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Abstract—Adaptive Moment Estimation (Adam) is a very pop-
ular training algorithm for deep neural networks, implemented
in many machine learning frameworks. To the best of the authors
knowledge no complete convergence analysis exists for Adam. The
contribution of this paper is a method for the local convergence
analysis in batch mode for a deterministic fixed training set,
which gives necessary conditions for the hyperparameters of the
Adam algorithm. Due to the local nature of the arguments the
objective function can be non-convex but must be at least twice
continuously differentiable.

Index Terms—Non-convex optimization, Adam optimizer, con-
vergence, momentum method, dynamical system, fixed point

I. INTRODUCTION

Many problems in machine learning lead to a minimization
problem in the weights of a neural network: Consider e.g.
training data (x1, y1), . . . , (xN , yN ) consisting of inputs xi
and outputs yi, and the task to determine a neural network
that has learned the relationship between inputs and outputs.
This corresponds to a function y = F (w, x), parametrized by
the weights w, which minimizes the average loss function

f(w) =
1

N

N∑
i=1

l(xi, yi, w) =:
1

N

N∑
i=1

fi(w)

over the training data. Typically the loss is built us-
ing some norm for regression problems, e.g. l(x, y, w) =
1
2 ‖y − F (w, x)‖22, or using cross entropy for classification.
Optimization algorithms construct a sequence {wt}t∈N0

start-
ing from an initial value w0, which under appropriate as-
sumptions converges to some local minimum w? for general
non-convex f . The most simple optimization algorithm for
differentiable f is gradient descent with the update wt+1 =
wt − α∇f(wt) and a learning rate α > 0. For convex
f conditions on the Lipschitz constant L of ∇f guarantee
convergence and give estimates for the rate of convergence,
see [1]. However L is hard to get in practice, and choosing α
too big leads to oscillatory behaviour. Besides it is well known
from optimization that the gradient is not the only optimum
descent direction for f , see [2], but computation of the
Hessian is usually prohibitive. This has led to the development
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of a family of algorithms which compute moments of first
order, that is approximate descent directions based on previous
iterates of the gradient like the initial momentum method [1],
as well as second order moments to control the componentwise
scaling and / or to adapt the learning rate in AdaGrad [3]
and Adam [4]. More algorithms exist with variants like: batch
mode vs. online or incremental mode – using ∇f(wt) in
iteration t vs.∇fk(wt) where k iterates in a cyclic fashion over
1, . . . , N , or deterministic vs. stochastic choice of the index
k for ∇fk(wt), stochastic assumptions for the observation of
∇f(wt) or ∇fk(wt), and so on.

However for most of these algorithms only partial con-
vergence results are known. The original proof of [4] is
wrong as has been noted by several authors, see [5], [6].
Modifying the algorithm to AMSGrad, [7] establishes bounds
on ‖∇f(wt)‖, similar to the results in [8] for a class called
Incremental Generalized Adam. Though none of the results
shows convergence of the sequence {wt}t∈N0

. Also the proofs
are lengthy and hardly reuse results from each other, giving
not much insight. General results from optimization cannot be
used for several reasons: First, the moments usually cannot
be proven to be a descent direction. Second, the learning
rate cannot be shown to be a step size valid for the Wolfe
conditions for a line search, see [2]. The algorithm for the
step taken in iteration t may explicitly contain the variable t
in much more complicated ways than 1

t in the Robbins-Monro
approach [9].

The contribution of this paper is a generally applicable
method, based on the theory of discrete time dynamical
systems, which proves local convergence of Adam. The results
are purely qualitative because the results hold for learning
rates sufficiently small, where ”sufficiently small” is defined
in terms of the eigenvalues of the Hessian in the unknown
minimum w?.

II. FIXED POINT ANALYSIS UNDER PERTURBATION

A. Notation

With Matn we denote the set of all real n-by-n matrices.
The symbol ⊥ denotes the transpose of a vector or matrix.
With ⊗,⊕ and � we denote the component-wise multipli-
cation and division of vectors, as well as component-wise
addition of vectors and scalar. For f : Rn → R the gradient



and Hessian are written as ∇f and ∇2f , provided they exist.
Throughout this paper we assume f : Rn → Rn at least
continuously differentiable, twice continuously differentiable
for some results. The open ball with radius r around x ∈ Rn is
denoted by Br(x) = {y ∈ Rn : ‖y − x‖ < r} and ‖x‖ is any
norm. We denote ρ (A) = max{|λ||λ eigenvalue of A} the
spectral radius of a matrix A and diag (v) ∈Matn describes
a matrix with components of v ∈ Rn on the diagonal.

B. Related Work

Stochastic gradient descent (SGD) becomes an effective
method for optimizing noisy tasks. Especially in the area of
neural networks SGD variants are partly responsible for big
successes in the last years, see e.g. [10] or [11].
Popular first-order SGD methods are AdaGrad [3] and
RMSProp [12]. Kingma and Ba combine the advantages
of these two methods and introduce the Adaptive Moment
Estimation (Adam) in [4] (see Algorithm 1). Unfortunately,

Algorithm 1 Adam Optimizer
Require: α ∈ R+, ε ∈ R β1, β2 ∈ (0, 1), w0 ∈ Rn and the

function f(w) ∈ C2 (Rn,R)
1: m0 = 0, v0 = 0, t = 0
2: while w not converged do
3: mt+1 = β1mt + (1− β1)∇wf(wt)
4: vt+1 = β2vt + (1− β2)∇wf(wt)⊗∇wf(wt)

5: wt+1 = wt − α
√

1−βt+1
2

(1−βt+1
1 )

mt+1 �
√
vt+1 ⊕ ε

6: t = t+ 1
7: end while

the Adam optimizer is not always defined the same way.
Kingma and Ba [4] use

√
v ⊕ ε and the bias correction

in m̂ and v̂. The authors in [7] and [8] do not use an ε
as well as [13], but the latter initialize v0 = ε. All three
apply the bias correction in the learning rate αt. We use the
bias correction as described in [4, Section 2] and

√
v ⊕ ε

as used in [14]. The differences between the two possible
usages of ε are minimal (see figure 11) especially in the
area around v ≈ 0 by choosing ε as the square root of ε
from [4]. Some differences in figure 1 are due to the dropout
layer, which randomly eliminates neurons in the training to
avoid overfitting. The main aim by the introduction of ε –
avoiding division by 0 – holds in both variants, but

√
v ⊕ ε

gives the additional advantage of making the right hand side
continuously differentiable for v ∈ [0,∞) whereas

√
v ⊕ ε is

not differentiable at v = 0. Differentiability will be essential
in our proof.

During the last years the Adam Optimizer has become
one of the most used optimization methods for training neural
networks. Even if it is apparently working, there is, to the
best of our knowledge, still no convergence proof for Adam.
The proof in the original paper [4] was shown wrong, see

1The experiment is programmed with Keras 2.2.4, Tensorflow 1.11.0 and
Python 3.6.

Fig. 1. Training the cifar-10 dataset ([15]) with the two different Adam
methods

[5], [16] or [6]. Reddi et. al. in [7] present even a counter
example and also introduce an improved method called
AMSGrad. However in experiments AMSGrad does not show
this improvements. On the contrary, in some cases it ends up
with worse accuracy than Adam. Chen et al. [8] are showing
for non-convex f minTt=1E[‖∇f(xt)‖2] = O

(
s1(T )
s2(T )

)
. With

the assumption of s1 (T ) growing slower than s2 (T ), one
reaches a minimum of E[‖∇f (xt)‖2] but without a guarantee
of staying there. [17] use a similar interpretation of the Adam
optimizer with a dynamical system viewpoint. But Barakat
and Bianchi uses a non-autonomous ordinary differential
equation without Lipschitz condition because of the term√
v ⊕ ε instead of our non-autonomous system of difference

equations. In our opinion, this choice makes the proof longer
and more complicated.

In the current work we present a convergence proof of
the Adam optimizer [4] in a complete batch mode. This
means the batch size is equal to the amount of training data.
With this assumption we can guarantee, that we are searching
the same minimum w? in each time step t. Due to the local
nature our proof does not assume the convexity of f(w),
thus we can guarantee local convergence even for non-convex
settings. The hyperparameter setting is only bounded by

αmaxni=1 (µi)√
ε

(1− β1) < 2β1 + 2 (1)

with µi the i-th eigenvalue of the Hessian ∇2f(w?). The
counter example in [7] does not affect our convergence proof,



because we consider batch mode only; the incremental func-
tion in [7] becomes a linear function in batch mode.

C. Idea

We consider the learning algorithm from the standpoint
of dynamical systems and define a common state vector x
consisting of the moments – like m and v for Adam – and the
weights, so we have x = (m, v,w). Then the optimization
can be written as an iteration xt+1 = T (t, xt) for some
function T : N0 × X → X with X ⊂ Rp, which defines
a non-autonomous dynamical system. The function f to be
minimized in the learning process, or rather its gradient,
becomes a part of T . If f is at least continuously differentiable
a local minimum gives the necessary condition ∇f(w?) = 0.
We show that this condition leads to a fixed point x? of T ,
where the moments are all zero. We analyse the stability
properties of this fixed point and prove local asymptotic
stability. This is done by considering a time-variant iteration
T as the perturbation of a time-invariant iteration T̄ where
Banach-like fixed point arguments can be applied. We use the
second method of Lyapunov for stability analysis where the
vanishing moments simplify the computation and estimates for
the eigenvalues. Asymptotic stability however is equivalent
to convergence of the iteration defined T to x? for all x0

sufficiently close to x?. The conditions needed for the fixed
point analysis and stability results require the learning rate to
be sufficiently small. Note that these results cannot be obtained
directly from standard fixed point theorems for autonomous
systems, because the iteration index t enters the dynamics.
Therefore also estimates of the eigenvalues depend on the
iteration t, and even a bound on the spectral radius uniform
in t does not give the convergence results presented here:
It is well known that ρ(A) < 1 implies the existence of a
vector norm with induced matrix norm such that ‖A‖ < 1,
but this norm depends on A. So ρ(At) ≤ c < 1 for some c
for all t ∈ N0 does not imply the existence of a single norm
such that ‖At‖ < 1 for all t. We emphasize that the result is
purely qualitative, giving no explicit guidance to the choice
of the learning rates. The main advantage of our approach is
the clearness of the proof, only computation of eigenvalues is
needed once the iteration has been written in terms of T and
T̄ . These calculations are much more simple than the lengthy
estimates in [4], [7] and [8].

D. Preliminaries

We recall some standard definitions and facts from the
theory of difference equations and discrete time dynamical
systems, see e.g. [18, Definition 5.4.1] or [19]. Consider
T : N0 × M → M with M ⊂ Rn which defines a non-
autonomous dynamical system by the iteration

xt+1 = T (t, xt), t ∈ N0, x0 ∈M (2)

with solutions x : N0 → M , t 7→ xt depending on the initial
value x0. We use the notations xt = x(t;x0) and x = x(·;x0)
to emphasize the dependence of solutions on the initial value
if necessary. We always use the initial time t0 = 0.

Autonomous systems constitute the special case where T
does not depend on t, so we can abbreviate to T̄ : M → M
and write

xt+1 = T̄ (xt), t ∈ N0, x0 ∈M (3)

A point x? ∈ M is called equilibrium or fixed point if
T (t, x?) = x? for all t ∈ N0, so the constant function xt = x?
for all t ∈ N0 is a solution of (2). In the following the asterisk
will always denote equilibria or their components. Consider a
solution x = x(·;x0) of (2). x is called stable, if for each ε > 0
there exists δ = δ(ε) such that any solution x̃ = x̃(·; x̃0) of
(2) with ‖x̃0 − x0‖ < δ fulfills ‖x̃t − xt‖ < ε for all t ∈ N0.
x is called attractive if there exists δ > 0 such that any

solution x̃ with ‖x̃0 − x0‖ < δ fulfills lim
t→∞

‖x̃t − xt‖ = 0. x
is called asymptotically stable if it is stable and attractive.

Recall that a contraction is a self-mapping on some set
with Lipschitz constant L < 1, i.e. a mapping T̄ : M → M ,
M ⊂ Rn with

∥∥T̄ (x)− T̄ (y)
∥∥ ≤ L ‖x− y‖ for all x, y ∈M .

If M is complete, i.e. all Cauchy sequences converge, then a
unique fixed point x? ∈ M of T̄ exists by the Banach fixed
point theorem.

Theorem II.1. Linearized asymptotic stability implies local
nonlinear stability Consider T̄ : M → M with a fixed point
x? and T̄ continuously differentiable in an open neighbour-
hood Br(x?) ⊂M of x?. Denote the Jacobian by DT̄x? , and
assume

∥∥DT̄x?

∥∥ < 1 for some norm on Matn. Then there
exists 0 < ε ≤ r and 0 ≤ c < 1 such that for all x0 with
‖x0 − x?‖ < ε

‖x(t;x0)− x?‖ ≤ ct ‖x0 − x?‖ ∀t ∈ N0.

i.e. x? is locally exponentially and asymptotically stable.

The theorem is the core of the first method of Lyapunov
for discrete time systems. Unfortunately, we could not find a
proof in any english textbook like [20], [18]. For a proof see
the preprint [21, Theorem 3.3] or the German textbook [22,
Theorem 5.4]

III. CONVERGENCE PROOF

Let w ∈ Rn be the weights of the function f (w) ∈
C2 (Rn,R), which has to be minimized. We also define
g (w) := ∇f(w) ∈ Rn as the gradient of f and the state
variable of our dynamical system x = (m, v,w). With these
definitions we can rewrite the Adam-Optimizer as a system of
the form (2).

mt+1 := β1mt + (1− β1) g (wt) ∈ Rn

vt+1 := β2vt + (1− β2) g (wt)⊗ g (wt) ∈ Rn (4)

wt+1 := wt − α

√
1− βt+1

2(
1− βt+1

1

) (mt+1 �
√
vt+1 ⊕ ε

)
∈ Rn

So the Adam optimizer can be written as the iteration of a
time-variant dynamical system xt+1 = [mt+1, vt+1, wt+1]⊥ =



T (t, x) = T
(
t, [mt, vt, wt]

⊥) ∈ R3n. We split the system in
an autonomous and a non-autonomous part

xt+1 = T (t, xt) = T̄ (xt) + Θ (t, xt) (5)

with

T̄ (xt) =

 β1mt + (1− β1) g (wt)
β2vt + (1− β2) g (wt)⊗ g (wt)
wt − α (mt+1 �

√
vt+1 ⊕ ε)

 (6)

and

Θ (t, xt) =

 0
0

−α
(√

1−βt+1
2

1−βt+1
1

− 1
)

(mt+1 �
√
vt+1 ⊕ ε)

 (7)

To avoid lengthy expressions we use mt+1 and vt+1 as
an abbreviation for the updated terms instead of the filters
depending on mt, g(wt) and vt. The autonomous system is
Adam without bias correction, the disturbance term Θ adds
bias correction which leads to a non-autonomous system. The
Jacobian matrix of the autonomous system (6) is

JT̄ (mt, vt, wt) =

β1I 0 (1− β1)∇wg (wt)
0 β2I

∂v
∂w

∂w
∂m

∂w
∂v

∂w
∂w


with
∂v

∂w
=2 (1− β2) diag(g (wt))∇wg (wt)

∂w

∂m
=− α diag

(
β1 �

√
vt+1 ⊕ ε

)
∂w

∂v
=

α

2β2
diag

(
mt+1 � (vt+1 ⊕ ε)

3
2

)
∂w

∂w
=I − α

(
(1− β1) diag(vt+1 ⊕ ε)−

1
2

−diag(mt+1 ⊗ (vt+1 ⊕ ε)−
3
2 ⊗ g (wt)

)
∇wg (wt)

We have the following simple observation:

Lemma III.1. Consider a critical point w? for f , ∇f(w?) =
0. Then x? = (0, 0, w?)

⊥ is a fixed point for (6) and (4).

Proof. We start the iteration with w0 = w?, v0 = 0 and m0 =
0, i.e. x0 = (0, 0, w?). Then (6) gives x1 = T (x0) = x0, and
inductively xt = x0 for all t. The same holds for (4).

Now we investigate the stability of this equilibrium with the
goal of asymptotic stability for local minima w?. The analysis
is simplified because the m and v components of x? are 0. So
we reach the following Jacobian:

JT̄ (0, 0, w?) =

 β1I 0 (1− β1)∇wg (w?)
0 β2I 0

−αβ1√
ε
I 0 I − α(1−β1)√

ε
∇wg (w?)


Theorem III.2. Let JT̄ (m, v,w) ∈ Mat3n be the Jacobian of
system (6) and w? ∈ Rn a minimum of f with positive definite
Hessian ∇2

wf(w?) = ∇wg(w?). Denote µi ∈ R with i ∈
{1, · · · , n} the i-th eigenvalue of ∇wg (w?), ϕi := α

ε (1− β1)

and all other parameters are defined as in Algorithm 1. Then
JT̄ (0, 0, w?) has the eigenvalues, for i = 1, . . . , n:

λ1,i = β2

λ2,i =

(β1 + 1) +

√
(β1 + 1)

2 − 4
(
β1 − αµi(β1−1)√

ε

)
2

λ3,i =

(β1 + 1)−
√

(β1 + 1)
2 − 4

(
β1 − αµi(β1−1)√

ε

)
2

In the combination of Theorem III.2 and II.1 we still have
to show, that |λj,i| < 1 holds, then the spectral radius for the
Jacobian is smaller than 1 and we prove the local convergence.

Theorem III.3. Let the parameters be defined as in Theorem
III.2 and inequality (1) holds, then ρ (JT̄ (0, 0, w?)) < 1.

Corollary III.4. Let the parameters be defined as in Theorem
III.2 and such that αmaxn

i=1(µi)√
ε

(1− β1) < 2β1 + 2 holds
for i ∈ {1, . . . , n}, then Algorithm 1 converges locally with
exponential rate of convergence.

Proof. Consider the non-autonomous system (5) with T̄ (xt)
and Θ(t, xt) as defined in equations (6) and (7). The Hes-
sian of f is continuous, so the gradient of f is locally
Lipschitz with some constant L > 0, ‖g(w1)− g(w2)‖ ≤
L ‖w1 − w2‖ for all w1, w2 in some neighbourhood of w?.
Let all other parameters be defined as in Theorem III.2,
especially αmaxn

i=1(µi)√
ε

(1− β1) < 2β1 + 2. Using m? = 0

and g(w?) = 0 we estimate

‖Θ (t, x)‖ =α

∣∣∣∣∣∣
√

1− βt+1
2

1− βt+1
1

− 1

∣∣∣∣∣∣
· ‖β1m+ (1− β1)g(w)‖√

β2v + (1− β2)g(w)⊗ g(w)⊕ ε

≤ α√
ε

∣∣∣∣∣∣
√

1− βt+1
2 −

(
1− βt+1

1

)(
1− βt+1

1

)
∣∣∣∣∣∣

· ‖β1m+ (1− β1)g(w)‖

≤ α√
ε (1− β1)

∣∣∣∣∣∣
(
1− βt+1

2

)
−
(
1− βt+1

1

)2√
1− βt+1

2 +
(
1− βt+1

1

)
∣∣∣∣∣∣

· (β1 ‖m‖+ (1− β1) ‖g(w)‖)

≤C
4

∣∣∣(1− βt+1
2

)
−
(
1− βt+1

1

)2∣∣∣
· (β1 ‖m−m?‖+ (1− β1) ‖g(w)− g(w?‖)

≤C
4

∣∣∣−βt+1
2 − 2βt+1

1 + β
2(t+1)
1

∣∣∣
· (β1 ‖m−m?‖+ (1− β1)L ‖w − w?‖)
≤Cβt+1(β1 ‖m−m?‖+ (1− β1)L ‖w − w?‖)

where we have used the Lipschitz continuity of g, and set
β = max{β1, β2, β

2
1}, C := 4α√

ε(1−β1)(
√

1−β2+(1−β1))
. The



term β1 ‖m−m?‖ + (1 − β1)L ‖w − w?‖ corresponds to a
norm

‖(m̃, w̃)‖∗ := β1 ‖m̃‖+ (1− β1)L ‖w̃‖ , m̃, w̃ ∈ Rn

on R2n (which does not depend on w?). By the equiva-
lence of norms in finite dimensional spaces we can estimate
‖(m̃, w̃)‖∗ ≤ C̃ ‖(m̃, w̃)‖ for some C̃ > 0. We continue the
estimate:

≤Cβt+1C̃ ‖(m−m?, w − w?)‖
≤(CβC̃)βt ‖x− x?‖ =: C̄βt ‖x− x?‖

for some C̄ > 0. With this estimate and Theorem V.1, it is
sufficient to prove exponential stability of a fixed point of T̄ .
By Theorem III.3 we get ρ (JT̄ (0, 0, w?)) < 1. Thus with
Theorem II.1 the fixed point (0, 0, w?) corresponding to the
minimum w? is locally exponentially stable, and Theorem V.1
gives local exponential convergence of the non-autonomous
system T (t, x), i.e. the Adam algorithm.

The following corollary is a combination of our results with
the results in [23] to show global convergence in the strictly
convex case. The idea is: The iteration reaches an ε-bounded
gradient ‖∇f(wt̃)‖ < ε in some iteration t̃ for suitable
choice of hyperparameters according to [23]. The arguments
of [23] do not imply that ‖∇f(wt)‖ remains bounded, nor
limt→∞∇f(wt) = 0, nor that limt→∞ wt exists.

At this point we use our results to show that for ε small
enough the condition ‖∇f(wt)‖ < ε implies that wt is in the
domain of local convergence.

Corollary III.5. Let f : Rn → R strictly convex with
minimum w? ∈ Rn. Assume f ∈ C2 and ∇2f(w?) positive
definite. Assume that the conditions of Theorem 2.2 in [23]
hold (boundedness of ‖∇f‖, conditions on hyperparameters
of Adam). Then Adam converges globally for the minimum w?.

Proof. Denote x? = (m?, v?, w?) = (0, 0, w?) as in Theorem
III.2. Fix α > 0 such that the assumptions of Corollary
III.4 hold. Choose ε̃ > 0 small enough such that for all
x0 = (m0, v0, w0) ∈ Bε̃(x?) the Adam algorithm converges
according to Corollary III.4.

Theorem 2.2 in [23] shows that for suitable choice of
parameters, for any ε > 0 we have ‖∇f(wt)‖ < ε for some
t ∈ {0, . . . , T} independent of w0 ∈ Rn where T depends on
ε. Fix this index t. By Lemma V.3 there exist C > 0, ε̄ > 0
such that ‖∇f(x)‖ ≥ C ‖x− x?‖ for all x ∈ Bε̄(x?).

Choosing x0 with ‖x0 − x?‖ small enough leads to conver-
gence to the minimum according to Corollary III.4.

Note that the strict convexity was only used to guarantee
uniqueness of a minimum, and that the only critical point is
this minimum. Otherwise ‖∇f(wt)‖ < ε might hold near a
maximum or saddle point where Corollary III.4 does not apply.

Of course other results which guarantee ε-boundedness of
the gradient at some iteration t for Adam in batch mode can
also be combined with our approach.

TABLE I
COLOUR DESCRIPTION FOR THE CONVERGENCE INVESTIGATIONS

Inequality (9)
satisfied

Inequality (1)
satisfied

Adam finds
solution

green yes yes yes
blue no yes yes

yellow yes no yes
white no no yes
black yes yes no
cyan no yes no

magenta yes no no
red no no no

IV. EXPERIMENTS

To compare our requirements for convergence to the re-
quirements taken by [7] or [4], we make some empirical
experiments. First, we look at the different requirements to
the hyperparameter.

β1 <
√
β2 (8)

β2
1 <

√
β2 (9)

Inequality (1) describes the needed requirement presented
in this paper. Problematically in this estimation is, that we
need the maximum eigenvalue of (1− β1)∇wg (w?) and
consequently w?. Therefore our estimation is an a posteriori
estimation. But with (1) we learn something about the rela-
tionship between the hyperparameters. α√

ε
has to be very small

to fullfill inequality 1. With a small α or a big ε we always
make the weight change smaller and so we do not jump over
w?. Inequality (8) was presented in [7] and inequality (9) was
originally presented in [4]. Both are a priori estimations for
the hyperparameters.

To show the behaviour of all estimations we set up the
following experiments. In Experiment 1 and 2 we want to
minimize f(w) := w4 + w3 with the minimum w? =
− 3

4 . In Experiment 3 we minimize the multidimensional
function f(w1, w2) := (w1 + 2)

2
(w2 + 1)

2
+ (w1 + 2)

2
+

0.1 (w2 + 1)
2 with the minimum w? = (−2,−1). We run the

Adam optimizer 10000 times in every hyperparameter setting
and if the last five iterations wend ∈ R5 are near enough to the
known solution w? the attempt is declared as convergent. Near
enough in this setting means that all components of wend are
contained in the interval [w? − 10−2, w? + 10−2]. The colour
coding of our experiments can be found in Table I. To keep
the clarity of our results we only compare the original Adam
inequality with our inequality. With inequality (8) we obtain
similar figures.

Experiment 1

First, we iterate over ε ∈
{

10−8, . . . , 10−6
}

and β1 ∈
{0.01, . . . , 0.99}. The other hyperparamteres are fixed α =
0.001, β2 = 0.1. This setting leads us to figure 2. The only
area, where the Adam optimizer is not finding a solution
(red dots), is inside the white area. So both inequalities are
not satisfied and the convergence is not given. The white
area – Adam converge but no inequality is satisfied – is



Fig. 2. Iterating over ε and β1

Fig. 3. Iterating over α and β1

formed because we only talk about estimation and not clear
boundaries. The blue and yellow area can be made larger or
smaller by changing β2 or α.

Experiment 2
In the second experiment we iterate over α ∈

{0.001, . . . , 0.1} and β1 ∈ {0.01, . . . , 0.99}. β2 = 0.2 and
ε = 10−4 are fixed. With the starting point x0 = −2 we reach
figure 3. In the magenta and the cyan area the Adam method
is not reaching the solution, although inequality (9) or (1) is
satisfied. The Adam is oscillating around the solution but do
not reach them. The big difference is that the non-convergence
in the cyan area is attributable to the fact that our proof only
shows local convergence. By starting in x0 = −0.750000001
the cyan area is almost complete blue (see figure 4). In
contrary the magenta area does not change that much.

Experiment 3
In the last experiment we use the same hyperparameters

as in experiment 1. Therefore we reach a similar looking
figure 5 by iterating over the parameters. The reason for
the enlargement of the blue and green area is the different
function f (x), thus different eigenvalues in inequality (1). By
observing the convergence behaviour from each of the four
differently coloured areas in figure 5, we can not spot big
differences.

V. CONCLUSION AND DISCUSSION

In this paper we introduce a local convergence proof of
the Adam method and to the best of our knowledge it is the

Fig. 4. Iterating over α and β1 with x0 = −0.750000001

Fig. 5. Experiment 3 :Iterating over ε and β1.

first at all. We also give an a posteriori boundary for the
hyperparameters and show, that the choice of β2 does not
matter for the convergence near a minimum.

However the proof is based on the vanishing gradient
condition ∇f(w?) = 0 and cannot be used for an incremental
algorithm for f(w) = 1

N

∑N
i=1 fi(w) where different compo-

nent gradients gt = ∇fit(wt) are used in the iterations for the
moments. Clearly ∇f(w?) = 0 does not imply ∇fi(w?) = 0
for all components. We are investigating how the incremental
dynamical system can be related to the batch system.

The analysis applies to any local minimum with positive
definite Hessian and therefore does not require overall con-
vexity. In order to show global convergence of Adam-like
algorithms other methods have to be applied.
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APPENDIX

Proof. (Theorem III.2)
We see that JT̄ (0, 0, w?) has the n-fold eigenvalue β2. So we

can drop second block row and column of JT̄ and investigate
the eigenvalues of(

β1I (1− β1)∇wg (w?)
−sβ1I I − s (1− β1)∇wg (w?)

)
=:

(
A B
C D

)
where we use the abbreviation s := α√

ε
. B and D are

symmetric since ∇wg (w?) is the Hessian of f . By the spectral
theorem we can diagonalize B as B = QΛQ⊥ with an
orthogonal matrix Q and a diagonal matrix of eigenvalues
Λ. Analogously holds D = I − QΛQ⊥ = Q (I − Λ)Q⊥.

We make a similarity transformation with Q̃ :=

(
Q 0
0 Q

)
∈

Mat2n. This leaves the eigenvalues unchanged and gives

Q̃⊥
(
A B
C D

)
Q̃ =

(
β1I (1− β1)µiI
−sβ1I I − s (1− β1)µi

)
with µi the i-th eigenvalue of the Hessian. Eigenvalues does
not change in similarity transformations, so we can also
calculate the eigenvalues of our new block matrix with four
diagonal sub matrices.

det

(
(β1 − λ) I (1− β1)µiI
−sβ1I (1− s (1− β1)µi − λ) I

)
= det ((β1 − λ) (1− s (1− β1)µi − λ) I + (1− β1) sβ1µiI)
!
=0



Therefore the matrix is a diagonal matrix, we can conclude:

det (JT̄ (0, 0, w?)− λI) =

n∏
i=1

(β1 − λ) (1− s (1− β1)µi − λ)

+ (1− β1) sβ1µi

Each factor can be written as

λ2 − (1− s (1− β1)µi + β1)λ+ β1
!
= 0

and following the statement

λ23,i =0.5 (1− s (1− β1)µi + β1

±
√

(1− s (1− β1)µi + β1)
2 − 4β1

)
is true.

Proof. (Theorem III.3)
We already have calculate the eigenvalues of the Jacobian in

Theorem III.2. With these we can easily see, that |λ1| = |β2| <
1 is satisfied per the requirements of algorithm 1. Therefore
we only have to look at:

λ23,i =
1 + β1 − ϕi ±

√
(1 + β1 − ϕi)2 − 4β1

2

We define ϕi := αµi√
ε

(1− β1) and simplify the eigenvalue.

|λ23,i| =
1

2

∣∣∣∣∣∣∣(1 + β1 − ϕi)±
√

(1 + β1 − ϕi)2 − 4β1︸ ︷︷ ︸
¬

∣∣∣∣∣∣∣
First we look at upper bound of the eigenvalues. For this we
take term ¬ combined with the regrets for ϕi:√

(1 + β1 − ϕi)2 − 4β1 <

√
(1 + β1)

2 − 4β1 = ± (1− β1)

So if we put this in λ23,i we have the inequality |λ23,i| <
1
2 |1 + β1 − ϕi ± (1− β1)|. Easy to see are the two cases:

|λ23,i| < 1 with +
|λ23,i| < β1 < 1 with -

In both cases we see that the eigenvalues are smaller than 1
in absolute value. To show the lower bound λ23,i > −1, we
look again at term ¬.√

(1 + β1 − ϕi)2 − 4β1︸ ︷︷ ︸
∈C\R

= i

√
4β1 − (1 + β1 − ϕi)2

Then we can write:

|λ23,i| =
1

2

√
(1 + β1 − ϕi)2

+ 4β1 − (1 + β1 − ϕi)2

=
√
β1 < 1

The last inequality is given by the requirements of Theorem
III.3 and so we proved the whole Theorem.

Theorem V.1. Convergence to fixed point with perturbation
Let M ⊂ Rn be a complete set, T̄ : M → M Lipschitz

continuous with L < 1, x? ∈ M the unique fixed point of
T̄ . Assume Br(x?) ⊂ M for some r > 0. Recall that the
non-autonomous system (5) is defined by

x̃t+1 = T (x̃t) := T̄ (x̃t) + Θ(t, x̃t)

for Θ : N0 × M → Rn with the bound ‖Θ(t, x̃)‖ ≤
Cβt ‖x̃− x?‖ for all x̃t ∈ M , t ∈ N0 for some C ≥ 0
and 0 < β < 1. Then there exists ε > 0 such that for all
x̃0 ∈ M with ‖x̃0 − x?‖ < ε the iteration defined by (5) is
well-defined, i.e. stays in M , and converges to x?.

Proof. Let x = x(·, x̃0) be the solution of the undisturbed
iteration xt+1 = T̄ (xt) with initial condition x̃0, x̃ = x̃(·, x̃0)
the corresponding solution of (5). We define et := ‖x̃t − x?‖,
and estimate using the assumptions

et+1 =
∥∥T̄ (x̃t) + Θ(t, x̃t)− x?

∥∥
=

∥∥T̄ (x̃t)− T̄ (x?) + Θ(t, x̃t)
∥∥

≤
∥∥T̄ (x̃t)− T̄ (x?)

∥∥+ ‖Θ(t, x̃t)‖
≤ L ‖x̃t − x?‖+ Cβt ‖x̃t − x?‖
= (L+ Cβt)et

Choosing t large enough, we get 0 < L + Cβt ≤ L̃ < 1 for
all t ≥ K because β, L < 1. Then

et ≤
(∏K

k=1(L+ Cβk)
)
L̃t−Ke0 =: C̃L̃t−Ke0

with C̃ independent of x̃0. So et converges to 0 exponentially.
The arguments so far have only been valid if x̃t ∈ M ,

i.e. the iteration is well defined. But choosing x̃0 such that
e0 = ‖x̃0 − x?‖ < r

C̃
small enough that we can achieve et ≤

C̃e0 < r.

Theorem V.2. Determinants of Block Matrices [24]

Let M =

(
AB
CD

)
∈ Mat2n be a block matrix with

A,B,C,D ∈ Matn. If C and D commute, then det (M) =
det (AD −BC) holds.

Lemma V.3. Let f ∈ C2(Rn,R), x? ∈ Rn with ∇f(x?) = 0
and ∇2f(x?) invertible. Then there exist ε > 0 and C > 0
with ‖∇f(x)‖ ≥ C ‖x− x?‖ for all x ∈ Bε(x?).

Proof. As f is C2 we have ∇f(x) −∇f(x?) −∇2f(x?) =
o(‖x− x?‖). So for each δ > 0 there exists ε > 0 with∥∥∇f(x)−∇f(x?)−∇2f(x?)

∥∥ ≤ δ ‖x− x?‖ for all x ∈
Bε(x?). Assume w.l.o.g. δ < 1

‖∇2f(x?)−1‖ . Then we have

‖∇f(x)‖ ≥
∥∥∇2f(x?)(x− x?)

∥∥
−
∥∥∇f(x)−∇f(x?)−∇2f(x?)(x− x?)

∥∥
≥ 1

‖∇2f(x?)−1‖
‖x− x?‖ − δ ‖x− x?‖

=: C ‖x− x?‖

with C = 1
‖∇2f(x?)−1‖ − δ > 0 by choice of δ.


