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MESSAGE
In this study, we aimed to develop an artificial 
intelligence clinical decision support solution to 
mitigate operator-dependent limitations during complex 
endoscopic procedures such as endoscopic submucosal 
dissection and peroral endoscopic myotomy, for example, 
bleeding and perforation. A DeepLabv3-based model 
was trained to delineate vessels, tissue structures and 
instruments on endoscopic still images from such 
procedures. The mean cross-validated Intersection over 
Union and Dice Score were 63% and 76%, respectively. 
Applied to standardised video clips from third-space 
endoscopic procedures, the algorithm showed a mean 
vessel detection rate of 85% with a false-positive rate 
of 0.75/min. These performance statistics suggest a 
potential clinical benefit for procedure safety, time and 
also training.

IN MORE DETAIL
Endoscopic submucosal dissection (ESD) is an estab-
lished organ-sparing curative endoscopic resection 
technique for premalignant and superficially inva-
sive neoplasms of the GI tract.1 2 However, ESD and 
peroral endoscopic myotomy (POEM) are complex 
procedures with an elevated risk of operator-
dependent adverse events, specifically intrapro-
cedural bleeding and perforation. This is due to 
inadvertent transection through submucosal vessels 
or into the muscularis propria, as visualisation and 
cutting trajectory within the expanding resection 
defect is not always apparent.3 4 An effective miti-
gating strategy for intraprocedural adverse events 
has yet to be developed.

Artificial intelligence clinical decision support 
solution (AI-CDSS) has rapidly proliferated 
throughout diagnostic endoscopy.5–7 We there-
fore sought to develop a novel AI-CDSS for real-
time intraprocedural detection and delineation of 
vessels, tissue structures and instruments during 
ESD and POEM.8

Sixteen full-length videos of 12 ESD and 4 POEM 
procedures using Olympus EVIS X1 series endo-
scopes (Olympus, Tokyo, Japan) were extracted 
from the Augsburg University Hospital database. A 
total of 2012 still images from these videos were 
annotated by minimally invasive tissue resection 
experts (ESD experience  ≥500 procedures) using 
the computer vision annotation tool for the cate-
gories electrosurgical knife, endoscopic instrument, 

submucosal layer, muscle layer and blood vessel. 
A DeepLabv3+ neural network architecture with 
KSAC9 and a 101-layer ResNeSt backbone10 (online 
supplemental methods) was trained with these data. 
The performance of the algorithm was measured in 
an internal fivefold cross validation, as well as a test 
on 453 annotated images from 11 separate videos 
using the parameters Intersection over Union (IoU), 
Dice Score and pixel accuracy (online supplemental 
methods). The IoU and Dice Score measure the 
percentual overlap between the algorithm’s delin-
eation and the gold standard. The pixel accuracy 
measures the percentage of true pixel predictions 
per image and over all classes. The validation 
metrics were calculated by accumulating the per-
fold outputs. The cross validation was done without 
hyperparameter tuning.

Three further full-length videos (1× POEM, 1× 
rectal ESD and 1× oesophageal ESD) were used for 
an evaluation of the algorithm on video. Thirty-one 
clips with 52 predefined vessels (online supple-
mental methods) were evaluated frame by frame 
with artificial intelligence (AI) overlay for true and 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Recently, artificial intelligence (AI) tools 
have been developed for clinical decision 
support in diagnostic endoscopy, but so far, no 
algorithm has been introduced for therapeutic 
interventions.

WHAT THIS STUDY ADDS
	⇒ Considering the elevated risk of bleeding and 
perforation during endoscopic submucosal 
dissection and peroral endoscopic myotomy, 
there is an apparent need for innovation and 
research into AI guidance in order to minimise 
operator-dependent complications. In this study, 
we developed a deep learning algorithm for the 
real-time detection and delineation of relevant 
structures during third-space endoscopy.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This new technology shows great promise for 
achieving higher procedure safety and speed. 
Future research may further expand the scope 
of AI applications in GI endoscopy.
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false vessel detection, and a vessel detection rate (VDR) was 
determined.

The cross-validated mean IoU, mean Dice Score and pixel 
accuracy were 63%, 76% and 81%, respectively. On the test 
set, the AI-CDSS achieved scores of 68%, 80% and 87% for the 
same parameters. The individual per class values and 95% CIs 
are shown in table 1. Examples of the original frames, expert 
annotations and AI segmentations are shown in figure 1.

The mean VDR was 85%. The VDR for rectal ESD, oesopha-
geal ESD and POEM were 70%, 95% and 92%, respectively. The 
mean false-positive rate was 0.75 /min. The algorithm spotted 
seven out of nine vessels, which caused intraprocedural bleeding. 
It also recognised the two vessels which required specific haemo-
stasis by haemostatic forceps for major bleeding.

To demonstrate the performance of the AI-CDSS without 
computing quantitative performance measures, we show an 
example of an internal POEM procedure with AI overlay. For 
visualisation of the experiment, we show six video clips, which 

were used for the evaluation of VDR in the same video (2× 
POEM, 2× rectal ESD and 2× oesophageal ESD; online supple-
mental video 1). For a test in robustness, the algorithm was also 
applied to a randomly selected highly compressed YouTube video 
of a gastric per-oral endoscopic myotomy procedure (ENDO-
CLUNORD 2020, https://www.youtube.com/watch?v=VKF-
HWOzYDGM; online supplemental video 2). The individual 
output is the result of an exponential moving average between 
the current and past predictions which smoothes the predictions 
and is a simple way to include temporal information.

COMMENTS
This preliminary study aims at investigating the potential role 
of AI during therapeutic endoscopic procedures such as ESD or 
POEM. The algorithm delineated tissue structures, vessels and 
instruments in frames taken from endoscopic videos with a high 
overlap to the gold standard provided by expert endoscopists. 
Analogous technology11 has been demonstrated for application 
in laparoscopic cholecystectomy to differentiate between safe 
and dangerous zones of dissection with a mean IoU of 53% and 
71%, respectively.

On video clips with standardised and predefined vessels, the 
algorithm showed a VDR of 85%. The lower performance of 
70% in rectal ESD compared with excellent detection of over 
90% in oesophageal ESD and POEM might be explainable by 
poorer visualisation of the structures and more intraprocedural 
bleeding, which is in agreement with clinical experience.

Numerous preclinical and clinical studies on AI in GI endos-
copy have been published, but until now, the application of AI 
has been limited largely to diagnostic procedures such as the 
detection of polyps or the characterisation of unclear lesions. In 
abdominal surgery, AI has been applied with promising results 
for various tasks, including the detection of surgical instru-
ments, image guidance, navigation and skill assessment (‘smart 
surgery’).12 The results of this study suggest that AI may have 
the potential to optimise complex endoscopic procedures such 
as ESD or POEM in analogy to the mentioned research (‘smart 
ESD’). By highlighting submucosal vessels and other tissue struc-
tures, such as the submucosal cutting plane, therapeutic proce-
dures could become faster and burdened with fewer adverse 
events such as intraprocedural or postprocedural bleeding and 

Table 1  Performance results of the AI-CDSS in the internal cross validation and the test data set: IoU and Dice Score for all categories as well as 
their means across all categories, pixel accuracy for complete frames and 95% CI in brackets

Internal cross validation

 �  Vessel detection Tissue differentiation Instrument detection

 �  Vessel Submucosa Muscularis Background Instrument Knife Mean

Dice Score 55.15
(54.10 to 56.18)

75.51
(74.88 to 76.12)

70.64
(69.32 to 71.88)

86.49
(85.99 to 86.99)

88.69
(87.57 to 89.83)

80.60
(79.61 to 81.49)

76.18
(75.73 to 76.57)

IoU 38.07
(37.08 to 39.07)

60.65
(59.85 to 61.44)

54.60
(53.05 to 56.10)

76.19
(75.43 to 76.98)

79.68
(77.89 to 81.54)

67.51
(66.13 to 68.77)

62.78
(62.18 to 63.31)

Pixel accuracy 80.99
(80.52 to 81.47)

Test

Dice Score 62.77
(60.08 to 65.12)

80.71
(79.50 to 81.82)

72.48
(69.40 to 74.99)

91.39
(90.45 to 92.10)

89.69
(87.09 to 91.96)

83.50
(82.06 to 84.87)

80.09
(79.14 to 80.92)

IoU 45.74
(42.94 to 48.28)

67.65
(65.97 to 69.24)

56.84
(53.14 to 59.99)

84.14
(82.56 to 85.36)

81.30
(77.14 to 85.11)

71.67
(69.58 to 73.72)

67.89
(66.61 to 69.04)

Pixel accuracy 86.89
(85.86 to 87.70)

AI-CDSS, artificial intelligence clinical decision support solution.

Figure 1  Examples of original images (left column) with 
corresponding expert annotations (middle column) and AI 
segmentations (right column). The muscle layer, submucosa, vessels and 
knife are segmented with a coloured overlay.
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perforation. In the future, AI assistance may have the potential 
to accelerate the learning curve of trainees in endoscopy.

The major limitation of this study is the small number of 
videos used for training and validation; however, every video 
contained a complete therapeutic ESD procedure with a full 
range of procedural situations. The study is further limited by 
the fact that the algorithm was not yet tested in a real-life setting. 
However, the AI model was tested on externally generated video 
sequences and was able to recognise submucosal vessels and the 
cutting plane. Furthermore, surrogate parameters such as the 
detection of vessels, which bled later during the procedures, 
give rise to the conclusion that these complications might have 
been preventable by the application of the AI-CDSS. This is a 
first preclinical report on a novel technology; further research 
is needed to evaluate a potential clinical benefit of this AI-CDSS 
in detail.
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Supplemental Methods 
 
 
Neural Network Architecture 
The Neural Network architecture at the core of our algorithm is a DeepLabv3+ with a 
KSAC pooling layer [1] and a 101-layer ResNeSt backbone [2]. The network is trained 
for 72000 iterations with a batch size of 8 to minimize the cross-entropy loss with label 
smoothing. We set the initial learning rate for Stochastic Gradient-Descent to 1e-2 and 
polynomial decay over the training iterations. During training we randomly crop the 
input to equal height and width, apply horizontal and vertical flipping as well as slight 
alterations to brightness, hue, saturation, and contrast and add gaussian noise with a 
probability of 0.25. 
 
Computer Vision Annotation Tool (CVAT) 
In CVAT, each annotated instance represents a separate layer. These individual layers 
must be ordered from foreground to background, such that submucosal regions do not 
cover vessel annotations. Apparent conflicts in the annotations (Figure 1) are only 
present between the submucosal layer and the other annotated classes and are an 
artifact of the annotation process. It is more time-efficient to broadly annotate the 
submucosal region, omitting the subtle geometry of the knife or a small vessel and 
correct these conflicts with a post-processing by applying predefined ordering that 
always places the submucosal layer as background, in relation to the knife or vessel 
classes. 
 
Image Annotation 
Annotation of five categories within the training and test images was performed, 
including: 1) Submucosal vessels; 2) Submucosal layer; 3) Muscle layer, 4) 
Electrosurgical knife, 5) instrument shaft. Annotation was performed by expert 
endoscopists with an ESD experience of at least 500 procedures using the Computer 
Vision Annotation Tool (CVAT, doi: 10.5281/zenodo.4009388). The aim of annotation 
was to provide the ground truth for training and subsequent cross-validation or testing.  
 
Training and Validation on still images 
12 ESD- and 4 POEM-videos of about one hour duration per video were used for 
training and cross-validation. For the five-fold cross-validation, a total of 2012 frames 
were extracted from the videos. 453 further annotated frames from 9 ESD- and 2 
POEM-videos were used for an additional performance test. These videos were not 
part of the training or cross-validation set. All images for training and validation were 
resized to a resolution of 512 x 640 pixels. 
The individual folds are selected on a sequence level. Since all images from one 
sequence are only part of the validation set once, with varying amounts of images per 
sequence, each fold consists of a different number of training and validation data. 
Images were taken as screenshots from the ESD- and POEM-videos during the 
submucosal dissection stage and were selected to have a balanced distribution of the 
annotated classes. All procedures were performed at the University Hospital Augsburg 
using Olympus EVIS X1 CV-1500 series. Ethics approval for use of deidentified image 
and video material had been granted by the Ethics Committee of Ludwigs-Maximilians-
Universität, Munich (Project Nr: 21-1216). 
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Validation on video 
From three third-space endoscopic videos (1x rectal ESD; 1x esophageal ESD, 1x 
POEM) 31 video clips with special characteristics were extracted. Each video had to 
be 15 seconds to 100 seconds, within the first 5 seconds no vessel could be visible. 
To be included and regarded as relevant, a vessel had to have a diameter of at least 
1mm [3] (reference: thickness of the electrosurgical knife shaft, Hook Knife J, Olympus, 
Tokyo, Japan). For two vessels to be counted separately within one clip, they had to 
have a space between each other of at least 3 mm (reference: thickness of the 
endoscopic instrument shaft). In Y-shaped vessels the same condition was applied for 
distance and length of the two arms. Vessels with a diameter of over 2mm were 
counted regardless of their distance to other vessels. From the 3 videos all vessels, 
which could be shown in clips according to these rules were extracted.  
Hereby 27 videos containing a total of 52 predefined vessels were assembled. Four 
videos without vessels were also purposefully included in the test.  
These videos were viewed frame by frame with AI overlay and for every positive 
measurement of a vessel it was determined visually if the measurement overlapped 
with a predefined vessel. For non-corresponding measurements it was determined 
visually, if a previously undetected vessel was visible, otherwise the measurement was 
counted as false positive. For analysis, false positive structures were counted.  
   
Performance Measures 
The algorithm’s performance was evaluated by calculating the intersection over union 
(IoU) and Dice-Score. These metrics represent the percent overlap between expert 
annotation (ground truth) and the segmentation results of the algorithm. The IoU is the 
ratio between the correctly predicted area and the union of predicted and ground-truth 
regions. The Dice-Score is similar but puts a larger emphasis on the true positive 
region in the calculation. The pixel accuracy is computed for all classes at once and is 
the percentage of correct predictions among all predictions. All measures take values 
between 0 and 100 %. An IoU or Dice-Score of 0 % would mean no overlap between 
ground truth and AI prediction, while a Score of 100% would mean complete 
congruence between the two. If the prediction and ground truth have the same 
dimensions, but the prediction is shifted to the side such that only 50% of the prediction 
lies within the ground truth, the resulting IoU would be 33%. The degree of overlap that 
is satisfactory depends on the segmentation task in question, as in some 
circumstances, detection is more important than exact delineation. 
 

IoU = TP / (TP + FP + FN) 
Dice Score = 2 TP / (2 TP + FP + FN) 

Pixel Accuracy = (TP + TN) / All 
 
Abbreviations: TP = True Positives, FP = False Positives, TN = True Negatives, FN = 
False Negatives, All = all elements considered 
 
To evaluate the model, we split the 16 video sequences into five cross-validation folds. 
The frames of a single video are either only present in the current training or the 
validation set. The presented validation metrics are calculated by accumulating the 
per-fold outputs in order to achieve one result for the whole validation set. The stated 
metrics are calculated from the fully trained model without early stopping on the best 
validation result. 
In addition to the cross-validation results, we also demonstrate the performance on a 
separate test set that was strictly excluded during training. We applied the five 
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previously trained fold-specific models as an ensemble to the test data, such that the 
segmentation of a single testing image is the average output of the five fully trained 
models. 
The VDR was determined as the number of correctly detected vessels divided by the 
number of predetermined vessels.  
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