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Abstract. Diagnostic protocols in automotive systems can offer a huge attack surface with
devastating impacts if vulnerabilities are present. This paper shows the application of active
automata learning techniques for reverse engineering system state machines of automotive
systems. The developed black-box testing strategy is based on diagnostic protocol communi-
cation. Through this approach, it is possible to automatically investigate a highly increased
attack surface. Based on a new metric, introduced in this paper, we are able to rate the pos-
sible attack surface of an entire vehicle or a single Electronic Control Unit (ECU). A novel
attack surface metric allows comparisons of different ECUs from different Original Equip-
ment Manufacturers (OEMs), even between different diagnostic protocols. Additionally, we
demonstrate the analysis capabilities of our graph-based model to evaluate an ECUs possible
attack surface over a lifetime.
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1 Introduction

Modern cars can be seen as safety-critical systems that get connected to external networks or even
in between each other to satisfy upcoming requirements of both owners and manufacturers. This
development presents new attack surfaces that are subject to exploitation, especially in recent years
[16,5,19]. Since unauthorized manipulation of safety-critical systems in a vehicle can lead to serious
danger, mechanisms for securing a car’s network against intruders need to be implemented during
the development process already. This is also required by upcoming standards from recognized
organizations like International Organization for Standardization (ISO) [15] and United Nations
Economic Commission for Europe (UNECE) [27]. Directing the development of a product towards
these regulations is time-consuming and expensive. Often traditional companies might not have
enough experience in security engineering, which demands a high degree of automation in this
process. This work targets automated attack surface exploration of the car’s network structure,
focusing especially on diagnostic protocols. In addition to that, automated scans allow continuous
monitoring of future vulnerabilities over a vehicle’s lifetime. In summary, the following contributions
are made:

– We present a open-source tool for scanning a car’s network on the application layer through
leveraging the diagnostic protocol stack. Our tool can derive various controllable system states
for an ECU without specific knowledge being necessary.
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– Gained information from our scan can be used to stimulate the internal state of the system
under test, which leads to more data on the system’s behavior and it’s attack surfaces.

– We demonstrate how the output of the scanning phase can be instrumented in order to deter-
mine which type of firmware the ECU is running in which detected state.

– We present an attack surface model together with an attack surface metric for rating the
potential attack surface of ECUs or entire vehicles.

– We show the application of our attack surface model for estimations over a vehicles or an
ECUs lifetime.

This paper is structured as follows: In the next section, we discuss related work. Section 3
introduces the protocol stack for diagnostic communication in vehicles, including an overview of
the most relevant protocols and layers. Section 4 presents threat definitions and measurements for
possible attack surface metrics. We introduce our scan algorithm and necessary definitions in section
5. The scan algorithm and threat definitions are combined into a graph-based attack surface model
in section 6. Section 7 provides information on our test setup. Section 8 discusses results obtained
from various scans on different targets and demonstrates the application of our attack surface model.
Section 9 concludes our research and mentions ideas regarding future work in this domain.

2 Related Work

In the past years, research on automotive network security and stateful scanning has been pub-
lished. Ruiter et al. applied state-based fuzzing techniques to reveal security vulnerabilities in
popular implementations of the Transport Layer Security (TLS) protocol [24]. Moreover, they used
state machine interference to conduct a black-box analysis of the OpenSSL state machine imple-
mentation in an active learning process [23]. Another work from Bayer et al., rather targeted at the
automotive domain, discusses stateful fuzzing of vehicle systems. They present a message generator
and publisher for fuzzing diagnostic protocols. In the following, an evaluation of their fuzzing design
is carried out by performing a fuzz test of an ECU on the Unified Diagnostic Service (UDS) protocol
level [2]. A manual strategy to detect vulnerabilities in diagnostic protocols is introduced by Van
den Herrenwegen and Garcia [9]. With this technique, it is possible to derive similar information as
we aim for in our work. However, we focus on highly automated testing in order to facilitate the in-
formation collection phase. In comparison to the work of Sommer et. al., we utilize active automata
learning to feedback the detected endpoints and system states into the state machine of our scan al-
gorithm [26]. This feedback helps us in performing a deeper and more extensive scan. Furthermore,
our online state manipulation can trigger different behaviors of the ECU while testing. Lastly, we
achieve a high degree of automation in our testing workflow, which speeds up scanning, helps in
the collection and presentation of the results, and allows for simple reproduction and validation.

3 Diagnostic Protocol Architecture

Since this research focuses on scanning approaches of diagnostic protocols, Ethernet and Controller
Area Network (CAN) based networks are targeted. A clear separation between the transport and
the application layer allows creating one scanner for both network stacks. Figure 1 provides an
overview of relevant protocols and the corresponding layers. UDS defines a clean separation between
application and transport layer. On CAN based networks, Transport Layer (ISO-TP) [13] is used for
this purpose. The CAN protocol can be treated as the network access protocol. This allows to replace
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Fig. 1. Automotive Diagnostic Protocol Architecture

Table 1. List of measurands and units for CVE flaw types.

Type Measurand Unit

upload Availability of service Boolean

dos-flood Number of supported sub-functions Integer

rand Number of supported sub-functions Integer

pass Number of supported sub-functions Integer

crypt Number of supported sub-functions Integer

phys Number of supported sub-functions Integer

infoleak Number of data bytes readable Integer

buf Number of data bytes writable Integer

int-overflow Number of data bytes writable Integer

ISO-TP and CAN with Diagnostic over IP (DoIP) [14] or High-Speed Car Access (High-Speed-
Fahrzeug-Zugang) (HSFZ) and Ethernet [10]. The General Motor Local Area Network (GMLAN)
protocol combines transport and application layer specifications very similar to ISO-TP and UDS.
Because of that similarity, identical application layer-specific scan techniques can be applied. To
overcome the bandwidth limitations of CAN, the latest vehicle architectures use an Ethernet-
based diagnostic protocol (DoIP, HSFZ) to communicate with a central gateway ECU. The central
gateway ECU routes application layer packets from an Ethernet-based network to a CAN based
vehicle internal network. In general, the diagnostic functions of all ECUs in a vehicle can be accessed
from the On Board Diagnostic (OBD) connector over UDSonCAN or UDSonIP [12].

4 Threat Definitions

We’ve analyzed published attacks on automotive systems and combined these findings with a threat
analysis of the specifications for GMLAN and UDS. This allows the creation of general threat
definitions for automotive diagnostic protocols substantiated by proven security flaws. The proposed
threat definitions are based on the Common Vulnerabilities and Exposures (CVE) flaw terminology
[21]. Since CVE flaw types are initially designed for web applications, office, and personal computer
systems, a new keyword is added. The keyword phys indicates that this service of a diagnostic
protocol can cause a physical action on a vehicle, becoming important if analysis regarding the
safety-criticality of supported services of an ECU is performed. In table 2, all functions and features
(also called services) of GMLAN and UDS are annotated with possible or proven CVE flaw types.
These threat definitions allow mapping services of an ECU to possible security flaws to perform an



Table 2. Threat definitions for the diagnostic protocols UDS and GMLAN. Each relevant service (referenced by the hexadecimal service identifier) is mapped to
one or multiple possible CVE flaw types. The description gives an explanation why a certain flaw type is possible. A list of all service names of UDS and GMLAN
can be found in appendix A.1 in table 10.

UDS GMLAN Type Descriptions and references for the combination of flaw types with UDS/GMLAN services

10h 10h, A5h dos-flood These commands will change the session of an ECU. This command’s actual impact can reach from no effect in the
functionality to the execution of a different firmware or the ECUs bootloader. Miller & Valasek and Nie et al. used this
service to disable (Denial of Service (DoS)) individual ECUs [20, p. 9][25, p. 12].

11h dos-flood During a reset, an ECU is unavailable. Researchers from Keen Labs were able to trigger this function at any speed of a
vehicle. Unavailability of safety-critical ECUs in extreme driving conditions can cause serious dangers [4, p. 28].

19h, 22h,

23h, 24h,

2Ah, 2Ch,

86h

12h, 1Ah,

22h, 23h,

2Ch, 2Dh,

A9h, AAh

infoleak These commands can be used to gather internal information about an ECU. This can be used to obtain static information
(Vehicle Identification Number (VIN), software versions, etc.), dynamic information to understand the internal behavior of
an ECU, or even to extract the entire firmware [22].

27h 27h crypt Van den Herrewegen et al. and Dürrwang et al. demonstrated impacts of weak cryptographic implementations [9,6].
pass Miller & Valasek revealed many hard-coded cryptographic secrets inside an ECUs firmware [18, p. 46].
rand Nie et al. analyzed weak security access implementations and showed the lack of random seed creation [25, p. 11].

28h 28h dos-flood This service grants the total bandwidth of the CAN bus to only one ECU. Attackers can prevent ECUs from communicating,
which causes a DoS of the attacked ECU [16, p. 7].

2Dh int-
overflow

his service specification describes two possible use-cases, clearing of non-volatile memory and changing of calibration values
[11, p. 147]. Both use-cases can be used to cause program flow corruptions, e. g. integer- or buffer-overflows.

buf See above. Identical to int-overflow.
2Eh 3Bh int-

overflow
Identifiers can be any payload. The protocol specifications are very generic for these commands. If a data-identifier is mapped
to numeric values, it might be possible that these values can trigger execution errors, such as integer overflows.

phys Cai et al. demonstrated the manipulation of the driver’s seat position through this service [4, p. 8].
buf Payloads can contain complex data, e. g. certificates or ring buffer contents. Increasing data size and complexity leads to

more likelihood of security flaws in interpreters and parsers. Additionally, writable memory areas allow attackers to place
exploit code into known and defined memory sections.

2Fh phys Miller & Valasek demonstrated the control of a vehicle’s pre-collision system seat belt functionality. This proves the possibility
to trigger physical actions through this service [18, p. 15].

31h dos-flood Miller & Valasek identified sub-functions that allow the erase of an ECUs memory. Such an operation would brick an ECU
and lead to the entire vehicle’s unavailability [20, p. 12].

buf RoutineControl jobs accept individual payloads with various lengths. The more complex data leads to a higher likelihood
of implementation flaws. Cai et al. demonstrated an insecure implementation, combined with a time-of-check to time-of-use
(TOCTOU) attack, which led to code execution [4, p. 8].

phys RoutineControl jobs can be used to control actuators on a vehicle. Miller & Valasek were able to kill a vehicle’s engine [18,
p. 51]. Dürrwang et al. showed the deployment of airbags through insecure implementations of RoutineControl jobs [6].

infoleak The sub-function requestRoutineResults can potentially leak sensitive data.
34h 34h upload These commands are intended to initiate a software update. Miller & Valasek and Van den Herrewegen et al. demonstrated

arbitrary code execution by abusing this command [20,9].
35h infoleak This command could be used to leak internal information of an ECU.
36h, 84h 36h buf These commands are part of the update process. An implementation flaw is unlikely; nevertheless, buffer overflow vulnera-

bilities are potentially possible.
87h dos-flood Allows the modification of communication parameters. Attackers can prevent an ECU from communicating by providing an

invalid configuration.
AEh phys Koscher et al. demonstrated the possibility of triggering physical actions on ECUs [16, p. 8].

dos-flood The GMLAN standard describes the possibility to trigger an ECU reset [7].
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Table 3. Summary of state modifying services in UDS and GMLAN.

UDS GMLAN

10h DiagnosticSessionControl 10h InitiateDiagnosticOperation
11h ECUReset
27h SecurityAccess 27h SecurityAccess
28h CommunicationControl 28h DisableNormalCommunication
31h RoutineControl

34h RequestDownload
3Eh TesterPresent 3Eh TesterPresent

A5h ProgrammingMode

in-depth impact analysis of a diagnostic protocol implementation. Table 1 proposes a measurand
and a measuring unit for every flaw type to achieve a comparable rating.

5 Automotive Diagnostic Protocol Scanner

This section describes the implementation of an automotive diagnostic protocol scanner. The Scan-
ner uses an active automata learning technique to reverse engineer the ECU’s system state machine
automatically. This allows the creation of a black-box testing strategy solely based on the applica-
tion layer communication. Through dynamic reverse engineering of the system state machine of an
ECU, it is possible to scan an increased attack surface. Differences in an ECUs communication can
be modeled with a system state graph that describes the ECUs behavior.

5.1 System States

UDS and GMLAN have a very similar protocol structure. Since various OEMs use UDS, the concrete
implementations and, therefore, an ECU’s behavior varies between ECUs from different OEMs. The
GMLAN standard is much more descriptive in terms of an ECU’s communication behavior. The
current state of an ECU defines its communication behavior. Most modern ECUs have the possi-
bility to execute at least two different types of software to fulfill safety requirements and update
features. One software is called a bootloader; the other one is an ECU’s application software for
normal operations. Every software component of an ECU will show a different attack surface de-
rived from a different set of supported protocol services. Furthermore, bootloader and application
software is often developed by different suppliers. For diagnostic purposes, an ECU’s application
software supports a diagnostic mode, often with capabilities to trigger physical actions. The secu-
rity access service is used for authentication to unlock protected services. Both security access and
diagnostic mode can change the entire communication behavior and, therefore, the ECU’s attack
surface. On some ECUs, the communication behavior already changes as soon as a TesterPresent

message is sent. Every variation of the communication behavior will be called a state of an ECU
and represented by a node in the system state graph.

Since every state of an ECU can support a different set of services, it implies that certain
services that modify the state (transitions in the system state machine) can become available only
in a specific state or under special conditions. Therefore a full scan for supported services must be
performed in every identified state of the system state machine.

5.2 Transitions In the System State Graph

During the implementation of the protocol scanner with active state learning, several conditions that
alter an ECU’s internal state were identified. The following services can trigger state transitions in
GMLAN and UDS. The collection in table 3 is not necessarily complete and can vary for individual
ECUs. Especially for UDS-based ECUs, OEMs often implement their custom protocol specifications
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or additions. To anticipate this circumstance, the software architecture of the implemented Scanner
is highly extendable.

Reset State The scan algorithm needs a reliable way to bring an ECU under test back into its
reset state, even if the ECU entered an unknown state. Undocumented commands could cause
an undesired state change during a scan. Through a reliable reset function, misbehavior can be
identified, and interruptions of further scans can be prevented with frequent resets of the scan
target. A power cycle of an ECU is used in later tests as a reliable reset function, which is easy to
implement and sufficient since the proposed scan does not alter non-volatile memories.

Return Code Evaluation UDS and GMLAN follow a strict communication scheme. Every re-
quest to a scan target triggers a response if the request does not explicitly suppress the response.
Two response types are possible, either a positive or a negative one.

If a negative response is received, the state of a scan target is not changed. The return code of
negative responses can be used to identify the reason why a specific request failed. This return code
can leak information about the possible attack surface.

The reception of a positive response indicates the successful execution of the request. If the
scan algorithm, for example, has sent a DiagnosticSessionControl request, it can identify a state
change of the scan target from a positive response. Furthermore, the scan algorithm now knows
the previous state, the new state, and the corresponding transition function to trigger this state
change. The transition function, in this case, is simply a DiagnosticSessionControl request with
a specific parameter. The algorithm can append this new state onto the previous state in its internal
system state graph. On the next scan iteration, the scan target can be set into the new state by
concatenating all transition functions necessary to enter the desired system state.

Security Access Testing System states which granted security access are crucial for attack surface
evaluations. SecurityAccess routines in diagnostic protocols are used to grant further privileges
to repair shop testers during ECU development or vehicle production. These privileges may open
new attack surfaces once they are gained. Through manual reverse engineering steps on the inves-
tigated ECUs, multiple security access algorithms could be obtained. The actual implementations
of the analyzed security access functions are entirely different between the individual OEMs. A
categorization of the reverse-engineered security access functions delivered the following groups:

– Simple Arithmetic Operations
This group contains security access algorithms based on single arithmetic operations such as
XOR, NOT, or ADD with a fixed value. Examples are given by the work of Dürrwang et al.
and Nie et al. [6,17].

key = ¬seed (1)

– Mathematical Operations
The security access mechanism of one analyzed OEM relies on complex mathematical opera-
tions. To obtain a key for this ECU, one needs to know five different numeric values which act
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as a shared secret. With this secret, a random seed has to be multiplied in different ways to
obtain a valid key. An example operation for this group can be the following:

key = (seed ∗ secret1 + secret2)
⊕

(seed ∗ secret3 + secret4)
⊕

secret5 (2)

– Proprietary XOR-Shift-Loop
Security access algorithms for this group were analyzed in-depth by Van den Herrewegen et al.
[9]. Their publication provides examples as well as a cryptographic analysis.

– Cryptographic Operations
One analyzed OEM relies on cryptographic authentication mechanisms for its security access
algorithms. The following equation shows an example:

key = RSAsign(MD5(seed | salt), private key) (3)

Each group of security access functions has a different probability of being broken over an
ECUs lifetime. The implemented scanner algorithm can automatically test known or trivial security
access functions. If a positive response is received after sending a key to the ECU under test, this
SecurityAccess routine is stored as a transition function to enter this new state with granted
security access. Additionally, this new state gets inserted into the system state graph of the scanner
algorithm.

Time-Dependent State Changes The TesterPresent command has a time-dependent return
function implemented. After a TesterPresent request is acknowledged from a scan target, the
scan target remains in this state for a fixed amount of time. After five seconds, the scan target
automatically leaves the TesterPresent state, which also involves a return to the default diagnostic
session.

Summary The explained properties of system state graphs in automotive diagnostic protocols can
be defined as follows:

Definition 1. A system state machine M is a directed graph (S,E,∆), with the following proper-
ties:

– S = {s0, s1, . . . , sn} is a finite set of nodes, each node represents a system state.
– The state s0 is defined as the default system state after the power-up of the system.
– E = {(v, w) ∈ S2} is a set of ordered pairs of nodes, called directed edges.
– ∆ = {δ0, δ1, . . . , δk}, δk : S2 7→ S, δk(v, w) = z is a set of transitions functions for each e ∈ E.
– For each state si ∈ S \ {s0} a reset function δk ∈ ∆, δk(si, s0) = s0 is given through the power

cycle of the system.

5.3 Exploration Algorithm for Reverse-Engineering of System States

The scan algorithm for application layer protocol scans consists of two different parts. For every
diagnostic service, a unique module with service-specific knowledge exists. This module performs
the enumeration of all sub-functions and can evaluate responses. This module will be called “Enu-
merator”. Enumerators store all scan results of a specific service and map the results to a state.
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Furthermore, an Enumerator keeps track of which states it has been executed. This is necessary to
know if an Enumerator has finished its scan of a service.

Algorithm 1: Enumerator

Data: current system state si
forall sub-function in service do

test sub-function;
store result;
evaluate return code;
if state changed then

create sj , δk(si, sj) = sj ;
add sj , δk(si, sj) to M ;
return;

end

end
si finished;
return;

Algorithm 2: Scanner

forall en in enumerators do
forall si in S do

if en finished for si then
continue;

end
reset target to s0;
call δk(s0, si);
if not entered si then

continue;
end
execute en(si);

end

end

The second part is called Scanner, which stores a scan target’s system state machine as a di-
rected graph with transition functions. Through a reset function, the Scanner can reliably reset
the scan target on each scan iteration. After each reset, the Scanner computes all known states
of the scan target from its system state graph. The shortest path algorithm delivers the minimal
transitions necessary to set the scan target into the desired state. If a system state manipulation
were successful, the next, not finished enumerator would be executed for the desired state.

If an Enumerator detects a state modification of the scan target through return code evaluation,
a new state is inserted into the Scanner’s system state graph. The last operation performed on the
target is identified as a transition function to enter this new state. Now the Scanner knows a new
system state of the scan target and the necessary transition function to set the scan target into this
state. Every other enumerator will be executed in this newly identified system state on the next
iteration of the Scanner.

The separation in Enumerator and Scanner objects opens the algorithm for additions and cus-
tomization. If one focuses on ECUs from a specific OEM, he might have access to knowledge under
Non-Disclosure Agreements (NDAs). SecurityAccess algorithms are one example of such knowl-
edge. The object-oriented way in which the scanner software is written allows the implementation
of custom Enumerators. This enables researchers to implement, e.g., custom SecurityAccess al-
gorithms into a new Enumerator class. A proprietary SecurityAccess enumerator object can be
provided to the Scanner, which increases the scan depth and will add further states to the system
state graph.

6 The Attack Surface Model for Automotive Diagnostic Protocols

Combining the previously introduced threat definitions (table 2) with the proposed system state
machine (definition 1) generates an extensive attack surface model for automotive diagnostic proto-
cols. The Scanner can measure all possible threats for each system state while reverse-engineering
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the system state machine. This allows performing threat estimations concerning the system state
machine. Furthermore, threat evolution over a system’s lifetime can be evaluated through Cumu-
lative Distribution Functions (CDF s).

Definition 2. An attack surface model (M,R) for an automotive diagnostic protocol implementa-
tion contains:

– A system state machine M of a scanned ECU.
– A set R of threat measurements, in which every threat measurement is defined as a tuple rk =

(f, S, ser, sub), that contains a flaw type f according to table 2, a set of system states S =
{si, sj , ... | si, sj ∈ M}, the service identifier ser and the sub-function identifier sub according
to the protocol specification.

This definition of a attack surface model allows evaluation of the exploitation risk over an ECU’s
lifetime and, therefore, for an entire vehicle. Just one addition to the definitions of the system state
machine M is required. In the performed scans on real-world ECUs, multiple different types of
transition functions in the reverse-engineered system state machines were found, for example, reset
of an ECU, change of the diagnostic session, or security access authentication. Only security ac-
cess transitions rely on authentication mechanisms that are relevant for analysis over the system’s
lifetime. Let X be a function that describes the time it takes until a security access algorithm is
successfully attacked. P(X ≤ t) denotes the probability that a successful attack occurs within time
t. Call F : R 7→ [0, 1] given by F (t) = P(x ≤ t) the CDF of X. To evaluate systems with more
than one security access function, the following operations are required in this model. Let F1(t)
and F2(t) be two CDF s for independent random variables, the operations summation, maximum

and minimum are defined as follows: Fsum(t) =
∫ t

0
F1(t − x)F2(x)dx, Fmax(t) = F1(t)F2(t), and

Fmin(t) = 1 − (1 − F1(t))(1 − F2(t)) [1]. Every transition function δk(v, w) in the system state
machine can be extended with a CDF to describe this transition’s behavior over time.

Defining a proper CDF for each security access algorithm is a challenging task on its own.
Furthermore, the CDF is also dependant on the implemented mitigation on a system level. Some
analyzed security access implementations, for example, are vulnerable to brute force attacks; others
not. An in-depth analysis of every individual target is required to obtain a suitable CDF . Addi-
tionally, a comprehensive analysis to identify a CDF for a security access algorithm also includes
studying an OEMs key management in repair shops, factories, and suppliers’ production sites. The
benefit of the proposed model lies in the simplicity and coverage of its analysis. One, interested
in the system’s security over a lifetime, only needs to identify one proper CDF for each security
access algorithm in his system. All further analysis can then be performed automatically, based on
the gathered attack surface model resulting from the automated scan. The necessary steps are the
following:

1. Let B be a directed graph (V,E,∆). B is built from M by the following steps:

– V is a finite set of vertices obtained from the following operations:
• From a given system state machine M , remove all edges ek with a security access

transition function δk ∈ ∆. This returns a set V of n disjoint sub-graphs. Every sub-
graph vk ∈ V contains multiple system states vk = {si, sj , . . . | si, sj ∈M}.
• E = {(w, z) ∈ V 2} is defined as set of ordered pairs of vertices. In this case, all security

access transitions.
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• ∆ is a set of CDF s, one for each edge ek ∈ E. The sub-graph v0 ∈ V , which contains
the system state s0 ∈M obtains the CDF : F (t) = 1, since all system states sk in this
sub-graph v0 are immediately reachable.

– Let Fi be the CDF of the sub-graph vi.

– Vertices vk ∈ V \{v0} get a CDF defined by F (t) =
∑
Fi(t) for every Fi in a shortest path

from v0 to vk.

– Since every system state sk ∈ M is contained in only one sub-graph vk ∈ B, the CDF of
the sub-graph vk also applies for all system state sk ∈ vk.

2. Each threat tuple rk can contain multiple system states in its set S. The CDF of a threat tuple
is defined by CDF : Fmax(t) =

∏
Fi(t), ∀Fi assigned to each system state sk ∈ S.

3. Define a suitable CDF for each security access algorithm.

4. The behavior over time of all measured threats, reachable over security access functions, can
now be modeled by the corresponding CDF .

Additionally, for security investigations, it is rewarding to identify possible threats that are only
present in system states, reachable through a security access transition. OEMs protect these services
and sub-functions by security access algorithms which indicates privileged functionalities.

7 Hardware Architecture and Test Setup

As part of the conducted research, a cheap and scalable test setup to perform automated scans
on different ECUs was built. Raspberry Pi 4B single board computers, equipped with two CAN
interfaces for communication and a relay to control the ECUs power supply, were used as the
hardware interface to ECUs under test. The Raspberry Pis are operated with the latest Raspbian
OS. For ISO-TP support, the can-isotp Linux kernel module was used [8]. No modifications to the
Operating System (OS) were made. All timing measurements were performed from user-land Python
applications. For scans performed over DoIP or HSFZ, an Ethernet connection and standard User
Datagram Protocol (UDP) and Transmission Datagram Protocol (TCP) sockets were sufficient. 13
different ECUs (shown in table 4) from five different OEMs were installed into hardware in the loop
test setup to verify the OEM independence of the implemented scan algorithm. This setup contains
ECUs from Daimler AG, Tesla Inc., Opel Automobile GmbH, Volkswagen AG, and BMW AG. On
every investigated ECU, the following manual installation steps were required:

1. The power supply connector pins of an ECU had to be identified.

2. CAN or DoIP interface pins needed to be identified.

3. Some ECUs require periodic keep-alive CAN messages to be sent or Ethernet activation
line signals applied.

8 Evaluations

This section discusses gathered results from the analyzed ECUs as well as the application of our
proposed attack surface model over a systems lifetime.
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Table 4. Overview of investigated ECUs. A label E{x} is assigned to each ECU for later reference.

Ref. OEM ECU Type Part No.

E1 BMW AG Gateway ECU LR-01
E2 BMW AG Body Domain Controller (BDC) LR-01
E3 BMW AG Gateway ECU 9243211
E4 BMW AG Telematics Control Unit (TCU) 9342881
E5 VW AG Body Control Module (BCM) 5WA93
E6 VW AG Dashboard ECU 5G0920961A
E7 Opel GmbH Airbag ECU 13575447
E8 Opel GmbH BCM 13588153
E9 Tesla Inc. Airbag ECU 1031642
E10 Daimler AG Gateway ECU 1679012003
E11 VW AG Antenna ECU AU651
E12 VW AG Gateway ECU 80B907468B
E13 VW AG Airbag ECU T15XX164919

Table 5. Overview of reverse-engineered system state machine complexities for all analyzed ECUs. Row
Edges does not contain the reset edges through the power cycle. Row Security Access (SA) indicates the
number of different security access algorithms that were reverse-engineered.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13

Edges 15 7 9 7 9 23 23 22 13 19 11 32 5
Nodes 9 5 5 5 5 6 10 8 6 8 6 11 3

SA 3 1 2 1 0 0 1 1 1 2 0 2 0

8.1 Automated System State Reverse Engineering

The presented scan algorithm was able to identify multiple different system states for each tested
ECU. All ECUs showed individual system state machines, even if the same manufacturer developed
them. As an example, figure 2 shows two different system state machines with all transitions. This
gives an impression of how different system state graphs can be. Table 5 provides a comprehensive
overview of the complexity of all reverse-engineered system state graphs and indicates the number
of security access algorithms known from the scanner utility.

8.2 Detection of Bootloaders

Five tested ECUs showed a significant behavior change in the measured communication timings on
different injected system states. Through manual reverse engineering, it could be proven that these
ECUs can enter the bootloader if the correct sequence of commands is sent. ECUs which implement
the GMLAN protocol showed this change after a RequestDownload service request. ECUs with UDS
support could be forced into the bootloader through a successful DiagnosticSessionControl com-
mand with DiagnosticSessionType=ProgrammingSession as the parameter. Other ECUs of the
presented test setup required additional proprietary commands or security access authentication to
unlock the bootloader mode.
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Fig. 2. Left: Automatically reverse-engineered system state graph of ECU E1. Right: Automatically
reverse-engineered system state graph of ECU E7. Both: Reset through power cycle is represented by
the red dotted lines. Blue lines indicate Security Access (SA) authentication. Diagnostic Session Control
(DSC) transitions are shown by the green lines. TP stands for Tester Present and REQDL for Request
Download.

Table 6. Average response time for negative responses and number of samples. Timings of five different
ECUs in the default and the bootloader state.

Default Bootloader

E1 0.89 ms, 65k 0.78 ms, 65k
E7 20.5 ms, 1.9k 8.18 ms, 0.7k
E8 7.36 ms, 7.6k 0.60 ms, 2.4k
E10 6.00 ms, 65k 0.61 ms, 65k
E12 1.16 ms, 65k 0.73 ms, 65k
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Fig. 3. Automatically reverse-engineered system state graph for ECU E10 without reset transitions. Colors
and abbreviations are identical to figure 2. Clusters indicate sub-graphs with unique security access levels.

Negative response messages have a fixed size and fit in a single CAN frame. Therefore the timings
of negative responses, shown in table 6, are more comparable to positive responses’ timings. The
ECUs E1, E8, E10, and E12 communicate with 500 kbit/s CAN speed, E7 with 33.3 kbit/s CAN
speed. This explains the higher average response times of E7. The measurements in table 6 show
a significant change in an ECUs communication behavior, caused by the execution of different
firmware. Since the bootloader has a much smaller codebase than the application firmware, it is
reasonable that the response times significantly decrease. A simple average computation is sufficient
to detect the execution of different firmware automatically. The fact that a bootloader firmware
is often developed by a different software supplier and sold as a product implies that different
ECUs from different OEMs can have an identical bootloader firmware. This leads to the possibility
of common vulnerabilities, respectively, an identical attack surface, between different ECUs from
different OEMs.

8.3 Attack Surface Increase

The scan results of ECU E10 in table 7 are discussed, and a more general overview of the results
of all tested ECUs is provided in table 8 to demonstrate that the proposed scan algorithm can au-
tomatically explore an increased attack surface on diagnostic protocols. Figure 3 shows all system
states of ECU E10 with its possible transitions. For each system state, table 7 provides detailed
measurements. These measurements are grouped by their possible flaw type from all executable ser-
vices per individual system state. All flaw types, which count the number of available sub-functions
as measurand, accumulate all positive responses and negative responses with the response code
Incorrect message length or invalid format (0x13). This negative response code indicates
the availability of a sub-function, the previously sent request does not match the required format,
which is caused by the proprietary implementations of sub-functions. Nevertheless, once this nega-
tive response code is received, some manual reverse engineering or automated request mutation is
required to trigger this sub-function successfully. Table 7 clearly shows that each state supports a
different set of services and sub-functions, which leads to different attack surfaces. To further un-
derline this statement, table 8 provides an overview of the attack surface of all investigated ECUs.
For readability, only two states per ECU are shown. State s0 indicates the default state of an ECU.
Row S stands for the set of all automatically explored system states through the scanner algorithm.
In most cases, the measured values and, therefore, the attack surface increases.

The scanner algorithm was able to identify the necessary system state for software updates on
seven different ECUs, indicated by the upload column. Another remarkable identification is the
increased infoleak on E7 and E8. During these scans, it was possible to dump the ECU firmware by
abusing the ReadMemoryByAddress service automatically. For all tested ECUs, except E4 and E9,
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Table 7. Detailed threat model for ECU E10.

State buf dos-flood infoleak int-overflow phys rand/pass/crypt

Def. Session s0 0 6 13958 0 2 0
s0, TesterPresent 0 6 16133 0 2 0
Diag. Session 6392 81 16270 6392 169 2
Diag. Session, Sec. level 1 6405 81 16270 6405 171 2
Diag. Session, Sec. level 97 6405 81 16270 6405 171 2
Prog. Session 2 9 13961 2 6 1
Prog. Session, Sec. level 1 6407 83 16272 6407 174 2
Prog. Session, Sec. level 97 6407 83 16270 6407 174 3

the number of sub-functions that could trigger physical actions (column phys) increased system
states’ injection.

8.4 Threats over Time Evaluation

As a final evaluation, the proposed attack surface model’s capabilities for lifetime security analysis
will be discussed. ECU E1 supports three different security access levels. First, the protected attack
surface per security access level is analyzed. All threat tuples r ∈ R with a set of system states S
only containing system states reachable through a security access transition are selected. Table 9
shows that security access level 17 is dedicated to the software update service. Security levels 3 and
97 protect sub-functions with the possibility to trigger physical actions and protect information. A
CDF to model the time until a security access function is successfully attacked can be obtained
either from an analysis of historical data or on the basis of expert opinion [1]. For this example
evaluation, the exponential distribution exp(1/t) is chosen to model the meantime t until a successful
attack. Assuming that each security level has an individual resistance against attacks expressed by
exponential distribution functions with different success rates. A unit less value for t is used, since
the objective is only a demonstration of the models capabilities. A CDF for a real world system
would contain a proper unit for t.

Figure 4 shows the individual CDF s for each security access level and their application to the
measured attack surface. This estimates the attack surface over 20 time-units t, supposed that the
meantime until a security access algorithm is broken, behaves like the proposed CDF s. For example,
let F3(t) and F97(t) be the CDF s to model the meantime until security level 3, respectively security
level 97, will be available for an attacker. The expected attack surface for a dos-flood at a certain
time t is given from Fdf (t) = 4 ·F3(t)+1 ·F97(t). Multipliers are obtained from the measurements in
table 9. If a more realistic evaluation is required, one can construct a detailed attack tree for each
security access algorithm and derive a CDF . Besides, it should be noted that a successful attack
of the upload attack surface on the latest ECUs requires a further vulnerability to leverage the
firmware signature mechanism, which results in an additional attack step. Nevertheless, previously
referenced real-world attacks show that not every ECU implements firmware signatures.

9 Conclusion & Further Work

Our paper shows the capabilities of automated security scans in automotive diagnostic protocols,
in combination with a graph-based model for attack surface exploration and threat estimation. We
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Table 8. Overview of identified potential attack surface per ECU. Rows with state s0 stands for default
session, rows with state S describes the combination of all identified system states.

ECU States buf dos-flood infoleak int-overflow phys rand/pass/crypt upload

s0 443 52 1780 443 55 0 0
E1

S ±0 +23 +280 ±0 +21 +3 +1
s0 17 7 255 17 8 0 0

E2
S +17 +2 ±0 +17 +1 +1 +1
s0 375 19 2984 375 24 0 0

E3
S ±0 +17 +5 ±0 +15 +2 0
s0 0 6 666 0 4 0 0

E4
S ±0 +1 ±0 ±0 ±0 +1 +1
s0 101 14 8157 101 20 0 0

E5
S +68 +37 +26 +68 +50 ±0 ±0
s0 0 4 1221 0 0 0 0

E6
S +1 +10 +859 +1 +20 +2 ±0
s0 0 3 747 0 0 0 0

E7
S +20 ±0 +394k +20 +4 +1 +1
s0 145 3 2.2M 145 43 0 0

E8
S +26 ±0 +12.6M +26 +4 +1 +1
s0 0 2 0 0 0 0 0

E9
S ±0 +1 +2559 ±0 ±0 +1 +1
s0 0 6 13958 0 2 0 0

E10
S +6407 +78 +2313 +6407 +172 +3 ±0
s0 4 5 3637 4 2 0 0

E11
S +5 +4 +1 +5 +7 +1 ±0
s0 0 8 30001 0 6 0 0

E12
S +35 +50 +6709 +35 +56 +2 +1
s0 24 5 706 24 5 0 0

E13
S ±0 +2 +420 ±0 +2 +1 ±0

Table 9. Attack surface metrics protected by individual security access levels for ECU E1.

Security level dos-flood infoleak phys upload

3 4 1 4 0
17 0 0 0 1
97 1 146 1 0

could show that ECUs have a different attack surface, depending on their internal system state.
Active automata reverse engineering techniques enable the proposed scan algorithm to automati-
cally discover system states during a black-box scan. Through active detection and stimulation of
system states, the algorithm can perform a more comprehensive analysis of an ECUs or a vehicle’s
attack surface. The introduced metric assists security researchers to rate the possible attack sur-
faces of ECUs and allows them to analyze their evolution over a lifetime. Additionally, the attack
surface model can point researchers or penetration testers to safety- and security-critical services.
With published open-source tools, we want to help developers to speed up automated attack surface
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Fig. 4. Left: Three CDF s of different exponential distribution functions to model the meantime t until
a successful attack of the corresponding security access algorithm for three different security access levels.
Right: Evaluation of the attack surface over time t for measured attack surfaces protected by different
security access algorithms. Both: The x-axis indicates the time t, the y-axis shows the expected value of
the attack surface metric. For demonstrational purposes the x-axis is unitless since no specific time-unit
was defined by the chosen CDFs.

discovery for automotive diagnostic protocols to lower the attack surface of future vehicles.

Our scan algorithm can be used to collect detailed information about the implementation of a
diagnostic protocol of an ECU. This could be extended to enable device and firmware fingerprint-
ing during a scan. Common vulnerabilities in automotive systems could automatically be tested
through custom Enumerator objects. Our open-source tool provides a basis for further automated
protocol scans in automotive networks. Furthermore, a reverse-engineered system state machine
could potentially be used to increase the efficiency of protocol fuzzers.

Availability

We provide all our tools for application layer scans in automotive networks as part of the open-
source software project Scapy [3]. Our work aims to support the automotive security community to
solve future security challenges.
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Acronyms

BCM Body Control Module. 11

BDC Body Domain Controller. 11

CAN Controller Area Network. 2–4, 10, 13

CDF Cumulative Distribution Function. 9, 10, 14

CVE Common Vulnerabilities and Exposures. 3

DoIP Diagnostic over IP. 3, 10

DoS Denial of Service. 4

ECU Electronic Control Unit. 1–16

GMLAN General Motor Local Area Network. 3–6, 11

HSFZ High-Speed Car Access (High-Speed-Fahrzeug-Zugang). 3, 10

ISO International Organization for Standardization. 1

ISO-TP Transport Layer. 2, 3, 10

NDA Non-Disclosure Agreement. 8

OBD On Board Diagnostic. 3

OEM Original Equipment Manufacturer. 1, 5–10, 13

OS Operating System. 10

TCP Transmission Datagram Protocol. 10

TCU Telematics Control Unit. 11

TLS Transport Layer Security. 2

TOCTOU time-of-check to time-of-use. 4

UDP User Datagram Protocol. 10

UDS Unified Diagnostic Service. 2, 3, 5, 6, 11

UNECE United Nations Economic Commission for Europe. 1

VIN Vehicle Identification Number. 4
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A Appendix

A.1 UDS and GMLAN Service Request Identifiers

Table 10. List of hexadecimal service identifiers and according service names of UDS and GMLAN.

UDS Id. UDS Service Name GMLAN Id. GMLAN Service Name

0x04 ClearDiagnosticInformation
0x10 DiagnosticSessionControl 0x10 InitiateDiagnosticOperation
0x11 ECUReset

0x12 ReadFailureRecordData
0x14 ClearDiagnosticInformation
0x19 ReadDTCInformation

0x1A ReadDataByIdentifier
0x22 ReadDataByIdentifier 0x22 ReadDataByParameterIdentifier
0x23 ReadMemoryByAddress 0x23 ReadMemoryByAddress
0x24 ReadScalingDataByIdentifier
0x27 SecurityAccess 0x27 SecurityAccess
0x28 CommunicationControl 0x28 DisableNormalCommunication
0x2A ReadDataPeriodicIdentifier
0x2C DynamicallyDefineDataIdentifier 0x2C DynamicallyDefineMessage

0x2D DefinePIDByAddress
0x2E WriteDataByIdentifier
0x2F InputOutputControlByIdentifier
0x31 RoutineControl
0x34 RequestDownload 0x34 RequestDownload
0x35 RequestUpload
0x36 TransferData 0x36 TransferData
0x37 RequestTransferExit
0x38 RequestFileTransfer

0x3B WriteDataByIdentifier
0x3D WriteMemoryByAddress
0x3E TesterPresent 0x3E TesterPresent
0x83 AccessTimingParameter
0x84 SecuredDataTransmission
0x85 ControlDTCSetting
0x87 LinkControl

0xA2 ReportProgrammingState
0xA5 ProgrammingMode
0xA9 ReadDiagnosticInformation
0xAA ReadDataByPacketIdentifier
0xAE DeviceControl
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