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Abstract: The smooth transition between stable, Talbot-effect-dominated and modulationally
unstable nonlinear optical beam propagation is described as the superposition of oscillating,
growing and decaying eigenmodes of the common linearized theory of modulation instability.
The saturation of the instability in form of breather maxima is embedded between eigenmode
growth and decay. This explains well the changes of beam characteristics when the input intensity
increases in experiments on modulation instability and breather excitation in spatial-spatial
experimental platforms. An increased accuracy of instability gain measurements, a variety of
interesting nonlinear beam scenarios and a more selective and well-directed breather excitation
are demonstrated experimentally.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Pulse propagation in optical fibers and one-dimensional (1D) beam propagation, for example
in an optical slab waveguide, are theoretically described by the nonlinear Schrödinger equation
(NLSE)

∂u
∂z

− iβ2
∂2u
∂x2 = −iγ |u|2u. (1)

z is the propagation distance along the fiber or the waveguide. For pulse propagation x is the
time and for beam propagation x is the transverse coordinate across the beam. β2 stands for
dispersion or diffraction. |u|2 is proportional to the pulse envelope or the beam shape and γ is
the nonlinearity. Note that we use a form of the NLSE that is consistent with our notation in
the last 35 years and which is standard in electrical engineering with the Ansatz ei(ωt−βz) [1].
The more familiar notation in physics is obtained by the conjugate complex of the expressions.
A stable continuous wave (cw) solution of Eq. (1) at low intensity becomes unstable above
a certain intensity level. The instability is well understood and investigated in the theory of
modulation instability (MI) where the evolution of a small additive sinusoidal modulation on the
cw solution is described in a linearized approximation [2,3]. In optical systems noise generated
MI was observed as beam breakup from the early days of nonlinear optics. The first temporal
modulation-initiated MI experiments demonstrated the generation of — at the time not easy to
produce — trains of short pulses with high repetition rates from weakly modulated cw input [4].
MI gain measurements were performed also with small modulation injection [5].

Shortly after the theory of MI, exact analytical solutions extending and containing the MI
scenario were reported [6]. For experimental investigations two doubly periodic breather families
[6,7], the Akhmediev breather with infinite period as separatrix between them, and modifications
of these solutions like moving breathers (with nonzero velocity) [8] and higher-order breathers
[9] became the most important. During the last ten years seeded temporal breathers in pulses on
optical fibers [10–12] and in deep water waves [7,13] were excited. MI-induced formation of
arrays of spatial solitons in a planar waveguide was the first observation of the growing part of a
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spatial breather [14]. The first complete cycles of breathers in nonlinear beam propagation have
been reported very recently [15,16].

The importance of the correct initial conditions was recognized. While in the first experiments
any convenient modulation was used [4,5,10,11], later the importance of the actual phase of the
modulation was considered. The dynamic evolution of the two breather families, selectively
launched by phase adjustment, has been characterized in very good detail and agreement to theory
[12,17]. With special modulation schemes and phase control it was also possible to excite more
sophisticated breathers like higher-order breathers [18] and moving breathers for investigation of
breather interactions [19–21].

In a water tank it is straightforward to observe the evolution of breather dynamics with
amplitude and phase along the propagation direction. In optics the output after different fiber
lengths provides information on the dynamics along the propagation distance [21–23]. In
the newest fiber optics experiments [12,17] the dynamics along the propagation became also
accessible by use of a kind of optical time domain reflectometer. It could be summarized that fiber
optics and water tank experiments demonstrated the most important characteristics of breathers
pretty well and completely. The first comprehensive summaries are found already in textbooks
[24].

This is different yet for the still very new platforms for breathers in spatial nonlinear beam
propagation. Till now it is not possible to observe the breather dynamics directly inside the
propagation medium without cutting back the sample, as done in older fiber experiments [11].
In bulk this may not change, in waveguides or nematic crystals there is the option to observe
the evolution from the top of the sample [25]. However, a powerful alternative to characterize
nonlinear beam propagation without cutting back the sample is the observation of the output
beam dependent on input intensity. First used in older fiber experiments [10,26], the composition
of the output in normalized intensity scans was the presentation form of the first spatial breathers
[15,16]. These intensity-scan figures do not exactly show the dynamics of one specific breather
or MI scenario because some parameters change with intensity. On the other hand they document
all facets of MI and, beyond the limits of MI, the breather regime by showing the whole
intensity-dependent characteristics of nonlinear beam propagation in one picture. In the — so far
not much highlighted — low-intensity end of the intensity scans linear and weakly-nonlinear
beam propagation is shown as well as the transition from weakly- to strongly-nonlinear waves
at the other end. Figure 1 shows two examples of measured intensity scans with completely
different low- and medium-intensity scenarios and the transition through MI to highly-nonlinear
breather beams. While Fig. 1(a) resembles monotone growing modulation as expected from MI,
the decay of the modulation with increasing input intensity in Fig. 1(b) indicates a more curious
behavior.

Fig. 1. Normalized output intensity distribution Iout(x) dependent on the peak input intensity
IP: (a) modulation period 300 µm and contrast 0.24, γ = 0.35 × 10−6 1

m ; (b) modulation
period 133 µm and contrast 0.11, γ = 0.58 × 10−6 1

m . Parameters are explained in the text.



Research Article Vol. 29, No. 10 / 10 May 2021 / Optics Express 15832

In this article we explain the details of this intensity-dependent beam transformation and
the influence of the input on MI and the evolving breathers. The work was initiated by our
experiments on breathers in nonlinear beam propagation in slab waveguides. It summarizes those
characteristics of breathers that we found important for performing and interpreting breather
experiments. As a result, an increased accuracy of instability gain measurements and a more
selective and well-directed breather excitation could be demonstrated experimentally.

2. Nonlinear beams, theoretical reminiscence

In order to investigate MI and breathers experimentally it is advantageous to seed the cw solution
u(z) =

√
Pe−iγPz of Eq. (1) at the input z = 0 with a weak modulation ε(x). The unit-less P times a

unit intensity p0 = 1 W
m of a normalized slab waveguide mode is the intensity of the unmodulated

1D beam. The most general sinusoidal modulation is

ε(x) = εse−iωmx + εaeiωmx. (2)

For small modulation amplitudes the modulation can be considered a perturbation of the cw
solution u(x, z) = (

√
P + ε(x, z))e−iγPz. The well known linearization from MI theory yields a

linear differential equation system for the evolution of the two perturbation contributions εs(z)
and εa(z). The two eigenvalues

λA,B = ±

√︂
β2

2ω
4
m − 2|β2 |ω

2
mγP (3)

with the corresponding eigenvectors

⎛⎜⎝
e1A,B

e2A,B

⎞⎟⎠ = ⎛⎜⎝
1

−β2ω
2
m−γP+λA/B
γP

⎞⎟⎠ (4)

determine the evolution of the perturbation in z direction

⎛⎜⎝
εs(z)

ε∗a (z)
⎞⎟⎠ = A ⎛⎜⎝

e1A

e2A

⎞⎟⎠ e−iλAz + B ⎛⎜⎝
e1B

e2B

⎞⎟⎠ e−iλBz. (5)

Note that there are always two eigenvectors that are equally important, even though in the MI
literature mostly only the growing one is considered. With the perturbation evolution Eq. (5) and
the eigenvectors in Eq. (4) the input modulation evolves in z direction as

ε(x, z) =
[︁
Ae−iλAz + Be−iλBz]︁ e−iωmx+

+

[︃
A
−β2ω

2
m − γP + λA

γP
e−iλAz + B

−β2ω
2
m − γP + λB

γP
e−iλBz

]︃∗
eiωmx.

(6)

For beam description the diffraction term β2 = − 1
2kwv

is always negative and proportional to
the inverse of the wavevector kwv =

2πn
λ0

with the vacuum wavelength λ0 and refractive index n.
The spatial modulation frequency ωm =

2π
X is given by the modulation period X.

2.1. Talbot effect and weakly-nonlinear beams

For small intensity-nonlinearity products 2γP< |β2 |ω
2
m the eigenvalues in Eq. (3) are real numbers

and the modulation-induced perturbation oscillates along z. The system is stable and the beam
pattern resembles the linear Talbot effect with a simple nonlinear modification of the periodicity.
A few examples of beam intensities calculated with Eq. (6) from the perturbation theory are
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shown in Fig. 2. The used parameters yield beam patterns similar to what we discuss later in the
experimental section. Figure 2(a) shows a typical linear Talbot effect pattern with a symmetric
two-sideband input modulation εs = εa =

η
2 eiϕ . Experimentally this corresponds to a pump

propagation along z plus two symmetrically against the z axis tilted beams with equal and weaker
amplitudes, as it was implemented in [15]. From the input modulation ε(x, z = 0) = ηeiϕ cos(ωmx)
the integration constants in Eq. (5) A = η

4λA
[e−iϕγP + eiϕ(β2ω

2
m + γP + λA)] and B = η

2 eiϕ − A
are calculated and Eq. (6) reduces to the simpler form

ε(x, z) = (Ae−iλAz + BeiλAz)2 cos(ωmx). (7)

The periodicity Z = 2π
λA

of the Talbot pattern in propagation direction is given by the power-
dependent eigenvalue λA in Eq. (3). The smallest periodicity ZT =

2π
|β2 |ω

2
m

(Talbot periodicity) is
obtained for a negligible intensity-nonlinearity product. With the phase φ the input modulation
is changed from pure amplitude modulation (φ = 0 and π) to approximate frequency modulation
(φ = ± π

2 ). A phase variation shifts the pattern in z direction and the maximum modulation
amplitude changes. In Fig. 2(b) we observe the nonlinear modification of the Talbot effect.
The pattern periodicity Z increases with decreasing λA for growing nonlinearity. This behavior
continues till for 2γP = |β2 |ω

2
m the eigenvalue becomes zero and Z becomes infinite, i.e. the input

modulation does not change at all as shown in Fig. 2(c). However, the effect is cleanly observed
for small phases φ only when Eq. (7) in the limiting form η cos(λAz) cos(ωmx) represents a cosine
in z with infinity period and maximum at z = 0. For φ ≠ 0 and P approaching Pc =

|β2 |ω
2
m

2γ the
coefficient A is approximated by A = −iηγP sinϕ

2λA
with a growing absolute value |A| and B ⇒ A∗.

Therefore, the modulation evolution in Eq. (7) simplifies to

ε(x, z) = ∓4|A| sin(λAz) cos(ωmx) = −
2ηγP sin φ

λA
sin(λAz) cos(ωmx), (8)

with period Z and amplitude 4|A| going to infinity, now with a completely different behavior.
At the input close to the zero of the sine the modulation grows linearly for small z<<Z. This
applies (for real ε) also to the modulation of the intensity |

√
P + ε |2 ≈ P + 2

√
Pε which is also

proportional to ε as long as ε2<<2
√

P|ε |. As an example, Fig. 2(d) shows the strong difference
to Fig. 2(c) when the phase φ is changed from 0 to π

4 , with otherwise same parameters. The
phase φ determines a fine shift of the zero of the sine close to z = 0 and influences the modulation
amplitude with the factor sin φ. However, for a correct reproduction of the region close to z = 0
the approximation Eq. (8) is too rough.

Fig. 2. Evolution of a symmetric two-sideband x-modulated input intensity along the
propagation direction: (a) Talbot effect, negligible nonlinearity γP = 0.217 1

m , φ = 0;
(b) γP = 25.0 1

m , φ = 0; (c) γP = 27.25 1
m ⪅ γPc, φ = 0; (d) γP = 27.25 1

m , φ = π
4 .

Parameters similar to our experimental conditions β2 = −47.265×10−9 m and ωm =
2π

185µm .

Figure 3 shows not so typical Talbot effect patterns with a one-sideband input modulation
ε(x, z = 0) = ηeiϕeiωmx. Experimentally this corresponds to a pump propagating along z plus
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one weaker beam that is tilted against the z axis, as it was used for MI measurements in [5] and
breather excitations in [16]. The phase φ introduces now only a transverse shift along x and is set
to φ = 0 without loss of generality. With the integration constants A = ηγP

2λA
and B = −A Eq. (6)

reduces for the one-sideband modulation and for a negligible intensity-nonlinearity product to

ε(x, z) = ηei(ωmx+ |β2 |ω
2
mz). (9)

The input modulation is shifted increasingly to the left with increasing z. The disturbance in
Eq. (9) creates the interference fringe pattern of two tilted plane waves as shown in Fig. 3(a).
The angle between the propagating fringe pattern and the z axis is arctan(|β2 |ωm) which is half
the tilt angle of the weak modulation beam. After each Talbot periodicity the input pattern
repeats. Figures 3(b) and (c) show the nonlinear modification of the tilted fringe pattern for larger
intensity. The eigenvalue λA decreases, the recurrence periodicity Z = 2π

λA
increases. After a

short distance of adjusting and locking the position of the fringes, self-focused structures develop
which propagate more parallel to the z axis. Further on, the self-focused structures decay and
the fringe pattern starts moving again till the next not-moving self-focused structure develops.
Because the self-focused fringe portions propagate parallel to the z-axis, the whole fringe pattern
moves step-like with an average shift rate corresponding to the nonlinearly increased periodicity
Z. When the intensity approaches Pc =

|β2 |ω
2
m

2γ , Eq. (6) takes the form

ε(x, z) = η cos(λAz)eiωmx −
2ηγP
λA

sin(λAz) sin(ωmx). (10)

For growing z the first term can be neglected and the dominant second term describes exactly
the same field evolution that we found in Eq. (8) for φ = π

2 . A shift of the fringe pattern by a
quarter of the period X is the only important modification. The cos(ωmx) in Eq. (8) is replaced by
sin(ωmx) in Eq. (10). The similarity between one- and two-sideband modulation can be seen from
the comparison of Fig. 3(d) and Fig. 2(d). Only for small z the interference between comparably
strong terms in Eq. (10) causes a difference. Except in this region of a fringe movement the
beams in both figures show increasingly similar characteristics for growing z. While the scaling
factor sin φ in Eq. (8) introduces for the two-sideband modulation a phase-dependent strength of
the modulation pattern, the one-sideband excitation has the advantage of being phase insensitive
with always maximum strength. The equal final field evolution from one- and two-sideband
modulation is also explained by four-wave mixing that generates the missing sideband in the early
propagation stage (see also section 4.3 and [27]).

Fig. 3. Evolution of a one-sideband x-modulated input intensity along the propagation
direction: (a) Talbot effect, negligible nonlinearity γP = 0.217 1

m ; (b) γP = 10.9 1
m ; (c)

γP = 22.8 1
m ; (d) γP = 27.25 1

m ⪅ γPc. Diffraction and periodicity as in Fig. 2, calculation
based on Eq. (6).

The solutions of the perturbation theory are restricted to small modulation amplitudes compared
to the background η<<

√
P where the linearization is valid. Figure 4 compares our analytical

solutions with numerical simulations. Very good agreement is found for normalized input
field modulation amplitudes η

√
P
<5 % (corresponding approximately to intensity modulation
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amplitudes 2
√

Pη
P <10 %) as long as the modulation does not grow too big and does not saturate.

However, even in the case of an intensity modulation growing up to ≈ ±50 % in Fig. 4(c) the
accuracy is reasonably good.

Fig. 4. Comparison of the output intensity calculated with simulation and linearized MI
theory: (a) data from Fig. 3(b); (b) data from Fig. 3(c); (c) data from Fig. 2(d).

It is worth to note that only nonlinear modifications of the linear Talbot effect can be observed
under stable and weakly-nonlinear conditions. The “Nonlinear Talbot Effect” on the other hand
is an interpretation of doubly periodic solutions of the NLSE in the unstable highly nonlinear
regime [28].

2.2. Modulation instability

For intensity-nonlinearity products above a threshold 2γP> |β2 |ω
2
m the eigenvalues in Eq. (3)

become pure imaginary numbers λA,B = ±ig with the gain factor g =
√︂

2|β2 |ω
2
mγP − β2

2ω
4
m.

The eigenvectors from Eq. (4) describe a modulation-induced perturbation with pure exponential
growth or decay. The system is now unstable. Equation (6) simplifies with the imaginary
eigenvalues to

ε(x, z) = [Aegz + Be−gz] e−iωmx+

+
[︁
A∗eiψegz + B∗e−iψe−gz]︁ eiωmx (11)

with ψ = arctan −g
|β2 |ω

2
m−γP for positive |β2 |ω

2
m − γP and ψ = arctan −g

|β2 |ω
2
m−γP − π for negative

|β2 |ω
2
m − γP. Note that ψ is in our notation always a negative angle. Equation (11) can be

separated in a growing and decaying part

ε(x, z) = ε++ε−=

2|A|ei ψ2 cos(ωmx +
ψ

2
− αA)egz + 2|B|e−i ψ2 cos(ωmx −

ψ

2
− βB)e−gz.

(12)

αA and βB are the phases of A and B. For a symmetric two-sideband input modulation ε(x, z =
0) = ηeiϕ cos(ωmx) the integration constants are A = η

2 ei ψ2
sin( ψ2 +ϕ)

sinψ and B = η
2 e−i ψ2

sin( ψ2 −ϕ)
sinψ . Only

for an input phase φ = ±
ψ
2 a pure growing or decaying MI solution is excited, respectively. The

growing MI solution has the form

ε+2SB(x, z) = ηei ψ2 cos(ωmx)egz. (13)

For experimental measurements of MI gain with two-sideband modulation the modulation
phase is critical and needs to be controlled. However, the decaying solution may be neglected
compared to the growing solution for larger propagation lengths. A careful consideration of
the characteristic length τ = 1

g , the sample length and especially the ratio |A/B| is crucial for
determining the gain in a not phase-controlled experiment. Figure 5 compares growing, decaying
and mixed MI solutions for different input phases φ.
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Fig. 5. MI wave propagation: (a) growing eigenmode, two-sideband excitation with
φ = −37.54◦; (b) decaying eigenmode, two-sideband excitation with φ = 37.54◦; (c)
growing and decaying MI, two-sideband excitation with φ = 45◦; (d) one-sideband excitation.
Diffraction and periodicity as in Fig. 2, γP = 43.4 1

m , eigenmode angle ψ
2 = −37.54◦.

From an experimental point of view the one-sideband modulation ε(x, z = 0) = ηeiωmx has the
automatic advantage of equal growing and decaying solution parts with A = iη

2 sinψ and B = −A
having the same absolute value. When the decaying solution can be neglected against the growing
solution for z>τ, the evolving modulation

ε+1SB(x, z) =
η

| sinψ |
ei ψ2 cos(ωmx +

ψ

2
+
π

2
)egz = −

η

| sinψ |
ei ψ2 sin(ωmx +

ψ

2
)egz (14)

is very similar to the pure growing eigenmode in Eq. (13). The factor 1
sinψ can be corrected

easily and a phase-insensitive excitation of a growing eigenmode is possible in a one-sideband
modulation scheme. Figure 5(d) compares a one-sideband-generated growing eigenmode with
the pure growing eigenmode in Fig. 5(a).

Again the solutions are restricted to small modulation amplitudes compared to the background
η<<

√
P where the linearization is valid. Because of the growing eigenmode the validity of the

linearized MI solutions is restricted to a limited propagation regime. In the examples in Fig. 5 the
deviation between the linearized MI theory and a numerical simulation is less than one percent.

2.3. Breathers

When the unstable MI solution saturates and the linearized perturbation theory does no longer
apply, breather solutions of the NLSE describe pulse and beam propagation [29]. After growing
MI, the focusing saturates in highly localized intensity peaks which relax in decaying MI after the
localization. This process repeats periodically and forms a breather. We restrict our discussion
to a parameter range where only one modulation frequency is modulationally unstable (no
higher-order breathers). Figure 6 shows the — in our context — important breathers. The best
known, and a kind of basic unit of these solutions, is the Akhmediev breather (AB) [6]

u(x, z) = i
√

Pe−iz′
[︂
(1 − 4a) cosh(bz′) − ib sinh(bz′) +

√
2a cos(ωmx)

√
2a cos(ωmx) − cosh(bz′)

]︂
(15)

with the constants a = 1
2 (1 − (

ωm
ωc

)2), b =
√︁

8a(1 − 2a) and ω2
c =

2γP
|β2 |
= 4γPkwv, here in a form

with explicit dependency on real world parameters like modulation frequency ωm and intensity P.
The normalized propagation coordinate is z′ = zγP. The AB in Eq. (15) is a breather with one
row of intensity maxima at z′ = 0 at positions x = nX with an integer n.

Figure 6(a) shows an AB. The row of strongly localized intensity peaks develops from a small
sinusoidal symmetric two-sideband input modulation. The growing modulation of the evolving
AB equals in fact asymptotically the growing part of the MI solution in Eq. (12). Only for infinite
small amplitudes and an exact phase φ = ψ

2 a pure growing MI solution could grow into a pure
AB. However, practically the infinitely long decreasing part of the AB cannot be observed, neither
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Fig. 6. Breather solutions calculated with Eqs. (16)–(18): (a) Akhmediev breather; (b)
A-type breather; (c) B-type breather. γP = 54.23 1

m , the periodicity 185 µm determines
q0, β2 = −47.265 × 10−9 m, γ = 0.217 × 10−6 1

m , in (b) and (c) κ = 0.9377, growing MI
eigenmode phase ψ

2 = −44.84◦. The yellow (cyan) dots show symmetric two-sideband
modulations with phase φ = −55◦ (φ = −90◦) that would excite the A-type breather in (b)
and phase φ = −20◦ that excites the B-type breather in (c) (see the text below).

experimentally nor numerically. The reason is that unavoidable noise components transform
the AB into one of the other periodic solutions that are located infinitely close to the AB. The
decaying side of the AB always develops MI growing components from noise and imperfections.
Repeated rows of maxima develop and the AB is a separatrix between two doubly periodic
breather families, type A and type B, with examples shown in Figs. 6(b) and (c). For an input
phase φ ≠ ψ

2 the evolving breather type depends on the phase φ in the symmetric two-sideband
input εs = εa =

η
2 eiϕ .

Like the AB, type A and B breathers are also known analytically [30,31]. The A-type breathers
are given by

u(x, z) = (−1)q0
√

Pe−iq2
0z′
[︂ κsn( q2

0z′

κ , κ) + iCdn( q2
0z′

κ , κ)

κ[1 − Ccn( q2
0z′
κ , κ)]

]︂
, (16)

with C(x) =
√︁

κ
1+κ cn(

√︂
Pγ
κ |β2 |

q0x,
√︂

1−κ
2 ). With A(x) = cd(

√︂
Pγ(1+κ)

2 |β2 |
q0x,

√︂
1−κ
1+κ ) the B type has the

form

u(x, z) = (−i)q0
√

Pκe−iq2
0z′
[︂Acn(q2

0z′, κ) − i
√

1 + κsn(q2
0z′, κ)

√
1 + κ − Adn(q2

0z′, κ)

]︂
. (17)

With this normalization the AB Eq. (15) has the shorter form

u(x, z) =
√

2Pq0e−iq2
0z′
[︂−√2 sinh(q2

0z′) − i cos(
√︂

γP
|β2 |

q0x)

2 cosh(q2
0z′) −

√
2 cos(

√︂
γP
|β2 |

q0x)

]︂
. (18)

As in Eq. (15) z′ = zγP. In these formulas the periodicity is not explicitly accessible but
determined by adequate choice of the modulus κ of the Jacobi elliptic functions and the scaling
parameter q0. For a modulus κ = 1 the period along z of the A- and B-type solutions tends to
infinity and Eqs. (16) and (17) become the AB Eq. (18).

A first step towards predicting what kind of breather evolves from a given input was the
asymptotic matching of the AB to a growing MI mode for a prediction of the position of the
evolving AB maximum in [27]. An extension and completion of the idea was presented in
[32]. The intensity peaks of the breathers closely resemble the basic AB in Eq. (15) when
they are separated well enough. The valleys between the peaks are approximated by growing
and decaying MI solutions of the form of Eq. (12). Therefore a matching of both asymptotic
breather tails to an input with modulation of the more general form of Eq. (2) provides a very
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good and versatile tool to predict the propagation starting from an arbitrary sinusoidal input.
The recurrence period in z direction as well as the x shift of the maxima from one to the next
recurrence row are well described with the formulas in [32] as long as the asymptotic matching
procedure provides reasonable results for small enough input modulation amplitudes. These
formulas converted to our real-world coordinates predict the distance z1 from the input to the
first maxima row, the distance z2 between two successive maxima rows and the shift ∆x of the
maxima in two successive rows:

z1 =
2

γPσ
ln

σ2

2|α |
, z2 =

4
γPσ

ln
σ2

2
√︁
|αβ |

, ∆x =

√︄
2|β2 |

γP
arg(αβ)

k
. (19)

k = ωm

√︂
2 |β2 |
γP is a normalized periodicity and determines the parameter σ = k

√
4 − k2. α =

ε∗a−εseiψ
√

P
and β = ε∗s −εae−iψ

√
P

are calculated from the input modulation.
All breathers in Fig. 6 have at a well defined propagation position z a field that is very similar

to
√

P + ε with ε = ηeiϕ cos(ωmx). A fit of the breather formulas Eqs. (16) and (17) to that input
provides also the breather that would develop from that input. In the examples in Fig. 6 the
modulation contrast is η/

√
P = 0.3. For an input phase φ<ψ2 the input fits to an A-type breather

with an example shown in Fig. 6(b). The best fitting input is marked. The same result is obtained
from the asymptotic matching procedure. Equations (19) show indeed that an input phase φ<ψ2
yields A-type breathers with an x shift of X

2 between intensity maxima of successive maxima
rows in z direction. An input with a phase φ>ψ2 fits best to B-type breathers and also Eqs. (19)
predict a breather with no x shift of the intensity maxima as shown in Fig. 6(c), with the best fit
marked. A maximum 3 % variation of κ in the fitting is neglected in the breather plots which
are all shown for κ = 0.9377. Figure 7 compares predicted distances between input and the first
row of breather maxima dependent on modulation amplitude η and phase φ, found from fitting,
asymptotic matching and numerical simulation. Considering experimental tolerances all three
predictions give the same results as long as for small modulation amplitudes η

√
P
<0.3 the breather

fields contain a portion that fits well to a cosine modulation.

Fig. 7. Distance zmax between excitation and first row of breather maxima for the breathers
with parameters shown in Fig. (6): (a) dependent on modulation amplitude η

√
P

; (b) dependent
on modulation phase φ.

Showing the phase trajectories of a scaled complex field U(z) = u(0,z)
1000 eiq2

0z′ along a row of
maxima in the complex plane, the phase-dependent breather selection is alternatively visualized
in Fig. 8. The factor eiq2

0z′ eliminates the fast oscillations. The trajectory direction is marked for
increasing z from −∞ to +∞. The point U(−∞) =

√
P+0j

1000 corresponds to a plane wave (here with
P × 1 W

m = 250 W
µm ). Adding a small perturbation ε(x = 0) = ηejϕ with the correct asymptotic

AB phase φ = ψ
2 , a starting point on the AB trajectory is obtained (black arrow in right Fig. 8).

For a smaller phase φ<ψ2 a starting point on a trajectory of an A-type breather is reached (red



Research Article Vol. 29, No. 10 / 10 May 2021 / Optics Express 15839

arrow) and for φ>ψ2 a B-type breather trajectory is started (green arrow). It is important to note
that the phase trajectories in Fig. 8 are plotted for breathers with the same x periodicity.

Fig. 8. Phase trajectories U(z) of breathers from Fig. 6. The magnified view on the right
shows the excitation with different modulation phases φ = ψ

2 = −44.84◦, φ = −55◦ and
φ = −20◦.

Non-symmetric or even one-sideband input modulation yield moving breathers (see Fig. 9). The
maxima resemble straight propagating ABs with “tilted valleys” in between. The superposition of
growing and decaying MI introduces the tilt due to the shift of their modulation patterns. Also for
the tilted or moving breathers analytical solutions are known [8,33]. The discussion from above
on trajectories and fitting of input perturbations to breather fields could be tried for non-symmetric
input as well. However, our experimental work is perfectly explained by the asymptotic matching
analysis from [32] and by numerical simulations. So we skip the very long formulas on tilted
breathers in this manuscript. For the one-sideband modulation ε(x, z = 0) = ηei0◦eiωmx with the
parameters for Fig. 9, Eqs. (19) yield a row of first localizations at z1 = 55.24 mm, a shift of the
maxima between successive rows of ∆x = −46.41 µm and a periodicity of z2 = 110.48 mm in
very good agreement to the numeric results. In Fig. 9 the z1,2 values are 0.5 % smaller and the ∆x
shift is 1.5 % larger.

Fig. 9. Numerical simulation of a moving breather with one-sideband input. γP = 54.23 1
m ,

β2 = −47.265 × 10−9 m, ωm =
2π

185µm , η
√

P
= 0.1.

With the far developed breather excitation methods in fiber experiments, tilted breathers have
been generated in very good quality and used for interaction investigations [19,21].

3. Characterization of nonlinear beams with intensity scans

In experiments with access to only input and output intensity profiles of the nonlinear beam,
the output can be observed dependent on a parameter, easiest on the input intensity. Also the
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modulation frequency, modulation depth, type of modulation or the nonlinearity can be changed,
but are fixed in an intensity scan. The output intensity is measured for increasing input intensity.
Each output is normalized to its power and composed into a figure showing the normalized output
versus input intensity. Resulting intensity scans are shown in Fig. 1 for experimental data and in
Figs. 10, 11 and 12 for simulations. An intensity scan illustrates the whole intensity dependence
of a nonlinear beam propagation in one figure. However, the parameters of intensity scans need
to be chosen very carefully to characterize MI or show specific breathers. Because the phase ψ

2
of the MI eigensolution is intensity-dependent (example shown in Fig. 11(c)), a localization in an
intensity scan is not an exact picture of one specific breather but resembles a breather in more or
less good approximation as a collection of scans through similar breathers.

Fig. 10. Intensity scans for symmetric two-sideband input modulation: (a) sample length
L = 150 mm, φ = −80◦<ψ2 ; (b) L = 150 mm, φ = 0◦>ψ2 ; (c) L = 60 mm, φ = 0◦>ψ2 . The
red line marks Pc. Nonlinearity γ = 0.217 × 10−6 1

m , diffraction β2 = −47.265 × 10−9 m,
modulation frequency ωm =

2π
185µm , relative modulation field amplitude η

√
P
= 0.24.

Fig. 11. Intensity scans for symmetric two-sideband input modulation with phase transition
at the cyan line: (a) L = 150 mm, φ = −50◦; (b) L = 90 mm, φ = −55◦; (c) MI eigenmode
phase ψ

2 versus input intensity. The dots compare eigenmode phases extracted from the
fringe shift in a one-sideband modulation, explained in the next section. The red line marks
Pc. γ = 0.217 × 10−6 1

m , β2 = −47.265 × 10−9 m, ωm =
2π

185µm , η
√

P
= 0.24.

For intensities below the MI threshold Pc, the intensity-dependent increase of the Talbot
periodicity determines the scan. In Figs. 10, 11 and 12 Pc is marked with a red line. Above Pc
breathers appear with growing and decaying MI at their flanks. With increasing intensity the
breather maxima move toward the input facet and at the output we scan different rows of maxima.
In intensity scans with more rows, intensity-dependent modifications of the AB are observable.
Higher-power ABs are narrower with higher relative peak intensity and stronger localization. For
a phase of the symmetric two-sideband modulation φ<ψ2 A-type and for φ>ψ2 B-type breathers
develop, as shown in Figs. 10(a) and 10(b), respectively. Here we observe scans only through
second and higher rows of breather maxima. In such long samples the first breather maximum
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Fig. 12. Intensity scan for one-sideband input modulation. The red line marks Pc.
Sample length L = 150 mm, φ = 0◦, nonlinearity γ = 0.217 × 10−6 1

m , diffraction
β2 = −47.265 × 10−9 m, modulation ωm =

2π
185µm , relative modulation field amplitude

η
√

P
= 0.24.

develops even at small intensities inside the crystal and cannot be observed at the output. To
visualize the first row of breather peaks in the intensity scan, they need to be shifted to the output
facet of the crystal, either by reducing the modulation amplitude or by using a shorter sample.
In Fig. 10(c) the first and second row of the breather maxima are seen in a shorter sample. A
decision on the peak number of the breather is easiest to find from evolution pictures versus
propagation coordinate z like Figs. (6) or (9). The sample length influences also the observable
Talbot regime at the beginning of the scan. Experimentally this seems similar to the observations
in [15].

The scans can show many interesting scenarios. For a suitable input phase φ a switching from
an A- to a B-type breather can be observed in one intensity scan. In Fig. 11(a) at exactly that
intensity level where the intensity-dependent asymptotic breather phase ψ

2 switches from ψ
2 >φ to

ψ
2 <φ (marked with a cyan line), a corresponding transversal jump of the maximum by half a
modulation period is observed. Here the switching occurs at an intensity where a peak of the
breather is localized at the end of the crystal. Changing the sample length, the switching in
Fig. 11(b) occurs when the localization is relaxed at the output and a more flat region separates
A- and B-type regions in the scan.

For a one-sideband modulation the situation becomes much simpler but less versatile because
the phase is no longer determining the behavior. However, Talbot effect, MI and breathers
are all accessible. Figure 12 shows an example with behavior comparable to Fig. 10(b). The
back-shifting of the moving interference fringes from low to MI intensity levels is well pronounced
with the predicted phase from Eq. (14), and confirmed experimentally (see Fig. 1 and experimental
section). The different rows of breather maxima for increasing intensity are shifted transversely
due to the input tilt according to the x-shift ∆x from Eq. (19). The small tilt of each single breather
maximum is attributed to the intensity dependence of the angle ψ. Because of the decreasing
slope of the dependency (see Fig. 11(c)), the tilt diminishes for larger intensity. The input phase
only shifts the whole pattern horizontally.

3.1. Breather characterization

Considering the normalization of the propagation coordinate z′ = zγP, it is even possible to gain
information on the propagation of a breather inside the sample by scanning z′ with P instead of z,
as we do it in the intensity scan and as it was similarly done by scanning γ in [15]. However, this
is only an approximation because with P other breather parameters change as well, and not only
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z′ (a, b and the asymptotic phase ψ
2 in Eq. (15)). The approximation is in certain limits not bad if

we compare localized intensity peaks versus z′. In Fig. 13(a) we see an intensity scan plotted
versus z′ = zγP at fixed z. In the range of the breather maximum 3<z′<5, the breather parameters
vary in the ranges 0.227<a<0.339, 0.997>b>0.935 and −42◦>ψ2 > − 55◦. Figure 13(b) shows a
propagating breather versus z′ = zγP with fixed P and growing z. The parameters a = 0.291,
b = 0.987 and ψ

2 = −49.7◦ are fixed. The parameter variations in Fig. 13(a) are small and the
peak bears a very strong resemblance to the AB evolution in Fig. 13(b). The change of ψ

2 with
intensity is the only detectable small difference observable in the contour lines in Figs. 13(a) and
(b). Considering the experimental accuracy, breather maxima can be characterized well with
intensity scans.

Fig. 13. Comparison of an intensity scan and a breather, both plotted versus normalized
propagation coordinate z′ = zγP: (a) intensity scan from P = 130 to 500 × 106, z = 60 mm;
(b) breather evolution, P = 300 × 106, z = 26 to 100 mm. γ = 0.217 × 10−6 1

m , β2 =

−47.265 × 10−9 m, ωm =
2π

185µm , η
√

P
= 0.035.

3.2. MI gain measurement

In the regions between the breather maxima, MI determines the field evolution. From the growing
and decaying breather flanks, information on the growth and decay rates of MI can be collected.
It is straightforward to determine the MI gain rate from the MI regime before the first breather
localization in the intensity scans. The gain factor is accessible from comparing the modulation
amplitudes of scans at low intensity in the linear Talbot-effect regime and scans at intensities
below the first breather maximum where MI approximates the field evolution. However, a
careful parameter selection is necessary to identify the appropriate MI regime, to suppress the
decaying MI contribution and evaluate only the growing MI mode in Eq. (12). With a symmetric
two-sideband modulation, a correct phase between the seed and the background would satisfy
this condition exactly. With a one-sideband modulation the phase control is not necessary. Both,
decaying and growing MI modes are triggered equally strong. The gain can be determined from
the growth of the growing mode when the decaying mode becomes small enough at the sample
end. Figure 14 shows corresponding data. The marked output scans in Fig. 14(a) are compared
in Fig. 14(b) with their first harmonic. Because the moving fringe pattern due to the tilted input
is shifted back at MI intensities, an output fringe phase of ψ

2 +
π
2 is an indication for a strong

enough decay of the decaying mode. From the actual shift of the fringes, ψ2 is extracted which
fits very well the calculated eigenmode phases in Fig. 11(c). The input and output intensities
for the one-sideband modulation are proportional to |E(z = 0)|2 = P + 2

√
Pη cos(ωmx) + η2

and |E(z = L)|2 = P + 2
√

PηegL

| sinψ |
cos ψ2 cos(ωmx + ψ

2 +
π
2 ) +

η2e2gL

sin2 ψ
cos2(ωmx + ψ

2 +
π
2 ). L is the

sample length. The Fourier transforms of the intensity scans in Fig. 14(b) provide the amplitudes
Ain = 2

√
Pη and Aout =

2
√

PηegL

| sinψ |
cos ψ2 of the modulation at the different intensities which are



Research Article Vol. 29, No. 10 / 10 May 2021 / Optics Express 15843

used for calculating the gain values g = 1
L ln Aout | sinψ |

Ain cos ψ2
in Fig. 14(c). The theoretical gain curve

from simple MI theory is plotted for comparison. The validity range for the MI description ends
at the high intensity side with the development of a breather. The gain measurement yields too
small gain factors for intensities too close to the breather maximum. At the low intensity side,
but still above the Talbot regime, the decaying mode may still be present and distorts the result
with too large values for the gain. In an experiment it is important to select parameters for a wide
enough window where the MI description is valid. For intensities in the Talbot regime left of the
red line in Fig. 14(c), a gain measurement does not make any sense and the up and down of the
periodic localizations from Fig. 3 are observed.

Fig. 14. MI gain extracted from an intensity scan with one-sideband modulation: (a)
intensity scan, L = 60 mm; (b) scans through intensity scan (solid) at intensities marked with
green lines in (a) compared to their first harmonic (dashed); (c) from harmonic amplitudes
calculated gain factor (scattered) compared to the calculated gain from MI theory (solid).
γ = 0.217 × 10−6 1

m , β2 = −47.265 × 10−9 m, ωm =
2π

185µm , η
√

P
= 0.035.

4. Experimental results

4.1. Experimental system

Till now we do not know about a real 1D nonlinear beam propagation experiment in the ps-regime
based solely on the fast intrinsic cubic electronic Kerr nonlinearity χ(3), except for a few early
spatial soliton experiments in AlGaAs [34]. The intrinsic cubic electronic nonlinearity is too small
in common crystals to observe nonlinear beam propagation up to intensities necessary for the MI
or even breather regime without endangering the crystal. Instead, numerous and extensive studies
of nonlinear beam propagation based on slower but stronger cubic nonlinearity replacements
have been performed in photorefractive materials or in liquid crystals with orientation effects
[15,25,35]. The only option for mimicking a pure cubic nonlinearity with relatively fast time
response is the use of a cascaded second-order χ(2) : χ(2) nonlinearity [36]. Operated far from
phase-matching of the underlying second-order frequency mixing, the cascaded nonlinearity is
experimentally hard to distinguish from the real electronic Kerr nonlinearity for ps-pulses. From
soliton experiments [37] through MI [5] to breather investigations [16] the interesting range of
nonlinear beam propagation had been covered based on cascading.

For an experimental verification of the previous theoretical considerations we used a mixture
of the electronic χ(3) and the cascaded nonlinearity in the χ(3)-like limit in a slab waveguide on a
Y-cut LiNbO3 crystal. The waveguide with a length L = 47 mm was fabricated in the 1990s by
Wolfgang Sohler’s group in Paderborn for the experimental demonstration of quadratic solitons
[37] and MI measurements [5]. Type I second-harmonic generation (SHG) can be implemented
by coupling a fundamental frequency (FF) ordinary polarized TM0 mode at a wavelength of
1.32 µm to extraordinary TE modes at the second-harmonic (SH) frequency at a wavelength of
0.66 µm. Temperature tuned, birefringent phase-matching occurs at 297 ◦C to the TE0 mode and
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at 344 ◦C to the TE1 mode. The phase-matching temperature in our crystal has increased by ≈ 8
Kelvin during the last 25 years [37]. For controlling phase-matching, the crystal was housed in
an oven. The waves propagate along z (crystallographic X) direction, are guided along the y (Y)
coordinate, and the light localization is observed in x (Z) direction. The diffraction term for the
FF TM0 mode is β2 = −47.265 × 10−9 m. More details on the waveguides with cascading driven
by SHG are found in [5,16,37,38].

The effective cubic χ(3)-like nonlinearity of the two resonances plus the intrinsic electronic
χ(3) are shown in Fig. 15. For an operation ≈ ±10 K from the SHG resonances outside the
shaded regions we can describe the χ(3)-like system for our experimentally covered intensity
range in very good approximation with the NLSE Eq. (1). Experimentally we confirmed the
χ(3)-like system by checking that the output SH is negligible compared to the FF. Note that the
nonlinearity can be adjusted from γ = 0 to 0.6 × 10−6 1

m .

Fig. 15. Total cubic nonlinearity γ =
2∑︁
ν=1

1
∆kν

(︃
ω1K(2)

ν 2d
4p0

)︃2
+
ω1K(3)χ(3)

4p0
consisting of

a temperature-tunable cascading part and a constant intrinsic part with ν denoting the
SH resonance. ∆kν is the temperature-dependent wave-vector mismatch, ω1 is the laser
frequency, K(2)

ν and K(3) are mode-overlap integrals. d and χ(3) are electronic second- and
third-order susceptibilities. Numbers are found in [16].

The experimental setup is shown in Fig. 16. The light source was a frequency-doubled
Nd:YAG-pumped OPA with cw-seeding delivering 5.5-ps-long pulses at a wavelength of 1.32 µm
with up to 450 kW peak power. With a cylindrical telescope the laser beam was transformed
into a very wide Gaussian elliptical beam (1.4 mm × 8 µm) providing the background. The
beam was end-fire coupled into the FF TM0 mode. Power scaling with calibrated power meters
enabled absolute measurements of the average input power. The input power is converted to
the temporal peak intensity IP in the mode in the center of the input beam. A few percent of
the FF beam were separated after the telescope and coupled with a tilt and good overlap to
the main FF beam into the waveguide. The interference between the two FF beams produced
a spatial one-sideband modulation of the input with adjustable period and modulation depth
m = (I1, max − I1, min)/I1, max. The beam width of 1.4 mm along the x coordinate can be considered
large enough in the compromise between available power and infinite beam width so that a FF
beam with a transverse modulation with periods between 130 and 300 µm well approximates a
quasi-constant background with a harmonic modulation.

4.2. Intensity scans and breathers

We measured a few hundred intensity scans with different periodicity, modulation depth and
nonlinearity to document experimentally the variety of the theoretical predictions with exemplary
results in Fig. 17. Figure 17(a) shows a completely intensity-independent propagation for a
vanishing nonlinearity at 307 ◦C. The cubic and the cascaded nonlinearities from the two SH
resonances cancel exactly at this temperature and the system behaves linear in the regime of
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Fig. 16. Experimental setup.

balancing competing nonlinearities [39] in the whole available power range. The nonlinear
modifications of the Talbot effect are observable in the low-intensity regime in Figs. 17(b) and
1(b). For the shortest modulation period of 133 µm we can exactly observe the scenario from
Fig. 3 in our 47-mm-long sample with intensity-dependent beam shift and periodic up and down
of the peak intensity before the MI threshold. For larger periodicity the start of MI leaves no
space for the decreasing part of the Talbot pattern and a monotonic modulation increase develops
directly into MI and breathers (see Figs. 17(c) and 1(a)). Figure 17(c) shows such an Akhmediev
breather scan. In a longer sample, a recurrence in form of a second row of breather maxima
could be observed. However, higher intensity or an increase of the nonlinearity by operating
closer to phase-matching did not generate further recurrences. Instead, Fig. 17(d) shows strong
disturbances in the breather decay after a quickly developing first breather maximum. The
spatial second harmonic of the modulation experiences MI gain and higher-order breathers
interfere with the recurrence of the first-order breather. In fact, at 342.2 ◦C, so close to the
second phase-matching resonance, the validity of the χ(3) approximation with the NLSE fades
and the complete SHG equations (see [16]) were used for a better simulation of this real quadratic
cascading regime. The system becomes very sensitive to input conditions and deviates from a
pure NLSE system after the first breather maximum.

In the growing part of the developing intensity peaks in Figs. 17 we can identify in all scans
the MI regime. The peak intensity for a start of MI is marked in the scans with a red line. The
MI regime ends when MI saturates at intensities below the breather peak.

Another try to observe the second recurrence of breather maxima was a shift of the breather
towards lower intensities by increasing the modulation strength. To avoid amplification of
second-order breathers, the small modulation period of 133 µm was used. Figure 18 shows a
typical result. The Talbot regime ends at the onset of MI close to the line at 100 W

µm . Indeed,
above this intensity a breather with a first row of maxima inside the sample propagates with the
decaying breather wing in the intensity scan following directly the Talbot regime. A window for
an observation of growing MI is not available in this scan. Only at the end of the scan (beyond our
available intensity) the beginning of the second row of breather maxima appears. All intensity
scans with 133 µm period and the largest modulation contrast η

√
P
= 0.24 show similar smooth

fringes without developed maxima. The power-dependent x-shift yields the well observable
snake-like fringes.

All our scans agree qualitatively and in 80 % of the scans without any parameter fit even
quantitatively very well to the theory when we allow a zero to −15 % uncertainty of the power
in the waveguide due to laser adjustment and coupling uncertainty. In the remaining 20 % of
scans the experimental power in the waveguide can be up to 30 % too small which is due to the
experimental challenge to operate the laser over the measuring period of one year at exactly the
same setting. In a few scans, when the environment was not stable, a fluctuation of the phase of
the seeding leads to fringe position fluctuations yielding a jitter in the modulation and noisy MI
gain measurements.
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Fig. 17. Measured intensity scans with one-sideband modulation (left) compared to
calculations (right): (a) balanced nonlinearity at 307 ◦C, ωm =

2π
185µm , η

√
P
= 0.24; (b)

nonlinear modified Talbot pattern at 280 ◦C, ωm =
2π

133µm , η
√

P
= 0.11; (c) first row of

breather maxima at 285 ◦C, ωm =
2π

300µm , η
√

P
= 0.24; (d) disturbed breather decay at

342.2 ◦C, ωm =
2π

185µm , η
√

P
= 0.24. IP is the peak intensity of the input pulses.
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Fig. 18. Snake-like intensity scans without well expressed peaks, one-sideband modulation:
(a) measured; (b) calculation. 287.5 ◦C corresponds to a nonlinearity γ = 0.58 × 10−6 1

m ,
ωm =

2π
133µm , η

√
P
= 0.24. The dark blue line indicates the end of the Talbot regime.

For the theoretical simulation of the experimental data we have used a simple time averaging
over the 5.5-ps-long pulse. Except for the simulation in Fig. 17(d), all simulations based on
the NLSE and the strict SHG cascading equations give the same pictures. As time resolved
calculations confirmed, dispersive effects are negligible in the regime of an effective cubic
nonlinearity outside the shaded regions in Fig. 15.

4.3. Breather spectra

The triangular shape of the logarithmic spectral intensity as a unique feature of an AB was
measured in nonlinear pulse experiments with an optical spectrum analyser in superior resolution
[10,17,40]. According to Fourier Optics [1], the spatial spectrum is detected in the nonlinear
beam propagation experiment in a camera with a simple modification of the imaging geometry.
With a lens in a distance from the waveguide output equal to the focal length, the spatial spectrum
is seen in the camera far behind the lens. Figure 19 shows the evolution of the spatial spectra of
the output depending on the input intensity IP. The corresponding intensity scan looks similar
to Fig. 20(a), but reaches the first breather maximum at IP = 270 W

µm . So the spectrum at the
end of the scan represents the spectrum of the breather maximum. The intensity spectral scan
in Fig. 19(a) shows the four-wave-mixing generation of the triangular shaped spectral lines of
the breather, starting from the two input lines of the one-sideband input for increasing IP. At
Ω = −3.33 mm−1 the input modulation sideband develops into the first negative-side line. At
Ω = +3.33 mm−1 the first positive-side line develops from a zero input. Figure 19(b) shows the
development of the power of the spectral side lines towards the triangular shape.

4.4. MI gain

From the intensity scans the gain of MI is extracted as discussed in the theoretical section 3.2.
For a modulation period of 200 µm and larger, the procedure gives easily very reliable results
from a large and good accessible MI regime between Talbot pattern and first breather maximum
in our 47-mm-long crystal with experimentally convenient modulation contrast. An example for
ωm =

2π
300µm is presented in Fig. 20. The intensity scan in Fig. 20(a) shows a clean exponential

modulation growth in the whole range from the MI threshold of 30 W
µm to the maximum intensity

230 W
µm . A few scans for calculating the modulation amplitudes are marked with green lines.

From the ratio of the output- and input-modulation amplitudes an uncorrected gain g = 1
L ln Aout

Ain
is calculated and plotted in Fig. 20(b) with green stars. The observable x-shift of the maxima in
Fig. 20(a) yields the eigenmode phase ψ

2 dependent on intensity. The good agreement to the cw
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Fig. 19. Logarithmic normalized spatial output spectra: (a) intensity spectral scan ln(S)
versus peak input intensity IP, Ω is the spatial frequency; (b) power in the spectral lines
at the output for IP = 25, 190 and 271 W

µm . Sample temperature of 240 ◦C, ωm =
2π

300µm ,
modulation contrast η

√
P
= 0.11.

Fig. 20. MI gain extracted from an intensity scan with one-sideband modulation: (a)
intensity scan with marked scans for minimum intensity (yellow), MI threshold (red) and gain
calculation (green); (b) phase-corrected (black dots) and raw gain (green stars) compared
to a cw-gain curve (reduced by 0.75); (c) measured eigenmode phase ψ

2 compared to cw
theory. Sample temperature of 260 ◦C corresponds to a nonlinearity γ = 0.35 × 10−6 1

m ,
ωm =

2π
300µm , modulation contrast η

√
P
= 0.11.

calculation is visualized in Fig. 20(c). With the phase correction the final gain g = 1
L ln Aout | sinψ |

Ain cos ψ2
is found in very good agreement to the theoretical gain curve (see Fig. 20(b)). Because of the
pulsed experiments, the theoretical cw gain needs to be reduced by a factor of ≈ 0.75 to represent
the pulsed experimental results.

The expected nonlinearity and periodicity dependence of the gain curves was confirmed. For
smaller nonlinearity a decreasing gain and an increasing MI threshold are observed in Fig. 21(a).
Also the effect of MI saturation is detected when an increase of the modulation contrast ratio to
k = η

√
P
= 0.24 shortens the MI range by shifting the breather formation towards lower intensities.

Above intensities of 100 W
µm a breather forms and the MI gain calculation gives declining values for

intensities above the breather maximum (see blue dots in Fig. 21(a)). Decreasing the periodicity
yields an increase of the MI threshold and the slope of the gain curve increases as shown in
Fig. 21(b).

However, in our 47-mm-long sample the gain measurement comes to its limit at modulation
periods around 140 µm and below, as noisy data in Fig. 21(b) suggest. For a period of 133 µm only
a very small MI range window remains between a pronounced Talbot pattern and MI saturation
with breather formation, as observable in Fig. 17(b). For smaller modulation periodicity our
sample is too long for a good MI measurement (see Fig. 18). A reduction of the modulation
contrast would shift the breather maxima towards higher intensity or a reduction of the sample
length would shorten the Talbot regime and reopen the window. The possibility of reducing the



Research Article Vol. 29, No. 10 / 10 May 2021 / Optics Express 15849

Fig. 21. Phase-corrected MI gain extracted from intensity scans with one-sideband
modulation compared to cw-gain curves (reduced by 0.75): (a) nonlinearity γ = 0.27×10−6 1

m
at 160 ◦C (red), γ = 0.52 × 10−6 1

m at 285 ◦C (black) for k = 0.11 and for k = 0.24 (blue
dots), ωm =

2π
300µm ; (b) k = 0.11 and different modulation periods 300 µm (black), 185 µm

(red) and 133 µm (blue).

modulation contrast is limited because for a modulation contrast below k = 0.03 imperfections
in the input beam and the sample have the same order of magnitude as the modulation and
disturb triggered MI. A shorter sample was not available. Thus, for the shortest periodicity of
133 µm we could not observe better results than those shown in Fig. 21(b) in blue. The results
are reproduced by simulations confirming that the geometry (periodicity, modulation contrast
and sample length) determines the parameter range for possible gain measurements.

5. Conclusion

A theoretical introduction with repetition of well known MI theory and breather formulas provides
a consistent basis for a discussion of nonlinear beam propagation measurements. It proved to be
a complete basis, because all the preparation, processing, simulation and interpretation of my
experimental work on nonlinear beam propagation, especially MI and breather formation, was
based solely on the herein presented formulas and terms. Of course, the summary on MI and
breathers is nothing but an extract and translation of the extensive literature and conversion to
uniform definitions and language.

We extended our old platform for investigating nonlinear beams to experiments on breathers
and growing and decaying MI. The nonlinear medium is a film waveguide to apply the NLSE
for beam propagation in one transverse and one longitudinal spatial direction. A mixture of
the electronic cubic and cascaded quadratic nonlinearity in SHG was used for realization of
an adjustable effective cubic nonlinearity. The cascaded nonlinearity was operated far from
phase-matching in the χ(3)-like limit so that theory is based in good approximation on the NLSE.

The experimental demonstration of nonlinear modifications of the Talbot effect, MI growth,
breather formation and MI decay was successful. For the presentation of nonlinear beam
propagation a form with intensity scans was meticulously elaborated. Breathers could be
characterized. MI was quantified with gain measurements. The differences to a direct observation
of z-dependent propagation were discussed as well as drawbacks, limits and advantages.

Our system is good for an observation and characterization of one breather cycle. A breather
recurrence or a second row of breather maxima could not be observed, our sample was too short
for the available parameters as modulation period, amplitude, and power. For measurements of
nonlinear material properties, here the electronic cubic χ(3), a measurement of the appearance of
the first breather maximum is very useful. In case of additional quadratic cascading, the resulting
only effective χ(3) can easily be corrected for the quadratic cascaded effect with the knowledge
of the second-order susceptibilities. The MI gain can also be used for nonlinearity measurements.
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However, this measurement is less favorable because it depends on the modulation growth and
the correction with the eigenmode phase. Only under limited conditions both are observable
precisely enough.

A direct comparison with our old MI gain measurements in [5] is not possible because of
different parameter ranges. Here we work under χ(3)-like conditions. In [5] MI of quadratic
eigenmodes close to phase-matching was characterized. However, remembering the good
agreement of the presented measurements and theory we could apply the NLSE-based theory
to those old data (from [5]) closest to the χ(3) limit. Considering that in the old work the
phase-correction for the gain factor was neglected and the quality of experimental conditions
(laser, power measurement and camera) has improved since, an agreement of gain numbers from
now and then within a factor of 2 to 3 was reasonable.

A spatial platform for breather research in nonlinear beam propagation was established and
worked well, even when the system is relatively difficult with a few major approximations applied.
Above all, the original cubic nonlinearity in the NLSE was boosted with a cascaded second-order
nonlinearity. Second, we could not observe the nonlinear beam propagation inside the sample
and a parameter scan was developed to characterize the nonlinear beam propagation. Finally, the
results were time averaged over pulsed laser excitation. However, despite these approximations
all important nonlinear beam properties could be characterized in good quality.
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