentation by choosing a segmentation
architecture for the discriminator. Each pixel is classified as either
generated or as one of the true classes in their approach.

Luc et al. [33] apply adversarial regularization in a purely su-
pervised setting. The segmentation network is constrained to predict
outputs a discriminator interprets as real. Unlike [32], Hung et al. [34]
treat the segmentation network as the generator, and add a new
discriminator. The Fully Convolutional Discriminator evaluates the
ground-truth as well as the segmentation and judges at a pixel level
if the input is real or fake, respectively. Similar to [33], an adversarial
term is added to the supervised objective. On unlabeled data, depend-
ing on the discriminator accepting regions as real, these predictions are
used to minimize a spatial weighted cross-entropy loss. Nie et al. [35]

adapt this approach for the medical domain and show promising results
on an MRI dataset. Wang et al. [36] combine a number of concepts from
GAN literature to generate noisy pseudo-labels for semi-supervised
segmentation.

Another direction that is explored for semi-supervised learning is
consistency regularization. In most cases, the fundamental idea is to
constrain the model to produce consistent outputs on labeled as well
as unlabeled data, independent to any noise or augmentations that are
added to the input. With Temporal Ensembling [37], an exponential
moving average (EMA) for each prediction on the labeled and unla-
beled samples is updated after every training step. These ensembled
predictions are then used as targets for the consistency regularization.
Variations of this concept have been applied to histopathology im-
age analysis [38]. The Mean-Teacher (MT) framework [10] shifts the
EMA from the predictions to the model itself. This model ensemble
represents the role of the teacher providing the targets for the consis-
tency regularization. In the medical domain, the MT framework has
been used to improve the quality of brain-lesion segmentations [39]
or augmented with label propagation to nuclei classification [40].
Augmented with a rich set of perturbations on the input data of the
student and teacher models, Xiao et al. [41] effectively apply this
framework from skin lesion segmentation to optic disc segmentation
in fundus images. Yu et al. [42] add uncertainty-awareness to the
MT framework. By repeated forward passes with independent dropout
and noise, they filter the regions of the output that show large vari-
ances and suppress them in the consistency regularization. A variety
of different forms of uncertainty-estimation have been explored for
medical image segmentation, from models that build the estimate from
an auto-encoded label representation [43] to multiple decoders [44]
or by the inclusion of several learners [45]. Apart from MT models in
consistency-regularization, Ouali et al. [46] augment the segmentation
architecture with several auxiliary decoders to introduce perturbations
to the output, and enforces consistency between the main and auxiliary
predictions.

Guided Collaborative Training (GCT) [47] and Cross Pseudo Super-
vision (CPS) [48] employ two segmentation networks with different
initializations, and has been extended to medical imaging data and
to include shape awareness constraints [49]. In GCT, consistency is
enforced between the two networks, while CPS takes a pseudo labeling
approach, where the cross-entropy loss between one networks output
and the pseudo labels produced by the other network is minimized.

The consistency-based methods share the architecture between stu-
dent and teacher. Apart from the effects of the averaged model parame-
ters, the augmentations control the outputs’ similarity. When a target is
predicted, the loss formulations encourage the student to strictly follow
the teacher and thus potentially copy uncertainties as a label instead.
The proposed loss formulation utilized in ECMT, with the added layers
recontextualizing the input space, leads to less confident predictions
being less influential and these uncertainties being the product of the
combined teacher and student outputs. In ECMT, the proposed loss
reduces the influence of less confident predictions and bases these
decisions on the combination of the teacher’s and the student’s state.
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Fig. 4. Overview of Error-Correcting Mean-Teacher. Apart from the supervised segmentation, the method comprises two additional steps (represented by the backdrop color). The
Error-Correcting network C is trained with image-segmentation (x, ) pairs to spot inaccuracies in the input. For the semi-supervised step, the segmentation network learns to
minimize the Negated Focal Loss (NFL) between the segmentation y“ of an unlabeled image and a pseudo-label. Note: for visual clarity, the outputs of both models are displayed

as discrete segmentations.
3. Error-Correcting Mean-Teacher

The following sections will discuss the components of the proposed
method. Besides introducing the notation, we highlight the technique of
model averaging during training time [10], followed by the supervised
and the semi-supervised steps of the framework.

During training, each iteration utilizes the labeled training data and
correction maps, as shown in Fig. 3, as well as the pseudo-labels for
unlabeled images. A single training iteration with ECMT consists of
three parts:

+ The supervised segmentation step, where the segmentation model
is optimized.

» The supervised error-correcting step, where the correction net-
work learns to find wrong predictions in an estimated segmen-
tation.

+ The semi-supervised step, where the correction network is used
to improve the accuracy of an unlabeled sample’s predicted seg-
mentation, and the student is optimized to match the corrections,
proportional to the teacher’s confidence.

Detailed interactions, between student and teacher versions of the
networks for the three steps are shown in Fig. 4.

In contrast to consistency based models, our use of pseudo-labels
prevents the student from mirroring possible high entropy predictions
and instead uses low information predictions to decrease the magni-
tude of the gradient. Thus, we hypothesize that the more pronounced
decision boundary of the Cross-Entropy based Negated Focal Loss [11]
propagates a more advantageous gradient through the network.

Notice that ECMT does not require weakly-labeled data such as
image-level or bounding box annotations. The additional unlabeled
data just has to belong to the same domain as the labeled training
images.

3.1. Notation

The multi-task architecture consists of layers that are task specific
and parts that are shared between the tasks. In the following we will
term the layers active during the correction and segmentation tasks as
correction network and segmentation network, respectively.

We follow the notation defined in [11], where x represents an
image, and y € {l,..., N} its corresponding label map. Further,

y € RNXhxw ig the probabilistic output of the segmentation network .S(x).
The subscript s attached to the segmentation .S(-) or correction network
C(-,-) denotes the use of the student network, while ¢ symbolizes that
the EMA teacher is utilized. The subscript i is used to identify an
individual value, in the case of a label map, or vector at one of the
M = h-w positions. Lastly, D and D, indicate the labeled and unlabeled
training data.

3.2. Exponential moving average

The success of the Mean-Teacher framework [10] for consistency
regularization is based on the fact that an ensemble of the model
parameters is a more effective teacher than the current parameters
given by the state of the model. The weights of the teacher 6" are the
exponential moving average of the weights 6° of the student model.
While 6° are updated with an optimizer of choice, the teacher’s weights
9} at training iteration j are updated as follows:

0 = po'_ +(1 - po;, €3]

where f controls the temporal length of the ensemble. As the name
suggests, the teacher is present in ECMT but it does not produce
consistency-targets.

3.3. Supervised step

In ECMT, the primary model that is the basis for the student and
teacher models is extended for an additional task (Fig. 1). The model
consists of two tasks:

+ one retains the functionality to produce a semantic segmentation
of the input image into the classes defined in the dataset,

« and the other revises the predicted segmentation, given the fea-
tures extracted from the input x.

This enables the model to take just an image as well as the image-
segmentation pair as input. With the pair as input, the model judges
how well image and segmentation match on a pixel level and offers
corrections for areas where ground-truth and predictions do not agree.
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3.3.1. Segmentation task

The network utilized in the segmentation tasks consists of the layers
shared in both tasks and a segmentation head (Fig. 1). The model is
trained to minimize the cross-entropy H between y = S,(x) and the
labels y:

M
1 N
£, i= o0 Z HG,.y)). (@)

3.3.2. Error-Correction task

The correction network C(-,-) transforms a given image-
segmentation pair into a segmentation map of depth N + 1, where N is
the number of classes in the dataset. Regions labeled as the (N + 1)th
class indicate that the content of the input image was accurately
captured by the segmentation.

An overall visualization of this architectural concept is shown in
Fig. 1. In both tasks, large parts of the network parameters are shared.
Only the final layers are duplicated and not shared between the tasks.
For the correction task, the shared layers are extended by additional
input and output layers. The input layer operates on the softmax proba-
bilities of the predicted segmentation. Therefore the initial convolution
layer accepts an input with N channels, i.e. the depth of output of
the segmentation network. As shown in Fig. 1, the input of the final
correction layers is the concatenation of features from the initial layer
and of the shared core layers.

The final layers utilized for the correction task learn to predict if
the image features match the segmentation’s characteristics and offer
corrections if they do not. Notice that only the initial and final layers
of the correction network are not trained with information from the
unlabeled data directly, and receive gradients only from the labeled
data.

Therein lies the advantages of the proposed shared architecture.
Only second-order effects would influence a correction network in a
setting with two separate architectures for segmentation and correc-
tion. If just the segmentation network includes unlabeled data during
training, the influence of the unlabeled data on a correction network is
limited to the shifting quality of the segmentation, i.e. the correction
network’s input. With the shared architecture, as the core layers learn
more accurate representations by incorporating unlabeled data, they
directly influence the output of the correction network that builds on
these representations.

Fine-grained correction maps With the Error-Correcting paradigm [11]
for semi-supervised segmentation, an additional set of labels are re-
quired. To produce the needed targets for the correction task y*’, each
prediction § = argmax y is compared with the ground-truth at pixel-
level. If the content of ground-truth and segmentation differ, the labels
of the former are inherited. All remaining regions are assigned to the
(N + D)th class:

yeor = N +1
i

The involved components as well as the resulting y°* are shown in
Fig. 3.

ify, =y
otherwise.

3)

De-emphasizing class imbalances with a weighted loss Since the correction
maps are generated during training and depend on the segmentation’s
underlying accuracy, the labels constantly shift and evolve during
training. The distribution quickly shifts from mostly incorrect to mostly
corrected predictions, so the frequency of the individual labels in y<"
are heavily biased towards the added (N + 1)th class, as one can see
in Fig. 3. Always predicting the (N + 1)th class would result in high
accuracies on average, without any learned understanding of the data.

Oversampling can circumvent unbalanced label distributions in a
classification setting, and is applicable for segmentation in the same
manner. In [11], weighting the loss-contributions of each class differ-
ently has been applied with a positive effect. Similarly, we here select
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a fixed weighting «a, so that the contribution to the loss of the regular
dataset classes stays untouched. The effects of the additional (N + 1)th
class on the loss, are penalized with a weight of a:

if yr = N +1

o
a = @
! { 1.0 otherwise.

This incentivizes the correction network to register the underrepre-
sented regions. Setting the weighting for the N classes to 1.0 behaves
like the standard cross-entropy loss, while 0.1 shifts the focus to the cor-
rections. An a value of 0.5 can be an appropriate initial configuration
for a hyperparameter search.

Correction objective The correction network is optimized with the cross-
entropy loss,

M
1
Lei= o DaHOLY™), ®)
1
and is computed between the outputs of the correction network:

¥ = %, 7 (S, (), ©®

and the generated correction maps y°”. In (6), = is a function to
perturbe the data.

Applying the MT framework to classification instead of segmen-
tation problems, there are no concrete restrictions for the possible
perturbations. A class being present in an image is invariant to, for
example, rotation. In a segmentation setting, this is only partially
true. Whereas with classification only the contents of the image are
present in the loss calculation, the pixel-wise nature of segmentation
requires the location of the objects as well. Thus, when MT is applied
to semantic segmentation, perturbations that modify object locations
have to be reverted in order to compare the two samples. In ECMT, the
perturbations include noise in the form of dropout [50], as well as hor-
izontal and vertical flipping, depending on the dataset. In this case, the
noise-induced by dropout does not significantly alter object positions,
and thus, does not have to be reverted. The flipping operations, on the
other hand, need to be undone by z~! in (6). Both the correction and the
segmentation networks are trained on labeled data. For the parameter
update, the sum of the losses £, and £, is differentiated with respect
to the parameters of the student model.

3.4 Semi-Supervised step

The concept behind ECMT involves the correction network of the
teacher model judging the agreement between image and the predicted
segmentation. For regions that do not seem to agree, the correction
network tries to amend the apparent misclassification. Using the cor-
rections as objective in the semi-supervised step requires additional
processing to form pseudo-labels y”. On an unlabeled image x“, the
continuous probabilistic outputs y* = S,(x*) and y? = C,(x", y*) are both
transformed to their discrete label representations y* and y¢ with the
argmax operator over the depth of the output. All areas predicted as
N +1in y? are replaced with the corresponding values of y*, while the
remaining corrections are kept:

p_{y;‘ ify?=N+1

Y .
! y¢ otherwise.

@)

3.4.1 Negated Focal Loss

The purpose of the Focal Loss [51] is to reduce the effect easy-to-
classify examples have on the overall loss. Hence, the negated proba-
bility of the actual class acts as a weight term on the Cross-Entropy.
Likewise, the Negated Focal Loss, proposed in [11], is in the shape
of a weighted cross-entropy loss. When the Focal Loss is negated, the
probabilities directly act as weighting factor:

NFL(-, -, y") = (max y)Y H(-, ), ®)
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Fig. 5. Overview of some training images. From left to right: Input image, ground truth, segmentation, certainty, correction. Top to bottom: RSS, ESD, ISIC 2017, BraTS. Inspecting
both the corrections and their certainty shows that even in some cases with inaccurate corrections, these areas still have a lower certainty. The images provide context for the
following evaluation. In the first row, ECMT corrects the string class missing from the student segmentation. The model is generally less confident in the second row, which will
influence the loss calculation. The correction branch proposed incorrect suggestions in the last row, but with low confidence.

where y,‘.l is the N + 1 dimensional softmax probability vector of the
corrector’s output at pixel position i, and the focusing parameter y
acts as a smoothing factor. With the Focal Loss, the output of the
segmentation network is used as a weighting term. Here, y¢, the output
of the teacher model’s correction task takes on this role. The intention
behind weighting a loss calculated with pseudo labels proportional to
the certainty of the teachers’s corrections, is to lessen the contribution
of high entropy predictions. Fig. 5 visualizes the certainty component
used in NFL. The semi-supervised loss for a given unlabeled image x“
is defined as:

M
1
£, = 5 X NFLOL Y] v, ©
i

3.5 Summary of the training process

In summary, one training iteration of ECMT consists of the following
parts, shown in Fig. 4 and described in Algorithm 1: calculation of the
supervised cross-entropy loss between the predicted segmentation y of
an image x and the ground-truth label y and differentiating the loss
with respect to the parameters of the segmentation head and the shared
parameters.

The exponential moving average model predicting a segmentation
for the same labeled image followed by the assessment y° of the image—
segmentation pair by the student’s correction network. The correction
loss is differentiated with respect to the shared parameters and the two
sets of additional layers used for the correction task.

On unlabeled data, the student model first segments an image x“.
The teacher corrects the predicted segmentation, and its outputs con-
tribute to the pseudo-label. The semi-supervised loss is differentiated
with respect to the same parameters as in the supervised loss.

On none of the occasions, gradients flow through the teacher model.
Following are two parameter updates: a single update for the accumu-
lated gradients of the labeled, unlabeled, and correction losses L, L,
and £,, and the calculation of the moving average.

3.6 Model architecture

The following section describes the architecture of the shared fea-
ture extractor and the task specific layers. Our design choices here are
just implementation details and no hard requirements that are needed
to use ECMT.

3.6.1 Segmentation network

For the 2D datasets, we chose a DeepLabV3+ [20] with a ResNet50
backbone [52,53] as the core model for ECMT. The architecture utilizes
dilated instead of strided convolutions in the last residual block, such
that the output features of the ResNet backbone are 1/16 of the reso-
lution of the original input. The DeepLabV3+ decoder features Atrous
Spatial Pyramid Pooling and applies the softmax function as the last
layer.

On 3D data, we follow the architectural patterns described in [54].
The generated nnU-Net consists of 5 downsampling layers while ex-
panding the channel dimension to a maximum of 320. Our imple-
mentation applies trilinear interpolation instead of transposed convo-
lutions for the upsampling operations, batch-normalization and ReLU
activations.

3.6.2 Correction layers

For 2D data, we chose a plain architecture for the correction net-
works’ initial layers that mirror the initial layers commonly used with
ResNets in the segmentation setting. This initial module consists of
three 3 x 3 convolutions, each followed by a BatchNorm layer and
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Algorithm 1 Training Pseudo-code. 7 is omitted.

# .seg, .corr: respective forwad passes
# for the Segmentation and Correction Tasks
(x, y), x_u zip(D, D_u):
# # # supervised segmentation
y_h = student.seg(x)
Ls = H(y_h, y).mean()

# # # supervised correction

y_h = teacher.seg(x).detach()

correct = y_h.argmax(1l) ==

y_cor = y.clone()

y_cor [correct] = N + 1

y_c = student.corr(x, y_h)

Lc = (alphaly_cor]l*H(y_c, y_cor)).mean()

# semi-supervised

= student.seg(x_u)

= teacher.corr(x_u, y_u).detach()
= y_d.argmax (1)

orrect = y_p == N + 1

y_plcorrect] = y_u.argmax (1) [correct]
Lu = NFL(y_u, y_p, y_d).mean()

O Qe #

#
y-
y-
y-
C

# # # parameter update
(Ls + Lc + Lu).backward()
optimizer.step()

ema (student, teacher)

ReLU activation. The initial layer halves the spatial dimensions with a
stride of two in the convolution and increases the depth to 64 channels.
The second convolution preserves depth and spatial dimensions. The
last convolution has 256 channels and is followed by an average pooling
layer that further reduces the spatial dimension by half. The final
block used in the correction task copies the structure of the last layers
in the DeepLabV3+ architecture adjusted to accommodate the larger
input volume and the additional output class. The interactions between
primary and additional layers are shown in Fig. 1.

With nnU-Net [54], the initial layers have the same architecture
as the first block of the model. The correction block again repeats
the architecture of the last nnU-Net block only increasing the input
dimension of the first 3D convolution layer to accommodate the depth
of the incoming concatenated features. The correction layers in our
nnU-Net operates on the same resolution as the input tensor.

4 Experiments and analysis

To assess the performance of our method, we conduct experiments
on several datasets ranging from 2D and 3D challenge datasets and
our proprietary dataset. On the medical datasets, we compare ECMT
with own experiments applying TCSM [41] and CCT [46], while on the
two non-medical datasets, we compare our model to the results posted
in [48].

4.1 ISIC

The 2017 ISIC skin lesion segmentation challenge data set [25]
includes 2000 annotated dermoscopic training images. We present the
result of five independent training runs trained with 50 labeled and
1950 unlabeled images, each evaluated on the 600 images of the 2017
test set. All training and validation images are resized to 512 x 512
pixels.
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4.2 Robotic Scene Segmentation dataset

The Robotic Scene Segmentation (RSS) dataset [7] is made up of
19 individual stereo sequences that, for the 2018 Endoscopic Vision
Challenge, were divided into 15 training videos containing 149 labeled
left frames and 149 unlabeled right frames and four test sets with
1000 frames in total. The sequences were recorded on a da Vinci X
or Xi system from a single porcine training procedure each. In the
2017 challenge [55], the medical device of the da Vinci instrument
had to be segmented. In 2018, it was extended with drop-in ultrasound
probes, suturing needles, suturing thread, suction-irrigation devices,
and surgical clips. Every non-biological object in the image has a
corresponding label. The anatomical classes differentiate between a
background class, that features all tissue that is not one of the following:
kidney parenchyma, the kidney fascia, and perinephric fat termed
‘covered kidney’, and small intestine. In total, the 2018 dataset spans
12 object classes, which are not present in every sequence.

To increase the size of the dataset, we include all of the images from
the 2017 Challenge as unlabeled data in our experiments, resulting in a
total of 5335 images. The images are resized such that the shorter side
has a length of 512 pixels and then randomly cropped to 624 x 496.

We evaluate our algorithm with five-fold cross-validation on a
sequence level. Each fold consists of 1/5 of the 2018 sequences. We
constrain the models to 10% of the labeled training set and include
the remaining 90% as unlabeled samples. The amount of data in the
respective validation fold remains unconstrained.

4.3 Endoscopic Submucosal Dissection

Endoscopic Submucosal Dissection (ESD) is an endoscopic technique
for the en bloc resection of gastrointestinal lesions [56]. First, a submu-
cosal fluid cushion is injected underneath the lesion. Then, an incision
of the mucosa at the outer borders of the lesion is performed using
a specialized ESD knife. With the opened submucosal space, further
dissection of the submucosa is carried out. Finally, the lesion’s complete
en bloc resection is achieved when the circumferential mucosal incision
is completed and the lesion is detached from the underlying muscle
layer.

To detect the individual components in the ESD, we created a
partially labeled dataset from 12 full-length procedures recorded at the
University Hospital Augsburg. The partially labeled dataset consists of
five individual classes, i.e. submucosa, blood vessel, knife, instrument
shaft, and background. From the 12 videos, a total of 4120 frames
were captured, of which 401 are labeled. The images, with an original
resolution of 2700 x 2160 pixels, are resized and cropped equivalent to
the process described for RSS. The evaluation consists of five-fold cross-
validation on a sequence level similar to RSS. Contrary to the other
datasets, we do not constrain the amount of labeled data as the size
of dataset is already fairly limited, considering its diversity. Thus, we
train the semi-supervised methods with all the images of the sequences
contained in the current fold, and the supervised baseline with the
labeled subset of the folds sequences.

4.4 BraTS

Apart from the 2D data, we also include a 3D medical imaging
dataset, the brain tumor segmentation (BraTS) challenge 2020 [57-59]
in our evaluation. The 2020 dataset consists of 369 training and 125
validation cases. For each scan, four modalities are available i.e., T1,
Tlc, T2, and Flair.

During training, we randomly crop the stacked modality slices
resulting in an input tensor to a shape of 4 x 128 x 128 x 128 per
sample. Since the labels for the challenge validation set are not publicly
available, we incorporate the validation data as unlabeled samples. We
evaluate the models with five-fold cross-validation. For each run, the
labeled training data is limited to 20% of each fold. The remaining
training samples of the fold and all of the slices of the challenge
validation set are used as unlabeled samples.
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Table 1
Results on the ISIC 2017 test set. Only TCSM and ECMT slightly improve over the
supervised baseline with 2.5% of the labels.

Run Sup CCT [46] TCSM [41] ECMT Sup

2.5% 100%
#1 75.14 74.72 73.58 76.61 82.28
#2 72.22 71.64 74.56 75.15 82.33
#3 77.34 75.04 77.10 77.19 81.97
#4 76.26 76.55 76.85 75.96 82.79
#5 78.32 78.35 78.57 77.33 82.34
Mean 75.86 75.26 76.13 76.45 82.34

4.5 Setup

For all experiments, the segmentation network is trained with
Stochastic Gradient Descent [60,61] with a learning rate of 0.01,
momentum 0.9, weight decay of le — 4, and polynomial learning rate
decay Ir = Ir;piq - (1 — m:x_eirm)og applied after each iteration.

In the segmentation and semi-supervised steps, we apply label-
smoothing of 0.1 to the labels and generated pseudo-labels. The hy-
perparameter « in the correction loss is set to 0.2 on the 2D and 0.5 on
the 3D datasets.

We chose a batch size of four for both the labeled and unlabeled
data and trained for 20400 iterations. The iteration count derives from
redefining the length of one epoch as 256 iterations on all datasets,
independent of the actual amount of labeled data, and then training
the algorithms for 80 epochs.

The weights of the DeepLab are initialized to the publicly available
pre-trained COCO [4] model contained in the PyTorch [62] repository.
The remaining layers are initialized as described in [52]. The nnU-Net
is trained from scratch, i.e. without pretrained weights.

4.5.1 Augmentations

Apart from dataset-specific aspect ratios for the random cropping,
all training images are flipped randomly along both axes. Aside from
BraTs, color jittering and gaussian noise, implemented in the albumen-
tations [63] library, are randomly added to all images during training.
Each RGB image is normalized with the mean and standard-deviation
intended for the pretrained weights.

The inputs and outputs of the teacher’s correction task are flipped
horizontally and vertically, as represented by the transformation z. In
combination with noise, jittering, and dropout layers in the network,
this step further ensures that student- and teacher-model receive a
different view of the same data point.

4.5.2 Evaluation approach

The quality of the models is assessed with the commonly used mean
Intersection-over-Union (mlIoU),

N

R e — (10)
N &~ TP,+FP,+FN,

n

where T P,, FP, and F N, are the true positives, false positives and false
negatives concerning label n € N. For the Robotic Scene Segmentation
results, we specifically follow the protocol outlined in [7].

With the definition of one epoch as 256 iterations, we validate all
models on the last ten training epochs and present the averages over the
ten runs. The main results show just the performance of the student’s
segmentation performance. This measure is intended to further reduce
the variance in our evaluation. No early stopping or related techniques
are applied.

4.6 Results

In the following sections, we compare ECMT with limited labeled
data with our own implementation of Transformation Consistent Self-
Ensembling (TCSM) [41], the public implementation of Cross Consis-
tency Training (CCT) [46] as well as the purely supervised model.
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Table 2

Overview of the performances on the Robotic Scene Segmentation dataset. With 10%
of the labeled data, all semi-supervised methods improve over the baseline. CCT beats
TCSM in fold 2,3 and 4. ECMT is a substantial improvement over both CCT and TCSM
on all but one fold. None of the methods surpasses the supervised model with 100%
of the labeled data.

Fold Sup CCT [46] TCSM [41] ECMT Sup

10% 100%
#1 47.95 50.17 50.29 54.88 55.05
#2 52.97 55.41 53.27 63.18 64.16
#3 54.44 58.78 58.44 58.53 65.13
#4 55.09 57.90 57.63 61.59 65.39
#5 62.91 65.25 65.78 66.56 73.00
Mean 54.67 57.50 57.08 60.95 64.55

Table 3

Results on our ESD dataset. All semi-supervised methods improve upon the supervised
baseline. TCSM and ECMT are close in performance and benefit the most from the
additional unlabeled samples.

Fold CCT [46] TCSM [41] ECMT Sup

100%
#1 59.94 62.43 63.63 58.64
#2 59.17 61.75 62.20 57.57
#3 56.45 58.88 58.62 56.46
#4 43.84 43.06 44.88 43.50
#5 68.82 72.08 72.19 67.05
Mean 57.65 59.64 60.30 56.64

4.6.1 ISIC

On the dermoscopy dataset [25], all methods achieve similar values
for the mIoU measure. Table 1 highlights that CCT [46] slightly dete-
riorates in comparison to the baseline, while TCSM [41] and ECMT
improve upon it. Li et al. [41] included the results on the test set,
trained with 300 as labeled images and the remainder as unlabeled
data, achieving a mIoU of 78.1. We replicate their experiment with our
TCSM implementation and increased the mIoU to 79.6 averaged over
five runs. With the same amount of labeled data, ECMT reaches a mIoU
of 80.63 on the test set.

4.6.2 Robotic Scene segmentation

On the Robotic Scene Segmentation [7,55] dataset, all semi-
supervised models surpass the supervised baseline, presented in
Table 2. TCSM and CCT achieved similar results with an averaged mloU
of 57.08 and 57.50, respectively. ECMT surpasses both methods on all
but one validation fold, averaging a mIoU of 60.95 with only 10% of
the labels used. A fully supervised model obtains a mIoU of 64.55.

4.6.3 ESD

On our ESD dataset, ECMT again provides the best results (Table 3).
Similar to the RSS, there is a large variance between the folds since
the validation sequences do not overlap. TCSM achieves the best mIoU
on fold 3, and the differences in the average performance are not as
pronounced as in the Robotic Scene Segmentation dataset, with a mIoU
of 59.64 to ECMT’s 60.30.

4.6.4 BraTS

On the BraTS [57-59] dataset, the common evaluation metric is
the dice coefficient. Instead of reporting the average performance per
fold for each training class, we present the results similar to [54]. The
training classes of edema, non-enhancing tumor and enhancing tumor
are recombined to the whole, core and enhancing classes, respectively.

The dice scores in Table 4 present the averages for the aggregated
classes over five folds. On the BraTS dataset, ECMT with 20% of the
labeled data achieved a substantial lead over the other semi-supervised
methods and approached the fully supervised model with a mean dice-
score of 86.22 to 87.38. Increasing the labeled data to 100% and only
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Table 4
Supervised and semi-supervised results on the BraTS 2020 dataset. Whole, Enhancing,
and Core values are the average dice scores for the respective class over the five
validation folds. ECMT considerably improves upon the baseline and competing
methods.
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Table 6

MIoU on the Cityscapes and PASCAL VOC 2012 validation sets. The results for methods
marked © with are taken from [48]. For ECMT, we report the average mloU of the last
ten epochs.

Dataset Method 6.25% 12.5% 25% 50%
Class Sup CCT [46] TCSM [41] T Sup. Cityscapes  CCT [46]'  66.35 72.46 75.68 76.78
20% 100% CPS [48]'  69.79 74.39 76.85 78.64
Whole 89.81 88.63 90.19 91.24 90.99 ECMT 71.19 75.18 76.73 77.84
CO;e 80.34 79.32 81.10 BEHGE 85.95 Pascal CCT [46]7  65.22 70.87 73.43 74.49
Enh. 8245 81.16 82.18 R 85.20 CPS [48]7  68.21 73.20 74.24 75.91
Mean 84.20 83.03 84.49 86.22 87.38 ECMT 71.48 73.37 74.95 75.53
Table 5 Metric = Accuracy Metric = mIoU
Mean IoU of the 5 x 2 cv runs. 85
60
Dataset TCSM [41] ECMT 280 -
RSS 52.57 + 3.89 55.23 + 4.48 p <001 z 50
ESD 57.99 + 4.59 59.34 + 4.92 p <0.05 =7 -
ISIC 85.13 + 1.30 85.33 + 1.94 p >0.05
70 40
35
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
10 8
utilizing the cases from the BraTS validation set as unlabeled data, leads w g
to a mean dice-score of 87.70. Isensee et al. [54] report a mean dice § . 6
score of 87.07 on their cross-validation experiments. g 4
& a
. L a 2
4.7 Statistical significance 2
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

In most experiments, ranking the algorithms by mIoU scores ECMT
occupies the top position, followed by TCSM and CCT. But this is
not consistent over every validation fold, and if ECMT is in the lead,
the extent varies from dataset to dataset. To determine whether our
method leads to statistically significant improvements, we conduct the
5 x 2 cv test [64], between ECMT and the closest competitor, TCSM
(see Table 5). The training data is partitioned into two folds, with the
alteration that the ratios of labeled and unlabeled data from the main
results are kept. In numbers, on ISIC, each fold contains 1000 images,
where 25 are used as labeled, and the remaining 975 images are used
as unlabeled training images. The two-fold cross-validation is repeated
five times. On RSS and ESD, ECMT achieved a statistical significant
improvement with P < 0.01 and P < 0.05 respectively. On BraTS, TCSM
failed to converge with 36 labeled slides. Only on the ISIC dataset,
both approaches perform equally well, with no statistically significant
differences.

4.8 Cityscapes and Pascal VOC

Although the focus of this paper is medical imaging, our method
is not strictly tailored to this type of data and can be applied to other
semantic segmentation datasets — like Cityscapes [65] and Pascal VOC
2012 [66]. On both datasets, we conduct experiments with labeled
ratios of 6.25%, 12.5%, 25%, and 50%. On Cityscapes, we define the
length of an epoch to 495 iterations and train for 90 epochs. On Pascal
VOC with the sbd labels, our training lasts for 90 epochs, where one
epoch is defined as 440 iterations. The crop size for the Cityscapes
training images is 800 x 800 pixels, and 512 x 512 pixels on Pascal
VOC. The models are trained with batch size 8 on Cityscapes and 16 on
Pascal VOC. The chosen number of iterations results in a similar length
of training to CPS [48] and we use the same scaling augmentations.

Table 6 presents a comparison between CCT, CPS and ECMT on the
validation sets. Both CPS and ECMT lead to a sizable improvement over
CCT. CPS and ECMT perform similarly, with ECMT leading in settings
with the fewest labeled training data.

4.9 Ablation and discussion

We conduct a series of self-contained experiments to show the
influence individual components of our proposed method have.

Iterations Iterations

———ECMT VY ——ECMTY" MT v"

Fig. 6. Comparing the quality of the pseudo labels between ECMT and a standard
Mean-Teacher model. The first row shows the absolute values and the second row
the difference between ECMT’s values and MT. Especially in the early iterations the
pseudo-labels y? in ECMT provide better approximations for the true labels than just
the segmentation in ECMT and MT. In later stages, the output of the segmentation task
y* approaches the quality of the combination of segmentation and correction y’.

4.9.1 Relation between correction and truth

We perform an additional experiment on the Robotic Scene Seg-
mentation dataset to gain a better understanding why the correction
objective outperforms the consistency targets. We partition the data to
use 5 of the 15 sequences in the semi-supervised step and evaluate how
the accuracy of the predictions develops throughout 10000 training
iterations.

We train both ECMT and a simple Mean-Teacher consistency reg-
ularization approach with this setup. With ECMT, we calculate pixel
accuracy and mloU for the output of the segmentation network .S,(x")
and the combination of the two tasks, the pseudo labels y? (Fig. 6).

The differences in mIoU and accuracies imply that the outputs in
ECMT provide considerably better approximations than in a consistency
regularization setting. After ~ 1500 iterations, the pseudo-labels pre-
dicted with ECMT are closer to the ground-truth than the best result
of the consistency regularization model. More accurate representations
produced early during training lead to better pseudo-labels, which
improves the representations.

In the early stages of training, pseudo labels are more accurate than
just the teacher’s segmentation. The correction network operates on
features from the input image and its segmentation. It processes more
information than during the segmentation task, and the experiment
suggests that this can lead to more accurate predictions. The gap
vanishes throughout training as the segmentation network converges.

4.9.2 Increasing the amount of labeled data

For the main experiments (Section 4.6) on the medical datasets, the
amount of labeled data is limited to a fraction of the entire set. It is,
however, also valuable to study the effects that increasing amounts
of labeled data provide for ECMT. Fig. 7 displays a progressive per-
formance increase when more labels are made available. With 50%
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Fig. 7. Evolution of average mloU over the five folds with increasing amounts of
labeled data on the Robotic Scene Segmentation Dataset. Our algorithm profits from
more labeled data, and also surpasses the fully labeled supervised baseline.

of the labeled data, ECMT borders on the fully supervised model and
continues to increase to an average mloU of 65.12 over the five folds.
In the last case, the unlabeled data only consists of challenge images
from 2017.

4.9.3 Measuring the similarities between the learned representations

Evaluating the performance on the respective validation sets, the
results in the prior section indicate that ECMT was more effective at
learning from unlabeled data. But just comparing the segmentation
quality only gives limited insight into the learning dynamics of the
models. A different approach is the investigation of the representations
themselves, learned by the neural networks. Kornblith et al. [67] have
proposed Centered Kernel Alignment (CKA) as a similarity measure for
representations. With a linear kernel, the CKA between the centered
matrices X,Y € R™? of p activations for n samples is calculated as
following:

YT x|
IXTXIENYTY |l

CKA can reliably discern a correspondence between the same layers in
networks trained with different initializations.

We use linear CKA to study the similarities between the representa-
tions learned after the ASPP module on the 2D datasets. We compare
the representations of the bootstrapped validation data learned by the
semi-supervised models with their supervised counterparts trained with
partially and fully labeled data.

Of the three 2D datasets, only on ISIC the unlabeled set is strictly
a subset of the whole labeled dataset. On RSS and ESD the data, the
semi-supervised models have access to, is a superset of the labeled data.

With these distinct settings, we form two assumptions.

CKA(X,Y) = an

+ An effective semi-supervised method should produce similar rep-
resentations to a supervised model when trained on the same
data.

« If the semi-supervised model has access to additional data that
exhibits some domain shift, we would expect to see less similar
representations if the added data influences the model.

Fig. 8 shows the similarities for the three datasets. On ISIC both
TCSM and ECMT are generally similar to their supervised counterparts
and between each other, suggesting that the inclusion of the correction
task does not lead to notable representational shifts.

On ESD, the difference is the largest, with ECMT seemingly having
learned far different representations. ECMT did achieve the best mIoU
on the ESD dataset, ruling out degrading model performance as the

10
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Table 7

Ablation of weighting scheme used to train the correction task. The method is fairly
robust in the choice of @ and only falls below a competing approach in a single case.
Decreasing a, and thus, encouraging the correction network to focus on mistakes has
significant positive effects on the evaluation metric.

a

Dataset 1.0 0.5 0.2 0.1

ISIC 76.38 76.71 76.45 77.79

RSS 58.19 60.15 60.95 62.07

ESD 59.60 59.49 60.30 60.51

BraTS 83.59 86.22 84.91 84.22
Table 8

Comparison of TCSM with label smoothing (LS) and the negated focal loss with ECMT
on the ESD and Robotic Scene Segmentation datasets.

RSS ESD
TCSM 57.08 59.64
TCSM-LS 57.15 58.64
TCSM-NFL 56.35 59.81
ECMT 60.95 60.30

cause of the discrepancy. On RSS, the differences are less pronounced,
but ECMT’s representational shift is still visible. Following the stated
assumptions, the representations being more similar on ISIC and less
so on the other two datasets could indicate ECMT’s effectiveness at
learning from unlabeled data.

4.9.4 Effect of a in the correction loss

The prior experiment and Fig. 6 show that, on the Robotic Scene
Segmentation dataset, the accuracies of the correction task generally
hover around 88%. Thus, classifying the whole input as correct by
the correction network could reach an error rate of ~ 10%, without
any learning taking place. But in turn, a corrector that accepts every
input equally would not produce pseudo-labels and thus degrade the
quality of the segmentation. The prevention of this phenomenon is the
intended objective of the weighting scheme, discussed in Section 3.3.2
and Eq. (4). This hyperparameter choice impacts the overall perfor-
mance of ECMT. Accordingly, we report the results on all datasets with
a € {1.0,0.5,0.2,0.1} in this section. On the 2D datasets, reducing «
steadily raises the mIoU, apart from a single outlier on the ESD dataset.
However, on the 3D BraTS dataset, ECMT appears sensitive to the
parameter choice, with both low and high values of « decaying the
average dice score. Setting « to 0.5 leads to the best results in this case.
Although this attests that ECMT requires some hyperparameter tuning
when applied to new problems, a general default setting of 0.5 can be
a very competitive initial value, with further gains being possible (see
Table 7).

4.9.5 Label smoothing and Negated Focal Loss

The Negated Focal Loss incorporates the certainty in the prediction
to reduce the influence of individual high entropy outputs. Apart from
the correction task, the NFL loss (Eq. (8)) is the second distinction
between ECMT and the consistency-based approaches featured in this
work. To highlight that ECMT’s improvements are not exclusively
attained by a differing loss, we incorporate Cross-Entropy with label-
smoothing (LS) and the NFL with TCSM and repeat the experiments on
the Robotic Scene Segmentation and ESD datasets. Table 8 presents the
average mloU over five folds. Depending on the dataset, either label-
smoothing or NFL can improve over the baseline results. However, in
all cases, these improvements are not consistent and trail ECMT. These
results indicate that just including the certainty is not the source of
ECMT’s performance advantage. The addition of the correction task
forces the network to learn more accurate representations, and is a
critical component and reinforces the results from Section 4.9.1. The
proposed correction mechanism of ECMT is essential for consistent
performance in the semi-supervised settings.
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Fig. 8. Comparison of the similarities between the representations of the semi-supervised and supervised models calculated with Centered Kernel Alignment [67]. The
representational shift on RSS and ESD, where the semi-supervised models have access to images unavailable to the supervised models, implies that ECMT incorporated information

from the unlabeled samples more effectively.

5 Conclusion

Error-Correcting Mean-Teacher offers an alternative for semi-
supervised segmentation utilizing an EMA teacher while combining
it with the Error-Correction paradigm [11]. It can easily be added to
existing supervised models if additional unlabeled data is present. The
pseudo-labels produced by fusing the outputs of the correction network
with the preceding segmentation have shown to be suitable approxima-
tions for the ground-truth labels. Since the correction network operates
on the features shared with the primary segmentation network, it can
profit from an improving segmentation model.

A possible direction for future work is architectural advancements
of the layers merging image and segmentation features. The inductive
biases of convolutions lend themselves advantageously for imaging
tasks, but the correction problem could be interpreted as a sequence
problem with long-range to global dependencies. A larger receptive
field or attention could be better suited to correlate the incoming fea-
tures as, especially with attention, the strict neighborhood constraints
are broken. Further, the choice of concatenating the incoming features
is an implementation detail and should be evaluated in future work.

We have shown that our approach consistently outperforms a su-
pervised baseline as well as competing semi-supervised methods. The
datasets vary between 2D and 3D data, from binary segmentation to
more complex problems with 12 individual classes. We have shown that
the method is robust to variations in the data domain by including
the images from the previous challenges in the experiments in the
case of Robotic Scene Segmentation. By experimenting with two widely
different architectures, namely nnU-Net and DeepLabV3+, we have
shown that ECMT is adaptable and should apply to newer model
architectures and paradigms.
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