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Abstract—In 2015 we began a sub-challenge at the EndoVis
workshop at MICCAI in Munich using endoscope images of ex-
vivo tissue with automatically generated annotations from robot
forward kinematics and instrument CAD models. However, the
limited background variation and simple motion rendered the
dataset uninformative in learning about which techniques would
be suitable for segmentation in real surgery. In 2017, at the
same workshop in Quebec we introduced the robotic instrument
segmentation dataset with 10 teams participating in the challenge
to perform binary, articulating parts and type segmentation of da
Vinci R© instruments. This challenge included realistic instrument
motion and more complex porcine tissue as background and was
widely addressed with modifications on U-Nets and other popular
CNN architectures [1].

In 2018 we added to the complexity by introducing a set of
anatomical objects and medical devices to the segmented classes.
To avoid over-complicating the challenge, we continued with
porcine data which is dramatically simpler than human tissue
due to the lack of fatty tissue occluding many organs.

I. INTRODUCTION

Robot-assisted minimally invasive surgery (MIS) has revo-
lutionized patient care, bringing the advantages of laparoscopic
surgery such as trauma reduction and shorter recovery times to
an increased number of procedures and patients. This has been
achieved in part by dramatically improving the surgeon’s pre-
cision and control over the anatomy with dexterous articulated
instruments and high fidelity 3D vision [2].

The next paradigm in improving surgeon capabilities is to
extend their perception through the fusion of multiple data
sources, such as pre- and intra-operative medical imaging
modalities, with the endoscopic view (see Figure 1). To display
this type of data selectively and intelligently, avoiding clutter-
ing the surgeon’s view with information that is not valuable, a
critical step is to understand what object are currently in view
of the endoscope and which parts of the image they represent.
This can lead to a higher-level understanding of what type of
anatomy a surgeon is currently interacting with or observing
or alternatively which task they are performing.

To achieve this, a pixel-wise segmentation of the images
captured by the endoscopic camera is required and the state-
of-the-art for this type of technique is to use deep convolu-

Fig. 1: An example of the fusion of segmented blood vessels
from pre-operative CT imaging with the endoscopic view.

tional neural networks (CNNs) [3], [4]. These models require
huge amounts of data to train and evaluate effectively and a
significant limitation within the medical community is lack of
high quality labelled data. This has led to the performance
advances that have been demonstrated across the mainstream
computer vision community to not be frequently observed in
medicine, particularly surgery.

To address this shortcoming, in 2017 we released a dataset
and challenge to assess the state-of-the-art for surgical image
segmentation [1]. 10 datasets of porcine endoscope images
where the da Vinci R© instruments were segmented into different
articulating parts as well as providing labels for the different
instrument types. 10 different teams submitted methods and
the challenge was won by a team using a modified U-
Net architecture [5]. The accuracy of the binary and parts
based methods for many of the participants exceeded 0.7
mIoU. Although this score would not be sufficient to consider
the problem solved, the results on instruments demonstrated
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that the scope could be expanded to include more classes
without overcomplicating the problem. This led to the creation
of the robotic instrument segmentation sub-challenge of the
Endoscopic Vision (EndoVis) challenge1 at MICCAI 2018.

II. DATA

A. Challenge Overview

The goal for participants was to perform semantic segmen-
tation of surgical images into a set of medical device classes
and a set of anatomical classes. The medical devices were
separated into da Vinci instruments, using the same shaft,
wrist and jaws division that were used in the 2017 challenge;
drop-in ultrasound probes; suturing needles; suturing thread;
suction-irrigation devices and surgical clips. This set com-
prised all non-biological objects that appeared in the images.
The anatomical classes were the kidney parenchyma; the
kidney fascia and perinephric fat, which we termed ‘covered
kidney’, and small intestine. All other anatomical objects in
the scene were grouped into a background class.

(a) (b)

(c) (d) (e) (f)

Fig. 2: The different classes to be segmented in our challenge.
The instrument and ultrasound probes were common classes
with our 2017 dataset. All other classes were new to this
challenge.

B. Data Collection

The entire challenge dataset was made up of 19 sequences
which were divided into 15 training sets and 4 test sets.
Each sequence came from a single porcine training procedure
recorded on da Vinci X or Xi system using specialized
recording hardware. Sections of the procedure which contained
significant camera motion or tissue interaction were extracted
and subsampled to 1 Hz. Similar frames were manually
removed until the sequence contained 300 frames. Each frame
consists of a stereo pair with SXGA resolution 1280×1024 and
intrinsic and extrinsic camera calibrations that were acquired
during endoscope manufacture.

1https://endovissub2018-roboticscenesegmentation.grand-challenge.org

C. Data Annotation

The data was annotated by a team of trained technicians at
Intuitive in Sunnyvale, CA using in-house software to generate
polygons around each semantic class. Quality control was
provided by in-house veterinarians. We labelled only the left
eye in the stereo pair to reduce annotation time.

Annotating anatomical data introduced multiple new chal-
lenges compared with annotating instruments in our previous
challenges where the object classes are very clearly defined.
Anatomical data requires a much more complex labelling pro-
tocol to resolve ambiguities and achieve a consistent labelling
while still respecting higher level objectives for building the
segmentation system.

For instance, an anatomical segmentation is likely useful if
it can identify gross structures such as organs, yet in surgery
these structures are often partially covered in connective tissue
and fat. To address this issue, we introduced the label ‘covered
kidney’ as we hoped to provide special treatment to connective
tissue and fat that lies on top of an important anatomical struc-
ture by effectively combining two labels together to create a
new label. However, this type of label can create complications
to describe within a consistent protocol. Figure 4 shows a
situation where the fascia is stretched so that it temporarily no
longer lies on the tissue surface. An additional complication
is that for many camera views of anatomical structures, it
may be difficult or impossible for a skilled annotator to make
identifications. Instead they need to see an extended sequence
of images where the structure can be viewed from different
angles and distances. This is complicated by the fact that many
out-of-the-box annotation tools consider images independently
and do not provide any way to easily view a video sequence
within the annotation workflow.

III. PARTICIPATING METHODS

A. Konika Minola

Method 1 was from Satoshi Kondo of Konika Minola
Inc, Japan. They used a ResNeXt-101 [4] architecture with
Squeeze-Excitation blocks [6] and pre-training on the Ima-
geNet dataset [7]. The images are downsampled to half resolu-
tion for training. 200 epochs are used with stochastic gradient
descent, weighted cross entropy loss and a learning rate of
0.1 using cosine annealing. Translation, rotation, resizing, flips
and contrast are the augmentation set and no post-processing
is applied to the image.

B. National Center for Tumor Diseases

Method 2 was from Sebastian Bodenstedt, Sefan Leger and
Stephanie Speidel at the National Center for Tumor Diseases,
Dresden, Germany. Their method was to use a U-Net [8]
style architecture with a VGG 19 encoder [9] pre-trained
on ImageNet. Data augmentation was applied through hue,
saturation, brightness and contrast jitter.

C. Digital Surgery

Method 3 was from Rahim Kadkhodamohammadi, Imanol
Luengo, Felix Fuentes Evangello Flouty and Danail Stoyanov

https://endovissub2018-roboticscenesegmentation.grand-challenge.org
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Fig. 3: Example frames from the training datasets in order from left to right: Dataset 1, 4, 5, 7, 9, 12, 13, 14.

Fig. 4: As the fascia is stretched off the kidney, the case of
exactly where the border of the covered kidney label should
now lie is fairly complex to describe in a consistent way.

at Digital Surgery Ltd., UK. Their model was based on
DeepLab V3+ [3]. This uses multi-scale feature extraction
using Xception [10] and atrous convolution followed by de-
convolution layers to predict class labels. They predicted two
sets of scoremaps: the 10 classes provided with the dataset and
5 classes constructed by merging semantically related classes.
Their network was trained by optimizing the loss:

L =

N∑
i=0

[
yilog(ŷi) + (1− yi) log(1− ŷi)

]
×
[
(dmax − min

bj∈B
d(i, bj))/2dmax + 0.5

] (1)

where B is the set of boundary pixels, N is the number of
pixels in the image, d(a, b) defines the Euclidean distance and
dmax is the max distance to the boundaries in the batch. Their
inference time is 1 FPS on a NVIDIA GeForce 1080 Ti.

D. Norwegian University of Science and Technology

Method 4 was from Ahmed Mohammed and Marius Ped-
ersen from Norwegian University of Science and Technol-
ogy, Norway and was based on their network, StreoScenNet
[11]. Their proposed architecture consists of two ResNet [12]
encoder blocks and stacked convolutional decoder network

connected with a novel sum-skip connection. This architecture
was designed to prevent performance loss from domain shift,
by pre-training one encoder with ImageNet. The input to
the network is a pair of left and right frames, one to each
encoder, and the output is a single mask of the segmented
regions for the left frame. It is trained end-to-end and the
segmentation is achieved without the need of any pre- or
post-processing. The source code can be downloaded from
https://github.com/ahme0307/streoscene.

E. Indian Institute of Technology, Madras

Method 5 was from Avinash Kori, Varghese Alex and Gana-
pathy Krishnamurthi at the Indian Institute of Technhology,
Madras, India. They addressed the problem by splitting the
task into segmentation of robotic tools and organs and training
separate networks for each task. They used a 77 layered
fully convolutional dense network architecture and trained the
network with a combination of weighted cross entropy and
dice loss using the Adam optimizer with a learning rate of
0.001 and a decay rate of 0.1. As a post-processing step,
conditional random field (CRF) inference was performed on
the logits to reduce false positives.

F. Ostbayerische Technische Hochschule Regensburg

Method 6 was from David Rauber, Robert Mendel,
Christoph Palm at Ostbayerische Technische Hochschule Re-
gensburg, Germany. They trained DeepLab V3+, initialized
with ResNet-50 pre-trained on ImageNet, using leave-one-
out cross-validation. They trained 40 epochs with the 2017
MICCAI data using a learning rate of 1 × 10−5 and the
Adam optimizer, followed by 20 epochs using the 2018 data
with a learning rate of 1× 10−4 and then 20 epochs using a
learning rate of 1×10−5, both with the Adam optimizer. They
performed data augmentation by splitting the image into 5 sub-
images of size 640×512 using the 4 corners and center of the
image. They then applied random scale in the range [0.5, 1.5],
random rotation in the range [−90, 90], random brightness in

https://github.com/ahme0307/streoscene
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Fig. 5: Example annotations from the training datasets in order from left to right: Dataset 1, 4, 5, 7, 9, 12, 13, 14.

the range [−0.2, 0.2], random horizontal/vertical flips as well
as normalization.

G. University College London (UCL)

Method 7 was from Sophia Bano and Danail Stoyanov
at University College London, UK. They used a global
convolutional network (GCN) [13] with a 11 × 11 kernel
size and pretrained ResNet 152 backbone for simultaneous
classification and localization. GCN generates semantic score
maps by using symmetric and separable large filters to re-
duce model parameters and computation cost. A boundary
refinement improves localization performance near the object
boundaries. Data augmentation applied during training was
brightness modification in the range [0.4, 1.4], rotation in
the range [−30, 30] and random valid image crops of size
512× 512.

H. National Center for Tumor Diseases (NCT)

Method 8 was from Stefan Leger, Sebastian Bodenstedt and
Stephanie Speidel at the National Center for Tumor Diseases,
Dresden, Germany. They used a U-Net with a VGG 16
encoder, training a single model for each segmentation class.
Pre-training for the instrument classes was performed using the
EndoVis 2017 instrument segmentation challenge [1] applying
augmentations of scaling, rotation, flipping, brightness and
contrast.

I. IRCAD

Method 9 was from Guinther Saibro of IRCAD, France.
They also trained a DeepLab V3+ model for this task. The
data augmentations they applied was affine transformations,
noise and color transformation, applying 20 augmentations for
each image.

J. National Taiwan University

Method 10 was from Chi-Sheng (Daniel) Shih and Hsun-
An Chiang at the National Taiwan University, Taiwan. Their
method is based on PSPNet [14] and they divide the classes
of the challenge into semantically similar groups. They first
divide into artificial objects and anatomical objects, these
classes are then divided into surgical instruments and other
artificial objects, and kidney, small intestine and other anatom-
ical objects. From there, these grouped classes were subdivided
into the true labels. They also provided a data augmentation
technique called collage, which combines parts from different
images to form a new training sample.

K. Yale University (MEDYI)

Method 11 was from Juntang Zhuang and Junlin Yang at
Yale University, USA. They trained a modified U-Net with
a ResNet-101 backbone. Training was performed using SGD
with initial learning rate of 0.01, and it decays at epoch 20
and epoch 30 by 0.1. Focal loss was combined with weighted
cross entropy loss. An ensemble of 4 models were trained and
aggregated with majority voting to obtain the final prediction.

L. ODS.ai

The Open Data Science team submission was from Vladimir
Iglovikov and Anton Dobrenkii. They trained a WideResnet38
encoder using an InPlace activated batch norm (ABN) [15],
with DeepLab V3 [16] as the decoder. They used focal loss
with γ = 2 using SGD with momentum and a learning rate of
0.035 for 100 epochs. To preprocess the images, they cropped
to 712 × 712 and performed random spatial and photometric
augmentations.

M. Rediminds Inc.

The submission from Rediminds Inc., USA was from
Madhu Reddiboina and Anubhav Reddy. They trained 3 U-
Net models to complete the task. A single model was designed
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to predict background, instrument and kidney as superclasses,
this was trained with a learning rate of 0.001 and a decay
factor of 0.5 using the Adam optimizer and a cross entropy
loss. Another model was trained to predict the instrument
shaft, clasper and wrist along with the suturing clips. This
model was trained in the same way as the first except the
Jaccard index was used as the loss. A final model predicted the
instrument wrist and clamp trained with the Dice loss. These
models predicted a final label for each pixel as an ensemble.

N. Johns Hopkins University (JHU)

The submission from Johns Hopkins University, USA was
from Xingtong Liu, Cong Gao and Mathias Unberath. They
trained a Pix2Pix model [17] to perform the segmentation,
with a U-Net as the generator. They used class weighted cross
entropy, L1 loss and adversarial loss to train the model as well
as pretraining it as a re-colorization network. Data augmen-
tation was performed by resizing the images to 256× 256 as
well as performing standard flips, crops, scalings, rotations and
translations along with HSV jitter. To generate predictions they
simulated new data by apply random spatial and photometric
perturbations to each input sample, then reversing those trans-
formations on the prediction and perform ensemble voting on
the multiple outputs.

O. Daegu Gyeongbuk Institute of Science and Technology
(DGIST)

The submission the Medical Image and Signal Processing
Lab at DGIST, South Korea was from Myeonghyeon Kim,
Chanho Kim, Chaewon Kim, Hyejin Kim, Gyeongmin Lee,
Ihsan Ullah, Miguel Luna and Sang Hyun Park. They trained
a U-Net with 5 levels of 2 3 × 3 convolutional layers, ReLu
activation and 1 max pooling layer each. The loss function
of the model was defined with categorical cross entropy and
the model was trained using Adam optimizer with the learning
rate: 0.001/(1+0.002×epoch). Each times was downsampled
to 384 × 480 and then standardized. The model was trained
for 600 epochs.

P. National University of Singapore (NUS)

The submission from NUS, Singapore was from Mobarakol
Islam. No additional details were supplied about the submis-
sion.

Q. Team Banana

The submission for Team Banana was not accompanied by
any data about the team or details about the submission.

IV. RESULTS

The methods were evaluated using the mean intersection
over union (IoU) metric, a current standard for assessing
segmentation scores in computer vision literature [18]. The
IoU for a single class is defined as

IOU = TP/(TP + FP + FN) (2)

where TP is the number of true positive predictions for a
class label, FP is the number of false positives and FN is the
number of false negatives. To compute the mean IoU we use
the arithmetic mean of the IoU for all classes that are present
in a given frame. If we are considering a set of classes and
none are present in the frame, we discount the frame from the
calculation. We compute this score for each frame and average
over all frames to get a per-dataset score. When computing
overall scores we weight each score by the size of the dataset.

A. Test Dataset 1

Test dataset 1 contains a single zoomed out sequence
panning across the liver and stomach before arriving at the
kidney parenchyma. The kidney has the fascia and perirenal
fat removed and the surgeon dissects a single small piece
of kidney tissue with a monopolar scissor instrument. The
resected cavity is then sutured up using 2 large needle driver
instruments. The numerical results for this dataset are dis-
played in Table I and show that 3 teams scored above 0.9
IoU for the kidney class and an average score of 0.674, just
below the score on the kidney for the best performing dataset,
which was dataset 3. Most of the sequence focused on a single
close up view of an exposed parenchyma, which is far easier
to recognize compared with the fascia covered kidney. Most
teams struggled at the start which had a exploratory sequence
and camera view obstruction by the cannula.

B. Test Dataset 2

Test dataset 2 maintains a close up view of a kidney which
is initially covered by renal fascia and perirenal fat and this
is gradually removed using a monopolar curved scissor and
fenestrated bipolar forceps instrument. The numerical results
are shown in Table II. The parenchyma is segmented more
accurately than the ‘covered kidney’ label with more than
2x the average mean IoU. The qualitative results in Figure
7 illustrate that this class is often mistaken for background
and vice-versa.

C. Test Dataset 3

Similarly to test dataset 1, test dataset 3 has a close-up
sequence of the parenchyma which has been exposed by the
removal of the fascia and fat. The instruments in the sequence
are a large needle driver and a large needle driver. The camera
moves from the center of the parenchyma to focus on a
hilar exposure. is looks like a straightforward sequence with
many frames showing a complete close-up view of the kidney
however the scores are quite poor, mostly likely due to the
heavily covered surface of the kidney.

D. Test Dataset 4

Test dataset 4 begins from a zoomed out view of a kidney
which is occluded by fascia and fat with a large amount of
small and large intestine at the bottom of the image. The
camera then moves directly over the kidney where a Maryland
Bipolar Forceps instrument and a Prograsp Forceps instrument
are used to scan the surface with a drop in ultrasound probe.
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Parenchyma Instrument
Shaft

Instrument
Clasper

Instrument
Wrist

Thread Needle US
Probe

Intestine Clips Overall

Team Banana 0.577 0.710 0.220 0.347 0.100 0.000 0.000 0.107 0.407 0.386
Satoshi Kondo 0.666 0.763 0.280 0.384 0.283 0.000 0.000 0.265 0.609 0.447
NUS 0.519 0.659 0.442 0.374 0.006 0.000 0.000 0.055 0.015 0.403
NCT 1 0.508 0.689 0.218 0.331 0.008 0.000 0.213 0.148 0.079 0.359
Digital Surgery 0.904 0.820 0.685 0.593 0.061 0.000 0.302 0.166 0.772 0.636
Fan Voyage 0.882 0.842 0.584 0.509 0.065 0.000 0.338 0.234 0.703 0.601
IIT Madras 0.607 0.597 0.181 0.241 0.031 0.000 0.126 0.177 0.102 0.331
OTH Regensburg 0.810 0.847 0.775 0.668 0.478 0.014 0.389 0.231 0.849 0.691
UCL 0.514 0.711 0.306 0.371 0.106 0.000 0.134 0.098 0.788 0.425
NCT 2 0.906 0.755 0.718 0.603 0.330 0.019 0.442 0.270 0.729 0.658
IRCAD 0.904 0.849 0.739 0.642 0.315 0.000 0.447 0.138 0.505 0.688
Nat. Taiwan U. 0.801 0.742 0.452 0.375 0.133 0.000 0.007 0.030 0.680 0.505
MEDYI 0.495 0.750 0.474 0.497 0.002 0.000 0.020 0.240 0.624 0.469
DGIST 0.759 0.635 0.412 0.409 0.030 0.000 0.192 0.078 0.461 0.474
UNC 0.866 0.834 0.703 0.559 0.475 0.000 0.428 0.224 0.771 0.663
ODS.ai 0.572 0.826 0.690 0.585 0.223 0.012 0.244 0.202 0.778 0.585
JHU 0.681 0.764 0.459 0.364 0.129 0.001 0.000 0.078 0.396 0.470
Rediminds Inc. 0.158 0.375 0.154 0.259 0.000 0.000 0.000 0.000 0.380 0.212
Average 0.674 0.731 0.472 0.451 0.154 0.003 0.182 0.152 0.536 0.500

TABLE I: The numerical results for the test dataset 1. The highest scoring method is shown in bold. 4 classes were won by
the team from OTH Regensburg, 2 classes were won by the team from NCT and 2 by the team from IRCAD.

Frame 6 Ground Truth IRCAD UCL

Frame 76 Ground Truth Satoshi Kondo OTH Regensburg

Frame 122 Ground Truth ODS.ai Rediminds Inc.

Frame 276 Ground Truth Digital Surgery Team Banana

Fig. 6: Qualitative results for test dataset 1 showing frames 6, 76, 122 and 176 alongside the ground truth images and submission
images from randomly chosen teams.
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Parenchyma Covered
Kidney

Instrument
Shaft

Instrument
Clasper

Instrument
Wrist

Intestine Overall

Team Banana 0.295 0.135 0.875 0.431 0.429 0.227 0.426
Satoshi Kondo 0.358 0.363 0.885 0.479 0.453 0.444 0.505
NUS 0.271 0.156 0.850 0.418 0.387 0.212 0.407
NCT 1 0.394 0.209 0.841 0.400 0.379 0.467 0.448
Digital Surgery 0.610 0.277 0.923 0.464 0.500 0.336 0.549
Fan Voyage 0.542 0.289 0.915 0.477 0.491 0.471 0.542
IIT Madras 0.293 0.068 0.770 0.420 0.312 0.190 0.370
OTH Regensburg 0.667 0.296 0.917 0.512 0.525 0.381 0.575
UCL 0.384 0.257 0.885 0.467 0.482 0.299 0.487
NCT 2 0.572 0.304 0.837 0.511 0.514 0.659 0.555
IRCAD 0.523 0.246 0.925 0.515 0.531 0.095 0.529
Nat. Taiwan U. 0.356 0.116 0.884 0.375 0.400 0.116 0.416
MEDYI 0.619 0.253 0.886 0.439 0.463 0.292 0.524
DGIST 0.447 0.093 0.844 0.389 0.374 0.077 0.418
UNC 0.635 0.375 0.916 0.498 0.460 0.590 0.578
ODS.ai 0.453 0.180 0.901 0.487 0.494 0.628 0.508
JHU 0.531 0.270 0.866 0.459 0.387 0.192 0.490
Rediminds Inc. 0.138 0.000 0.646 0.371 0.330 0.000 0.284
Average 0.449 0.216 0.865 0.451 0.440 0.315 0.478

TABLE II: The numerical results for the test dataset 2. The highest scoring method is shown in bold. 2 classes were won by
the team from OTH Regensburg, 2 by IRCAD, and 1 by NCT and 1 by UNC.

Frame 6 Ground Truth NUS National Taiwan University

Frame 90 Ground Truth NCT 2 JHU

Frame 160 Ground Truth NCT 1 Fan Voyage

Frame 200 Ground Truth DGIST IIT Madras

Fig. 7: Qualitative results for test dataset 2 showing frames 6, 90, 160 and 200 alongside the ground truth images and submission
images from randomly chosen teams.
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Parenchyma Instrument
Shaft

Instrument
Clasper

Instrument
Wrist Intestine Overall

Team Banana 0.641 0.882 0.503 0.481 0.365 0.622
Satoshi Kondo 0.836 0.847 0.495 0.441 0.828 0.658
NUS 0.510 0.798 0.398 0.476 0.688 0.546
NCT 1 0.539 0.839 0.520 0.423 0.334 0.573
Digital Surgery 0.908 0.916 0.736 0.672 0.316 0.806
Fan Voyage 0.912 0.912 0.645 0.607 0.715 0.771
IIT Madras 0.164 0.646 0.435 0.354 0.075 0.392
OTH Regensburg 0.875 0.922 0.813 0.733 0.153 0.829
UCL 0.789 0.889 0.547 0.572 0.321 0.699
NCT 2 0.888 0.785 0.763 0.625 0.676 0.765
IRCAD 0.777 0.927 0.767 0.720 0.102 0.790
Nat. Taiwan U. 0.812 0.820 0.456 0.555 0.411 0.657
MEDYI 0.786 0.818 0.478 0.648 0.103 0.679
DGIST 0.567 0.721 0.451 0.548 0.559 0.569
UNC 0.871 0.912 0.794 0.680 0.763 0.814
ODS.ai 0.841 0.913 0.742 0.711 0.509 0.799
JHU 0.806 0.804 0.561 0.450 0.175 0.653
Rediminds Inc. 0.050 0.416 0.128 0.294 0.000 0.220
Average 0.698 0.820 0.568 0.555 0.394 0.658

TABLE III: The numerical results for the test dataset 3. The highest scoring method is shown in bold. 4 classes were won
by team from OTH Regensburg, 1 by the team from NCT and 1 by the team from UNC.

Frame 17 Ground Truth MEDYI ODS.ai

Frame 100 Ground Truth Team Banana UNC

Frame 126 Ground Truth National Taiwan University IRCAD

Frame 177 Ground Truth Team Rediminds Satoshi Kondo

Fig. 8: Qualitative results for test dataset 3 showing frames 17, 100, 126 and 177 alongside the ground truth images and
submission images from randomly chosen teams.
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The camera and instruments are then moved to the liver where
the US probe is used again. Liver is categorized as background
in our dataset. The numerical results for test dataset 4 are
shown in Table IV and the qualitative results are shown in
Figure 9. The results for the kidney classes were the worst
across all of the test datasets, which is expected given that
most of the kidney surface is covered.
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Parenchyma Covered
Kidney

Instrument
Shaft

Instrument
Clasper

Instrument
Wrist

US
Probe

Intestine Overall

Team Banana 0.084 0.358 0.444 0.261 0.355 0.000 0.585 0.305
Satoshi Kondo 0.056 0.565 0.594 0.361 0.305 0.000 0.579 0.368
NUS 0.047 0.203 0.352 0.181 0.297 0.000 0.501 0.221
NCT 1 0.108 0.144 0.546 0.275 0.387 0.258 0.490 0.262
Digital Surgery 0.161 0.138 0.631 0.436 0.446 0.096 0.671 0.324
Fan Voyage 0.167 0.362 0.607 0.411 0.441 0.174 0.591 0.366
IIT Madras 0.026 0.038 0.370 0.232 0.267 0.040 0.351 0.149
OTH Regensburg 0.264 0.268 0.693 0.532 0.513 0.175 0.584 0.390
UCL 0.108 0.374 0.567 0.284 0.401 0.075 0.533 0.330
NCT 2 0.106 0.282 0.730 0.495 0.499 0.229 0.644 0.362
IRCAD 0.116 0.042 0.666 0.520 0.487 0.000 0.078 0.285
Nat. Taiwan U. 0.011 0.087 0.537 0.186 0.324 0.000 0.386 0.176
MEDYI 0.100 0.299 0.531 0.288 0.376 0.002 0.445 0.272
DGIST 0.005 0.075 0.270 0.239 0.302 0.003 0.245 0.129
UNC 0.084 0.351 0.693 0.491 0.469 0.183 0.605 0.373
ODS.ai 0.067 0.161 0.619 0.479 0.485 0.107 0.619 0.293
JHU 0.115 0.427 0.554 0.375 0.346 0.000 0.546 0.349
Rediminds Inc. 0.010 0.000 0.199 0.171 0.221 0.000 0.000 0.052
Average 0.091 0.232 0.534 0.345 0.385 0.075 0.470 0.279

TABLE IV: The numerical results for the test dataset 4. The highest scoring method is shown in bold. 4 classes are won by
the team from OTH Regensburg, 1 by Satoshi Kondo, 1 by UNC and 1 by ODS.ai.

Frame 10 Ground Truth OTH Regensburg NUS

Frame 55 Ground Truth UCL NCT 2

Frame 125 Ground Truth NCT 1 JHU

Frame 237 Ground Truth Fan Voyage UNC

Fig. 9: Qualitative results for test dataset 4 showing frames 10, 55, 125 and 237 alongside the ground truth images and
submission images from randomly chosen teams.
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Parenchyma Covered
Kidney

Instrument
Shaft

Instrument
Clasper

Instrument
Wrist

Thread Needle US
Probe

Intestine Clips Overall

Team Banana 0.399 0.246 0.728 0.354 0.403 0.100 0.000 0.000 0.321 0.407 0.435
Satoshi Kondo 0.479 0.464 0.772 0.404 0.396 0.283 0.000 0.000 0.529 0.609 0.495
NUS 0.337 0.180 0.665 0.360 0.384 0.006 0.000 0.000 0.364 0.015 0.394
NCT 1 0.387 0.177 0.729 0.353 0.380 0.008 0.000 0.235 0.360 0.079 0.411
Digital Surgery 0.646 0.208 0.822 0.580 0.553 0.061 0.000 0.199 0.372 0.772 0.579
Fan Voyage 0.626 0.326 0.819 0.529 0.512 0.065 0.000 0.256 0.503 0.703 0.570
IIT Madras 0.272 0.053 0.596 0.317 0.293 0.031 0.000 0.083 0.198 0.102 0.311
OTH
Regensburg

0.654 0.282 0.845 0.658 0.610 0.478 0.014 0.282 0.337 0.849 0.621

UCL 0.449 0.315 0.763 0.401 0.457 0.106 0.000 0.104 0.313 0.788 0.485
NCT 2 0.618 0.293 0.777 0.622 0.560 0.330 0.019 0.335 0.562 0.729 0.585
IRCAD 0.580 0.144 0.842 0.635 0.595 0.315 0.000 0.224 0.103 0.505 0.573
Nat. Taiwan U. 0.495 0.102 0.746 0.367 0.414 0.133 0.000 0.004 0.236 0.680 0.439
MEDYI 0.500 0.276 0.746 0.420 0.496 0.002 0.000 0.011 0.270 0.624 0.486
DGIST 0.444 0.084 0.617 0.373 0.408 0.030 0.000 0.098 0.240 0.461 0.398
UNC 0.614 0.363 0.839 0.622 0.542 0.475 0.000 0.305 0.545 0.771 0.607
ODS.ai 0.483 0.170 0.815 0.599 0.569 0.223 0.012 0.176 0.490 0.778 0.546
JHU 0.533 0.349 0.747 0.464 0.387 0.129 0.001 0.000 0.248 0.396 0.491
Rediminds Inc. 0.089 0.000 0.409 0.206 0.276 0.000 0.000 0.000 0.000 0.380 0.192
Average 0.479 0.224 0.738 0.460 0.457 0.154 0.003 0.128 0.332 0.536 0.478

TABLE V: The overall numerical results achieved by averaging across the 4 test datasets. The highest scoring method is
shown in bold. 6 classes are won by the team from OTH Regensburg, 1 by Satoshi Kondo and 3 by the team from NCT.
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