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Abstract— Identifying different functional regions during a
brain surgery is a challenging task usually performed by highly
specialized neurophysiologists. Progress in this field may be
used to improve in situ brain navigation and will serve as an
important building block to minimize the number of animals
in preclinical brain research required by properly positioning
implants intraoperatively. The study at hand aims to correlate
recorded extracellular signals with the volume of origin by deep
learning methods. Our work establishes connections between
the position in the brain and recorded high-density neural
signals. This was achieved by evaluating the performance of
BLSTM, BGRU, QRNN and CNN neural network architectures
on multisite electrophysiological data sets. All networks were able
to successfully distinguish cortical and thalamic brain regions
according to their respective neural signals. The BGRU provides
the best results with an accuracy of 88.6 % and demonstrates
that this classification task might be solved in higher detail
while minimizing complex preprocessing steps.

I. INTRODUCTION

Surgical interventions to the brain are considered to be
among the most challenging medical procedures not the
least due of the lack of clear and easy accessible landmarks.
Yet, bioelectronic medicine offers a growing number of
therapeutic avenues and as such creates a strong demand for
precision implantations enabled by sophisticated imaging
[1]. Unfortunately, pre-clinical research with rodents rarely
provides for this luxuriousness and has to compensate for
implantation errors by increasing the number of animals, even
though robotized stereotaxic targeting becomes available [2].
To minimize animal use while increasing targetting precision,
we propose a functional atlas based on intraoperatively
acquired electrophysiology recordings to identify distinct
brain regions instead of relying on their post-mortem
stainings [3]. The challenge reminisces of constructing an
atlas based on spoken languages and dialects in lieu of
political borders and landmarks (see Figure 1). With the
advent of an according functional brain atlas, a simple
look-up for signal features might e.g. reveal sub-cortical
nucleus’ boundaries similar to human Deep Brain Stimulator
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Fig. 1. Illustration of the proposed functional atlas: A traveler across Europe
will often recognize political borders by the differences in local language
along his path. Modified after Wikimedia Commons.

implantation [4]. Microelectrode probes of different design
and make are routinely used in animal research and might
thus provide precise multisite extracellular recordings (MER)
attributable to a corresponding brain location.

In the following work in progress, extracellular recordings
from high density, silicon multi-site microelectrodes [5], [6]
at different known, intracranial locations will be used as a
proof of principle to harness the power of machine learning
approaches and pave the way for such a functional brain map.

II. MATERIALS AND METHODS

Two different types of silicon probes were used to acquire
the data sets for the classification tasks below. Recordings
are real extracellular measurements with neuronal (micro-
electrode) resolution from animals in vivo.

A. Animal procedures

Our own data set, called NES, was acquired as described
in [5] with 1600 recording sites neural probes (EDC) from
anesthetized, female Sprague Dawley rats with a weight of ca.
290 g each. Sampling rate was 5 kHz per site for blocks of
32 sites. All procedures involving animal experiments were
conducted following the guidelines of the German Council
on Animal Protection. The protocols were approved by the



Fig. 2. (left) Designated trepanation positions on a typical rat skull. Clearly
visible are Bregma and Lambda bone structures (arrows).
(right) To-scale illustration of an 100 µm wide EDC probe at hole number 4
(at 4 mm posterior Bregma) of group 3 (3 mm lateral midline) of a merged
atlas slice. Pics modified from [8].

Animal Care Committee of the University of Freiburg under
the supervision of the Regierungpräsidium Freiburg (approval
35-9185.81/G-13/01) in accordance with the guidelines of
the European Union Directive 2010/63/UE. Female Sprague-
Dawley rats (n = 6) underwent stereotactic surgery for acute
implantation of EDC probes while anesthetized with Ke-
tamin/Xylazine as described earlier [7].
An overview of designated trepanation positions is given in
Figure 2 (left) with each position acquired on one single pass
from at least three different rats. No single rat was used for
more than four widely separated trepanation holes currently
undersampling the originally intended number of trajectories.

B. Datasets

Dataset HC2 and HC4 are recordings from the Buzsáki-
Lab, freely available on http://crcns.org/data-sets/hc. They
originate from the hippocampal subregion CA1 (three rats,
HC2 [9]) and additionally the entorhinal cortex (EC) from
another rat (HC4 [6]). Rats used for the HC-data sets were
three to eight months old males, with a weight between 250 g
and 400 g and deeply anesthetized with isoflurane (1-1.5 %)
for implantation. The hippocampal signals were recorded
during different behavioral tasks after the rats had one to two
weeks to recover from the surgery. 32 – or 64 – site silicon
probes were implanted into each rat‘s brain and recorded
from CA1 in the right dorsal hippocampus. Rat 2 from the
dataset HC4 additionally received another 4 - shank silicon
probe implanted into the right dorso-caudal medial entorhinal
cortex (EC2, EC3, EC5). All the protocols were authorized by
the Institutional Animal Care and Use Committee of Rutgers
University (protocol No. 90-042), at the time of recording and
all experiments were performed at Rutgers University [10].

NES data was labeled into two classes, according to where
the signals originated: in the cerebral cortex (CTX) or with
a wide safety margin in the thalamus (THL). Recordings
were fragmented into sequences of 5000 samples which
corresponds to a time period of 1 second each. HC data was
split into sequences of 5000 samples which corresponds with
their 20 kHz sampling rate to a time frame of 0.25 seconds.
Data set HC4 was partitioned in two and one part was used
for training and one for testing only. HC2 was exclusively
dedicated to testing. From the NES data set one rat was
excluded from training and subsequently used exclusively for
testing.

Fig. 3. Workflow overview: First, neural architectures were evaluated
using the HC4 dataset. After the best performing network was identified, the
HC2 dataset was used to validate these results. Finally, the best performing
network was trained with the NES dataset and their performance with respect
to different brain regions and a different dataset was evaluated.

C. Network Architectures

Several deep neural network architectures were imple-
mented to find the most suitable network to classify the
datasets according to their respective brain regions. A Bidirec-
tional Long-Short Term Memory (BLSTM), a Bidirectional
Gated Recurrent Unit (BGRU), a Quasi-Recurrent Neural
Network (QRNN) and a Convolutional Neural Network
(CNN) were implemented in PyTorch [11]. The results of
the different models were compared to identify the most
successful method. All networks receive a minimally filtered
brain signal as input and are supposed to predict the associated
brain region. Figure 3 shows the schematic diagram of the
proposed workflow. Succesful signal-to-region classification
might finally construct a functional map of the rat brain.

A BLSTM is thought to effectively solve time series
classifications [12] as it remembers past states. It’s long-range
dependencies make it suitable for pattern recognition in time
signals. A BGRU contains fewer internal parameters than a
BLSTM [13] and thus compares well in both training time and
achieved accuracy for the task posed in this work. Recently
CNNs are being used more frequently to analyze time series
data [14], [15] extending their usual field of image datasets.
Because of their faster training time and broader perspective,
a CNN was added to the evaluation. Finally a QRNN, which
can be seen as a mixture of a CNN and a RNN [16], was
implemented and trained according to Figure 3. Table I lists
some important hyperparameters of each architecture type
used. The adjustment of the different hyperparameters was
done manually for each individual architecture to reach the
best possible performance for each network.

III. RESULTS

According to our workflow, classification was first at-
tempted on the hippocampal subregions contained in the
HC data sets. The first row in Table II shows the achieved
accuracy of the four networks networks implemented. The
BGRU performed best with an accuracy of almost 89 % and
clearly outperforms the other architectures. The LSTM and



TABLE I
COMPARISON OF DIFFERENT HYPERPARAMETERS OF THE BGRU, THE

BLSTM, THE CNN, AND THE QRNN.

Archi- Number of Batch Number Model Specifications
tecture training Size Epochs

input
sequences

BGRU 204,800 16 2 2 hidden layer, size 64
BLSTM 204,800 16 2 2 hidden layer, size 256
CNN 1,684,998 128 20 5 Convolutional layers

(kernel size 5) with
output channels of size
50,75, 100, 125, 125
respectively

QRNN 1,443,520 128 2 3 hidden layers, size 256

TABLE II
COMPARISON OF A THE ACCURACY AND PER-CLASS F-MEASURE (AS

PERCENTAGES) FOR THE DIFFERENT NETWORKS.

Testset HC4 class BGRU BLSTM CNN QRNN

accuracy all 88.6 80.6 79.7 73.8
f-measure CA1 95.4 90.0 93.7 91.0

EC2 90.1 82.7 75.9 77.3
EC3 83.8 71.2 70.4 59.8
EC5 84.8 77.8 79.4 64.1

the CNN perform comparably with an accuracy of about 81 %
and 80 %. With these values, both networks are about 10 %
below the performance of the BGRU. The worst performing
network is the QRNN with an accuracy of 74 % only. Looking
at the f-measure of each class, it can be seen that the class
CA1 is predicted best for every network. Even though the
overall performance of the networks differ up to some 15 %,
the prediction performance towards the class CA1 is nearly
similar for all architectures and differs only up to 4.4 %.
This indicates that the class CA1 contains properties that
more strongly differentiate it from the other classes. It has to
be noted, that none of the usual, electrophysiologic feature
extraction steps have been attempted and only band pass
filtering ( fL = 300Hz, fH = 3kHz) was used.

Results from the best performing BGRU network and
for the different data sets are shown in the following. The
confusion matrix in Figure 4 displays the classification success
on the dataset HC4. The prediction performance of the
network is good, as indicated by the dark color along the
diagonal axis.

Dataset HC2 was exclusively used for testing and was
therefore not part of the training data. The only class present in
this dataset is the subregion CA1 in the hippocampus. Dataset
HC4 contains only recordings from the rat 2, whereas dataset
HC2 contains recordings of the rats 1, 2 and 3. Therefore rat 2
data is present in both datasets. Table II summarizes the most
important information about the performance of the different
networks. This includes the overall accuracy according to the
HC4 test set and the different neural network architectures.
Additionally, the f-measure for each class of the HC4 test set
is provided. The average accuracy of the BGRU regarding the

Fig. 4. Confusion matrix of the proposed bidirectional BGRU and the HC4
dataset.

Fig. 5. Blue squares mark the accuracy of the BGRU with respect to the
different recording sessions in the HC2 dataset (see [9] for details). Accuracy
results for rats 1 to 3 are plotted on the x-axis and the accuracy of the
network on the y-axis.

dataset HC2 is 91 %. Figure 5 shows the results of the BGRU
for the HC2 dataset. The blue squares mark the classification
accuracy across different recording sessions in the dataset.
These results show that the BGRU works reasonably across
rats and and behavioral situations.

With this intermediate result we tackled the more complex,
yet artifact ridden NES data and tried to separate cortical
(CTX) from thalamic (THL) signals (see Figure 6 left) along
recording sites 1 mm lateral to midline (group 1) from 6
rats. Figure 6 right shows that no particular rat is classified
substantially better than any other. Rat 2, whose data was
not used for training, performs comparable to the others. We
therefore conclude the learned properties of our BGRU to be
able to make predictions for a wider range of rats.

Further classification of subregions within Cortex (orange),
Thalamus (yellow), Hippocampus (brown) or Corpus Callo-
sum (pink) (colors in Figure 6 left) goes beyond the work at
hand and requires post-mortem validations of implant sites
beyond the stereotaxic coordinates.



Fig. 6. (left) Illustration of the two most prominent anatomical regions in
this hand-modified atlas slide [8]: cortical areas (CTX) in orange and thalamic
areas (THL) in yellow. Training data originates from red and green dots.
(right) Blue squares show the accuracy of the BGRU to seperate between
CTX and THL data corresponding to the different recording sessions in the
NES dataset. Rats 1 to 6 are plotted on the x-axis and the accuracy of the
network on the y-axis.

IV. CONCLUSION

In this paper and as a first, we successfully mapped
large data sets of extracellular recordings from different
cortical depths and anatomical structures to their respective
brain regions with the use of deep learning algorithms.
Further development and rigorous histological cross-validation
will build the basis to improve intraoperative targeting in
preclinical animal research. This new application will advance
bioelectronic medicine in its quest for maximum implantation
accuracy as well.

The results are indicative of a strong connection between a
spatial position in the brain, its neuro-anatomical make-up and
extracellular recordings at least under controlled anesthetic
conditions (here injection anesthesia). This connection is
demonstrated for two major regions of the rat brain (CTX
and THL) and some subregions within the hippocampus (CA1,
EC2, EC3 and EC5) with the help of different deep learning
network architectures.

Four different neural network architectures were successful
in solving the classification task of actual neural signals
according to the respective brain regions. The performance
of the different networks varies and therefore the networks
are differently well suited for solving the given task. The
best performing network uses Gated Recurrent Units.

The results are also indicative that the predictive ability of
the networks is not animal-specific. The BGRU was trained
with signals from one rat in the HC4 dataset but was able to
predict the region CA1 for two other rats with a high accuracy.
The same is true for the NES dataset and the BGRU, which
was trained with recordings from five individual rats and
successfully tested with signals from another rat. This raises
hopes that a BGRU can be trained once and then be used
online for different animals without the need for re-training.

Further research in this area is needed to actually compile
a useful, detailed and voluminous functional atlas and apply
its localization power to laboratory research and pre-clinical
neurosurgery. The creation of a dataset with an additional
histological validation will provide a reliable targeting of every
brain region. Data sets that include reliable identification of all
available brain regions in animal models will provide insight
into whether the creation of a functional map might become
a possibility for the entire human brain. Here, many more

factors that could influence the classification performance,
such as age, diseases, gender, and anesthesia type, need
to be investigated as well. This work forms a basis for a
brain region identification with deep learning and shows that
artificial neural networks, such as the BGRU, are able to
solve such tasks.
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