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Abstract

In this paper, a new method for placing bus
stops is presented. The method is suitable for
permanently installed new bus stops and temporarily
chosen collection points for call busses as well.
Moreover, our implementation of the Voronoi algorithm
chooses new locations for bus stops in such a way that
more bus stops are set in densely populated areas and
less in less populated areas. To achieve this goal, a
corresponding weighting is applied to each possible
placement point, based on the number of inhabitants
around this point and the points of interest, such as
medical centers and department stores around this
point. Using the area of Roding, a small town in
Bavaria, for a case study, we show that our method is
especially suitable for rural areas, where there are few
multi-family houses or apartment blocks and the area is
not densely populated.

1. Introduction

When we think of the future of transportation and,
especially, sustainable transport, public transport is one
of the most important means of transporting people. It
facilitates the transportation of a large number of people
at the same time and thus prevents traffic congestion
and reduces the carbon footprint. However, this type
of transport also requires an appropriate infrastructure
in the form of suitably placed bus stops. The location
of the bus stops is a crucial factor for an acceptance of
public transport. Problems can arise if, for example, a
bus stop is often overcrowded or only rarely used.
Choosing locations for new bus stops is a challenging
task, especially, if the placement should be automatized
and the dynamic relocation of bus stops should be
supported for call busses. There are many individual
questions that need to be answered when a new location
is chosen. These questions are: Can a new bus stop be
integrated into an existing route? Is a bus stop used by
enough people? Are bus stops also available for people

who live far away from the city center?
It may happen that individual neighborhoods are not
taken into account when planning bus routes and thus
people have no or only very difficult connections to the
public transport system. This occurs more and more
often in the rural areas we look at in our paper, especially
due to the rapid urbanization of rural areas.
The recognition of spatial clusters can lead to biased
results, since these models are oriented e.g. on the
road network and thus deviate from what a set of freely
located points can represent. Since we want to consider
people in the very rural Roding who live away from
the road network or along dirt roads, which are not
shown in the map material, we did not use a network
Voronoi diagram [1]. In our model, we consider the
surrounding area as a planar surface with Euclidean
distances. This is also possible, because the city of
Roding has relatively low elevation differences, and
the inclusion of Inclusion of slopes and subsidences as
in a network Voronoi diagram is not necessary. We
want to improve the situation using an automatized
bus stop location recommendation algorithm, based on
computational geometry. The underlying principle is the
Voronoi Diagram, also known as Dirichlet Tesselation,
which a computer can find, such that a set of given
locations (in our case, the existing bus stops) is divided
into polygons, each containing one of the locations and
all the points nearer to that location than to any other
[2]. The concept of Voronoi diagrams was introduced
as early as 1908 and is named after its inventor M.G.
Voronoi [3]. It is known, that the vertices of the Voronoi
polygons for a set of locations are good candidates for
new locations since one of them is the center of the
largest empty circle [4]. However, a computer program
that is only processing geometric features and does not
take the distribution of the population into account, will
not improve the situation of the people in rural areas.
In the countryside, the largest area without a bus stop
may be an agrarian field, while, in a densely populated
village that already has one bus stop, a second one
might be urgently required. For taking the geometric
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distribution of bus stops and, as well, the population
density into consideration, the software we present in
this work uses open source geographic information
system (GIS) data. The 1224 bus stops of a bus company
from Roding are used for a case study in this paper as
a test data set. For each stop, the longitude, latitude,
as well as the name and the route affiliation are already
recorded in the data set.
Roding is a small town with an area of 113 km2

and about 11,500 inhabitants (as of 2008) in Bavaria,
Germany. However, the area with all stops also includes
the neighboring counties and is with 674 km2 almost 6
times as large as the town itself. Therefore, Roding is
a representative example of a rural region with many
widely distributed settlement cores. For the city of
Roding, we have already carried out a passenger demand
prediction showing that some busses are only very
lightly utilized and could accommodate significantly
more passengers [5]. However, the infrastructure with
the appropriate stops must first be created.
In topics working with GIS data, such as the extraction
of a topology Voronoi diagrams have already been used
[6]. Therefore, it seemed to make sense to use Voronoi
diagrams for our task, which is concerned with keeping
the distances between bus stops as regular as possible.
To extend the original location set, we divide the
polygons into sub polygons comprising new locations,
which are candidates for the new stops. Before we
extend the location set by separating a polygon in
the Voronoi diagram into sub-polygons, we compute
the corresponding weight of the polygon using the
OpenStreetMap Service. We use this data together with
the Overpass API to set the new starting point directly at
a road [7].
In Section 2, we discuss related work to our method
and important points of reference for public transport in
rural areas. Section 3 explains the problems that occur
and have to be considered when placing bus stops. Our
method for placing bus stops is described in Section
4. Section 5 deals with the evaluation of the method,
compares it to other methods and Section 6 gives an
outlook on planned improvements of public transport in
rural areas based on our method.

2. Related work

We divide our discussion of related work into an
overview of technical implementations as well as other
methods for setting bus stops. The second section deals
with the special conditions and developments in rural
areas, which are considered in our paper.

2.1. Voronoi diagrams in traffic planning

The advantage of Voronoi diagrams over other
methods such as a visibility graph with a runtime
of O(n2) is the shorter runtime of O(n log n) [8].
Therefore, the algorithm achieves a much shorter
runtime than others for large data sets. For example,
Bhattacharya et al. employ an algorithm based on
Voronoi diagrams to find the shortest path between
two points in a 2D obstacle course [8]. Lebedeva et
al. applied the standard Voronoi diagrams to optimize
freight delivery from logistics centers. Here, the focus of
optimization is on econometric factors such as gasoline
consumption and the average distance a package travels,
thus achieving lower utilization of the road system [9].
In contrast to this approach, our method aims to achieve
the highest possible coverage of the inhabited area by
weighting the factors from the GIS data, and thus to be
able to persuade people to switch to public transport.
Two more approaches are listed here, which use
computer-based methods to set bus stops. Ghasedi
et. al model the population of the country through
the heuristic optimization technique of particle swarm
optimization (PSO) and thereby infer the bus stops that
need to be set. [10]. Another approach for optimizing
the placement of bus stops is presented by Bargegol et
al. They use a genetic algorithm to model a corridor
along a bus route with bus stops [11]. However, both of
these methods are more focused on finding the shortest
travel time, with the least amount of time lost during
boarding and alighting. Our goal is rather to cover the
complete traffic space as efficiently as possible with a
fixed number of stops. We expect that this will lead
to more people choosing public transport as a means
of transport and reduce emissions, even though the
buses cover proportionately longer distances because
there are fewer vehicles on the roads. One approach
to using Voronoi diagrams to characterize landscapes is
by Lan Mu. He uses multiplicatively weighted Voronoi
diagrams to reflect both the underlying process and
the shape of the landscape polygons. This creates a
metric that can measure a generator point’s region of
influence based on its weight [12]. Lu’s goal was better
visualization of results, while in this paper weighting is
done to optimize placement of points.

2.2. Rural transportation

In their paper, Brovarone and Cotella suggest that
improving public transportation is highly dependent on
a wide variety of socio-economic and cultural factors.
They created a layer model, wherein each deeper
layer more concrete solutions are addressed. With
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our approach, we contribute to a solution in the top
layer, which contains tools for planning public transport
[13]. Based on the top-layer knowledge, more concrete
solutions can be generated in the deeper layers, such as
a dynamic bus schedule.
Bosworth et al. suggested in their survey that public
transportation expansion is the most desired need
among rural residents. (Far ahead of broadband or
mobile network expansion). They also address Mobility
as a Service (MaaS) solutions in their paper, pointing
out that most of these approaches are designed for urban
areas. In rural areas, the lack of infrastructure means
that proven technologies, such as buses, must be used.
Another interesting approach to optimizing
transportation in rural areas is presented by Zhan
et al. They assume that the demand for buses varies
greatly throughout the day and present a method that
dynamically lengthens or shortens the route of a bus to
optimize it [14]. This method can be combined with
our approach to optimize the routes to the much larger
number of stops. The fact that all stops are served
by the buses only at certain times can lead to a better
utilization of the core area and lower emissions.

3. The problem of bus stop placement in
rural areas

The main reason for the use of public transport by
the population is commuting from rural areas to the city
center and back again. Our goal is to solve the so-called
first-mile problem by cleverly placing bus stops, as this
significantly contributes to better acceptance of public
transport [15]. That is, to reduce the distance individuals
have to travel to reach the bus stop. Also, the total travel
time of all passengers shall be reduced. We’re trying
to solve this problem by putting more stops closer to
residents’ homes.
The problem with setting bus stops in rural areas is
that there are two completely different types of villages.
One is large urban cores that are already equipped with
enough bus stops. The second is individual villages with
very few, or no, bus stops.

The generation of Voronoi diagrams and the dual
Delaunay triangulation is known to be a possible way
for solving the so-called largest empty circle problem.
Here the largest empty circle is always located at a
vertex of the Voronoi diagram or at an intersection
between a Voronoi edge and the convex hull of the
chosen set of points [16]. Based on the found largest
circle it can be determined, which point in the whole
diagram is farthest away from all previous starting
points that are chosen for the creation of the Voronoi

Figure 1. Representation of start points and vertexes

of Voronoi diagrams and Delaunay triangulation

diagram. As starting points for the generation of the
Voronoi diagram the already existing stops shall be used
as starting points. All points, which sit at a corner point
of the polygon generated from the starting point, are
the starting points of the Delaunay triangulation due to
the duality. This context can be seen in figure1 where
the points marked with v are the edges of the Voronoi
polygons and the points marked with x are the starting
points.
The method can be used especially well in
two-dimensional space and location constraints in
spatial databases for finding a point with the largest
empty area around it [17]. However, the purely
geometric method shows that when setting new points,
location centers or places of interest were never hit,
although it would logically make sense to have a bus
stop there. When applying the method we realized
that for rural areas not only the distance from other
stops is decisive for optimal placement, but also
other important factors such as settlement density or
important facilities in the vicinity must also be taken
into account when creating new stops. Therefore, we
developed a procedure that, based on weighting divides
the Voronoi diagram into sub-polygons in order to find
optimal locations for new bus stops.

4. A new method for setting bus stops

The implementation of our method in the program
that we implemented for our Roding case study is
divided into several steps:

1. In the first step, the coordinate points of the
existing stops are read in and supplemented by the
information from the Overpass API.

2. In the next step, a weighting of each point is
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done based on the information collected about that
point.

3. After that, a Voronoi diagram is generated and a
division of the polygons with the highest weight
into sub-polygons is performed.

4. In the last step, the newly obtained coordinates
are adapted to the road system and the points are
checked for accessibility.

For the implementation of the method, the programming
language Python was used, because it allows easy
access to the Overpass API through appropriate
pre-built libraries. For accessing the data from
the OpenStreetMap dataset we also installed the
Overpass-Turbo API on the computer that performs
the method [7]. This is a data mining tool for
OpenStreetMap that allows us to retrieve data from the
online OSM database about all streets and houses in our
test area of Roding.
As input, the program receives all bus stops in
comma-separated values (CSV) format with the
longitude and latitude of the coordinate point as
attributes. In our case, we use the data of all existing
bus stops in Roding, which we extracted by hand from
the timetables as a test data set. If the method is to be
performed for another area, such a CSV file has to be
created anew. For each of these points, the number of
houses at a distance of 100m and the number of points
of interest at a distance of 500m are first retrieved
using the Overpass API. POIs include,e.g., medical
centers, department stores, however, our program does
not distinguish types of POI during the extraction step.
The values for the distance can be adjusted at any time
in a config file of the Python script for calibration and
adjustment of the algorithm. From these values the
weight is determined with the following formula:

weight = nrhouses/(housesarea/10)
2) ∗ 10

+nrattractions/(attractionsarea/10)
2) ∗ 100

(1)

The size of the area was included to make sure a very
large search area will not automatically lead to a very
high weighting. A Point of Interest (PoI) or attraction
is more important for our weighting and is therefore
multiplied by 100. The area was squared because the
algorithm for generating the Voronoi diagram was
overwhelmed by searching such a large area. The value
100 was fixed, because an even larger value would not
have been sufficiently performant in terms of scaling.
These PoI’s are particularly useful for our representation
because they represent large facilities to which a large
number of people prefer to travel. We perform filtering,

which PoIs are also attractive for passengers. Examples
of such PoIs are large company buildings where very
many people work, hospitals, or retirement homes. The
number of attractions is not divided by the underlying
area, because it can happen that such an attraction
takes a larger area and therefore cannot be completely
recorded if it is divided by the area. So it is rather the
presence and not the density of PoIs that matters here.
In addition to the values for weighting, a minimum and
maximum distance between bus stops can also be given
to the algorithm, so that new optimized bus stops can be
generated.
If all polygons were divided into smaller sub-polygons
according to our chosen method, the number of stops in
the centers would increase many times over, while only
a few new bus stops would be placed in the rural regions
[18]. In addition, for the division in sub-polygons, it
is impossible to predict whether the new stops in the
rural areas are really useful, or whether they are located
in completely uninhabited areas and thus cannot be
reached by any person. Thus, without weighting, a
check would have to be made after each subdivision to
determine whether the subdivision was reasonable, and
this would greatly increase the runtime of the method.
Another problem in the case study of our selected small
town Roding is that it is located close to the Czech
border and the buses on the routes may not cross any
national borders. Thus, all new points of the Voronoi
diagram that lie outside Germany have to be discarded.
In order to avoid the listed problems in the creation
of new stops and to generate a redundancy-free public
transport system, we modified the original Voronoi
diagram algorithm and built our new method, such that
Voronoi diagrams are created according to GIS data.
The next step starts with the generation of the Voronoi
diagrams.
As described earlier, Voronoi diagrams are characterized
primarily by the fact that each point within a polygon is
farther away from the starting point of another polygon
than from that of its own. Let P be a set of n points and
R a set of n points in R2, n ≥ 3. All of these points are
nonlinear.
For all these points, the distance between Pi and Pj

is defined as any pair (Pi, Pj) ∈ R. Let V (Pi) be the
Voronoi region of Pi also be defined as the set of points
with minimum distance to Pi. So, for each point inside
the polygon the following formula applies:

V (Pi) = {P ∈ R2|D(P, Pi) < D(P, Pj)},
(i, j = 1, 2, ..., n)

(2)

Moreover, (i, j) must hold. The Voronoi diagram
defined by P is thus defined as:
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V (P ){V (P1), V (P2), ..., V (Pn) =

Un
i=1{V (Pi)}}

(3)

For our Roding case study, we let the Voronoi algorithm
run on a test area of 674km2 to create 1000 new bus
stops in parallel using the Pandas library [19].
For the implementation of the algorithm to create the
Voronoi diagrams, the function ’spatial.Voronoi’ of the
Python library scipy is used [20]. This receives all input
bus stops as starting points and returns an object that
contains all Voronoi vertices, finite regions, and finite
ridges in 2D representation. For our subdivision into
subpolygons, the vertices are of particular importance.
Splitting and merging in our method is done according
to the Fortunes algorithm, so there is no possibility to
specify the smallest size of a polygon. of a polygon.
However, due to our weighting, it is extremely unlikely
that polygons will be subdivided to such an extent that
a subdivision is no longer useful. For this, many houses
and PoIs would have to be located at the same time in
a very small space, and in this case, it also makes sense
to have to place several stops at such a place. Maybe
it even makes sense to place a bus station at such a
place. A special case is the boundary treatment of the
considered map for the creation of the Voronoi diagram.
Here, due to the chosen map section, the convex hull of
all stops in R is assumed to be the bounding surface.
Thus, there cannot be an infinite expansion, and points
that are not in the catchment area of the buses are
ignored. Alternatively, it can be specified through the
configuration file of the algorithm, that a polygon can
reach a maximum area and should stop growing after
this area. Thus the limitation by the convex hull is
ignored.

After the Voronoi diagram has been created, the

Figure 2. generated Voronoi diagram over the map

weighted setting of new bus stops can now take place.

For this purpose, the value weight from the Equation
1is compared for each point and multiplied by the area
of the corresponding polygon. Thus, on the one hand,
very large areas are preferred for partitioning and, at the
same time, polygons with a dense population or many
points of interest are offered for placing new bus stops
as well. Figure 2 shows the generated Voronoi diagrams
superimposed on the map. The black lines drawn
in represent how the subpolygons are created. These
lines are not visible between all red points, because
adjacent polygons with small areas can be merged. The
completely generated stops are also already drawn in as
red dots. Thus, it can be seen how a polygon will be
divided into subpolygons. The procedure for splitting
the map into subpolygons starts with the polygon that
has the largest weight value. This is defined by an edge
between two randomly chosen opposite points into two
partial polygons. Each of these candidate polygons is
assigned a new starting point, which is the geometric
center of the polygon. Whether the candidate polygon is
ultimately used for a new stop depends on the adaptation
to the street system in the next step. Figure 3 shows
a graphical representation of the weighting process for
a potential new stop counts all stops from the adjacent
polygons (orange circles) and the newly created stop
(red circle) within a radius of 100m each and takes the
number of houses in the intersection as a parameter
for the weighting. This representation is independent
of figure 2 and visualizes the decision making of the
algorithm when creating a new stop Whenever a division
takes place and the set of polygons grows, a new query
is made for the number of houses within the polygon
and the weighting is performed again. The algorithm
ends when the specified number of iterations is reached.
The number of specified iterations corresponds to the
number of bus stops to be created. So for each iteration,
a new stop is added. Besides weighting the locations,
a classification into reachable and unreachable locations
is necessary. This is performed in an additional step in
our implementation. For each new candidate point, we
check if it is located near a road. For this purpose, a
nearest-neighbor search for the closest node is started
using the Overpass API. A node is one of the core
elements of the OpenStreetMap data model and contains
a longitude and latitude value in addition to its ID. If
the node should belong to a non-provided way type
(highway or PoI) the search will continue until a suitable
candidate is found. At the moment only roads cars
can drive on are accepted, but no highways, since no
boarding or alighting is allowed there. In the future, the
restrictions on accepted nodes are more restrictive, such
that a dead-end street where a bus cannot turn will not be
accepted either. If no street is found within a specified
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Figure 3. graphical representation of the weighting

process

distance of 200m, the algorithm aborts, and the potential
new point is discarded. This search can also cross the
boundaries of the previously created polygons.
To get an overview of the generated stops as a person,
GeoPlotLib is used [21] to render them on a map. With
the help of this library, our rendering method receives as
input our newly generated candidate points for bus stops
and the corresponding map tiles from OpenStreetMap.
Depending on the specified control parameters, the input
bus stops can also be passed as additional parameters, so
that a better comparison is possible. The output is done
in an interactive UI or exported in png format depending
on the user’s requirements. In addition to the graphical
representation two files, that help with debugging and
can be processed directly by GIS Systems like the
OpenRouteService [22], are also created.

Figure 4 shows all original stops as blue dots, and
the newly placed ones as red dots. The image section
covers the whole area of the small town of Roding and
all neighboring towns and villages. The map has a scale
of 50km. In our experiment, a value of 2200 new bus
stops was passed to the algorithm, which should be set
additionally in the area. In the examined point set, for
117 new points no street could be found in the vicinity
and thus, no new stop.

5. Evaluation

In this chapter, an evaluation of the performance is
done and some possible improvements and possibilities
for parallelization are suggested. In addition, a
comparison with other methods is made and the
application area of our method is clearly delimited to
these.

5.1. Runtime and memory evaluation

The tests we ran for generating the map with the
newly defined stops were run on a computer with a
Ryzen 9 5900HS CPU, 32GB RAM, and an RTX
3080 GPU. On this system, the average runtime of the
algorithm was about 3.2 minutes. Our tests showed
that API queries consumed most of that time. Since
the OpenStreetMap data generally works with roads and
PoIs, there can be no prior exclusion of unusable areas
to shorten the duration.
The procedure for retrieving the information of the
individual points via the Overpass API is already
parallelized with 16 jobs. Nevertheless, this process
takes the most total time and is largely dependent on
the speed of the Internet connection as well as the speed
of the queried API. Saving the information locally the
first time it is run, or loading it from a file, would
completely avoid the long runtime, but it would also
limit the flexibility of the algorithm. The storage of
parameters can serve as a middle way. This way, the
queries are only needed for the first run. If you want
to run the algorithm again with a different number of
output stops, the runtime is reduced significantly. A test
in which all information was previously saved in a JSON
representation showed that the step of data retrieval took
a total of only about 2 seconds instead of the previous 2
minutes and 20 seconds. The JSON file had a file size of
about 600 kilobytes.
The depiction in Figure 5 shows the shares of the
runtime in the total time of the algorithm. From
this diagram, it can be seen that the retrieval of the
information for the stops takes most of the time. Only
then follows the actual computationally intensive task of
the Voronoi diagram.
As mentioned in Section 2 the algorithm has a runtime
complexity of O(nlog(n)) and a space complexity of
O(n). Nevertheless, the RAM of the test computer is
filled up due to a large amount of generated data and the
32GB were only just sufficient for the chosen use case
with 2083 new stops.
After the method has been carried out, there are still
some open tasks that could further improve the system.
By recording the traffic volume and the main traffic
direction, even better conclusions could be drawn about
how useful a stop is. Work is already underway to
integrate recorded traffic data into the system. Also,
the impact of stops that are served by buses on different
routes has not yet been taken into account. However,
it can be assumed that there are significantly more
passengers at these stops. We are currently conducting
an investigation on these questions, using passenger
counters in the busses.
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Figure 4. 2083 new and the already existing bus stops for the catchment area of Roding

An initial test in the form of integration of our results
into the SUMO tool showed a shorter mean travel time
for individual pedestrians [23], confirming the good
positioning of new stops. For example, currently, the
population uniform is estimated and does not fully
correspond to the distribution in the real city of Roding.
The system we developed can be extended by further
attributes and parameters at any time due to its modular
structure. However, city planners and bus operators in
Roding are already experimenting with the tool to track
where a new bus stop is needed, or which stops have
long been unused and, therefore, unnecessary.

5.2. Comparison with other models

In this section, we compare our new model with
existing other models. The p-median problem describes
how to localize p facilities to reduce the demand
weighted average distance between demand nodes and
the closest facility. On general graphs, this is a

NP hard problem that can be solved by a tree in
polynomial time [24]. Unlike this problem, our method
is not based on pre-existing points and finding the
shortest average distance between them, but rather
new facilities are dynamically added to an existing
graph to achieve the largest possible spatial coverage.
However, the p-median problem also occurs in our
use case. E.g. when a passenger searches for a bus
stop in the generated model. This can be solved for
example by a Neighborhood Search Algorithm. The
p-center problem is a subproblem of the p-median
problem. It is a min-max solution that reduces the
maximum distance between a demand point and a
closest point in a set of p points [24]. The p-center
problem has more similarities than the p-center with our
method, since no discrimination by clustering occurs
here. Thus, with the p-center problem, special attention
is paid to individuals who have very poor transportation
access. We created a middle ground by weighting
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Figure 5. Runtime for the individual steps of the

method for 2200 new bus stops

in our approach between minimizing total or average
distance and minimizing the maximum distance of a
single road user. By shifting the parameters in our
weighting, the focus between these two extremes can
also be changed dynamically. Two other methods,
namely MLCP and the location-allocation method
describe both possibilities, to find the optimal location
for a company. A wide variety of factors can be
considered in the analysis. Some of these include
maximizing accessibility, minimizing the number of
facilities, or maximizing site coverage. The facilities
of competitors are also recorded and the market share
can be determined. This determination of the market
share based on the competition is counterproductive in
our application example. Bus stops are usually served
by several companies at the same time, and there is
a rather and there is a rather cooperative behavior in
local public transport. Therefore, no detailed analysis
as in location-allocation modeling is necessary and
our model with fewer parameters that benefit all bus
companies in the area can be used. The maintenance
location choice problem exhibits an interesting approach

that has not been considered in our approach so far.
Some solutions to this problem deal not only with the
current best location of a facility but also the future best
[25]. Due to increasing urbanization and an increase in
population, housing can be spread out very quickly and
the weighting of our model has been shifted so that the
positions of stops in the future are no longer optimal.

6. Conclusion

In this paper, a new method was presented that
we developed to position bus stops based on the
subdivision of Voronoi diagrams. This method works
with a weighting based on GIS data. Especially, the
surrounding points of interest and houses are used as
attributes.
We have shown how to use the method in various ways
in a case study. In an area with already existing bus stops
the method can e.g. uncover places where a new bus stop
would make sense. The position of already existing bus
stops can be changed for an optimization of the distances
between bus stops and better accessibility. In addition, it
is possible for an area in which there are no bus stops to
set as many stops as one wants. Creating a large number
of bus stops makes sense especially for a demand bus
solution where stops are not ”buildings” but temporally
used collection points with changing locations that are
broadcasted via a smartphone application. As soon
as enough people in a rural area request a bus, it
could be called to one of the numerous new bus stops.
Furthermore, the goal of setting new bus stops achieved
in this paper can be combined with our previous work.
By being able to predict passenger demand for existing
ones and knowing where a new stop would be useful, a
better-utilized system of bus routes can be generated [5].
The method has also no problems to calculate stops
in the four-digit range. These many bus stops are not
necessary for the area of the small town Roding. Even in
megacities, such a large network of stops is unnecessary.
However, if call buses are to be supported in the future
and requests come from many people at the same time,
it will make sense to make these calculations often. That
many stops are necessary when road regulations do not
allow a passenger to get on or off the bus if no bus
stop is declared at this location, as it is the case in
European countries and many others. To circumvent
these regulations, it may make sense to declare the
numerous stops generated by our method as real bus
stops every time it passes by. This does not mean that
a bus has to stop there.
In the next step, the newly determined stops can be
combined with other tools, to create optimized bus
routes. Integration into traffic simulation environments
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such as Simulation of Urban MObility (SUMO) [23] to
test the new stops directly is also possible immediately.
This gives city planners and officials a very quick insight
on which to base decisions about how to expand public
transportation.
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