TY - CHAP A1 - Selig, Tim A1 - Bauer, Patrick A1 - Frikel, Jürgen A1 - März, Thomas A1 - Storath, Martin A1 - Weinmann, Andreas ED - Palm, Christoph ED - Breininger, Katharina ED - Deserno, Thomas M. ED - Handels, Heinz ED - Maier, Andreas ED - Maier-Hein, Klaus H. ED - Tolxdorff, Thomas M. T1 - Two-stage Approach for Low-dose and Sparse-angle CT Reconstruction using Backprojection T2 - Bildverarbeitung für die Medizin 2025 (BVM 2025): Proceedings, German Conference on Medical Image Computing, Regensburg March 09-11, 2025 N2 - This paper presents a novel two-stage approach for computed tomography (CT) reconstruction, focusing on sparse-angle and low-dose setups to minimize radiation exposure while maintaining high image quality. Two-stage approaches consist of an initial reconstruction followed by a neural network for image refinement. In the initial reconstruction, we apply the backprojection (BP) instead of the traditional filtered backprojection (FBP). This enhances computational speed and offers potential advantages for more complex geometries, such as fan-beam and cone-beam CT. Additionally, BP addresses noise and artifacts in sparse-angle CT by leveraging its inherent noise-smoothing effect, which reduces streaking artifacts common in FBP reconstructions. For the second stage, we fine-tune the DRUNet proposed by Zhang et al. to further improve reconstruction quality. We call our method BP-DRUNet and evaluate its performance on a synthetically generated ellipsoid dataset alongside thewell-established LoDoPaBCT dataset. Our results show that BP-DRUNet produces competetive results in terms of PSNR and SSIM metrics compared to the FBP-based counterpart, FBPDRUNet, and delivers visually competitive results across all tested angular setups. Y1 - 2025 SN - 978-3-658-47421-8 U6 - https://doi.org/10.1007/978-3-658-47422-5_67 SP - 286 EP - 291 PB - Springer VS CY - Wiesbaden ER - TY - JOUR A1 - Beyer, Thomas A1 - Weigert, Markus A1 - Quick, Harald H. A1 - Pietrzyk, Uwe A1 - Vogt, Florian A1 - Palm, Christoph A1 - Antoch, Gerald A1 - Müller, Stefan P. A1 - Bockisch, Andreas T1 - MR-based attenuation correction for torso-PET/MR imaging BT - pitfalls in mapping MR to CT data JF - European Journal of Nuclear Medicine and Molecular Imaging N2 - Purpose MR-based attenuation correction (AC) will become an integral part of combined PET/MR systems. Here, we propose a toolbox to validate MR-AC of clinical PET/MRI data sets. Methods Torso scans of ten patients were acquired on a combined PET/CT and on a 1.5-T MRI system. MR-based attenuation data were derived from the CT following MR–CT image co-registration and subsequent histogram matching. PET images were reconstructed after CT- (PET/CT) and MR-based AC (PET/MRI). Lesion-to-background (L/B) ratios were estimated on PET/CT and PET/MRI. Results MR–CT histogram matching leads to a mean voxel intensity difference in the CT- and MR-based attenuation images of 12% (max). Mean differences between PET/MRI and PET/CT were 19% (max). L/B ratios were similar except for the lung where local misregistration and intensity transformation leads to a biased PET/MRI. Conclusion Our toolbox can be used to study pitfalls in MR-AC. We found that co-registration accuracy and pixel value transformation determine the accuracy of PET/MRI. KW - PET/MRI KW - PET/CT KW - Attenuation correction KW - Kernspintomografie KW - Positronen-Emissions-Tomografie KW - Schwächung Y1 - 2008 U6 - https://doi.org/10.1007/s00259-008-0734-0 VL - 35 IS - 6 SP - 1142 EP - 1146 ER - TY - JOUR A1 - Hartmann, Robin A1 - Nieberle, Felix A1 - Palm, Christoph A1 - Brébant, Vanessa A1 - Prantl, Lukas A1 - Kuehle, Reinald A1 - Reichert, Torsten E. A1 - Taxis, Juergen A1 - Ettl, Tobias T1 - Utility of Smartphone-based Three-dimensional Surface Imaging for Digital Facial Anthropometry JF - JPRAS Open N2 - Background The utilization of three-dimensional (3D) surface imaging for facial anthropometry is a significant asset for patients undergoing maxillofacial surgery. Notably, there have been recent advancements in smartphone technology that enable 3D surface imaging. In this study, anthropometric assessments of the face were performed using a smartphone and a sophisticated 3D surface imaging system. Methods 30 healthy volunteers (15 females and 15 males) were included in the study. An iPhone 14 Pro (Apple Inc., USA) using the application 3D Scanner App (Laan Consulting Corp., USA) and the Vectra M5 (Canfield Scientific, USA) were employed to create 3D surface models. For each participant, 19 anthropometric measurements were conducted on the 3D surface models. Subsequently, the anthropometric measurements generated by the two approaches were compared. The statistical techniques employed included the paired t-test, paired Wilcoxon signed-rank test, Bland–Altman analysis, and calculation of the intraclass correlation coefficient (ICC). Results All measurements showed excellent agreement between smartphone-based and Vectra M5-based measurements (ICC between 0.85 and 0.97). Statistical analysis revealed no statistically significant differences in the central tendencies for 17 of the 19 linear measurements. Despite the excellent agreement found, Bland–Altman analysis revealed that the 95% limits of agreement between the two methods exceeded ±3 mm for the majority of measurements. Conclusion Digital facial anthropometry using smartphones can serve as a valuable supplementary tool for surgeons, enhancing their communication with patients. However, the proposed data suggest that digital facial anthropometry using smartphones may not yet be suitable for certain diagnostic purposes that require high accuracy. KW - Three-dimensional surface imaging KW - Stereophotogrammetry KW - Smartphone-based surface imaging KW - Digital anthropometry KW - Facial anthropometry Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-70348 VL - 39 SP - 330 EP - 343 PB - Elsevier ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Scheppach, Markus W. A1 - Probst, Andreas A1 - Shahidi, Neal A1 - Prinz, Friederike A1 - Fleischmann, Carola A1 - Römmele, Christoph A1 - Gölder, Stefan Karl A1 - Braun, Georg A1 - Rauber, David A1 - Rückert, Tobias A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Byrne, Michael F. A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm JF - Gut N2 - In this study, we aimed to develop an artificial intelligence clinical decision support solution to mitigate operator-dependent limitations during complex endoscopic procedures such as endoscopic submucosal dissection and peroral endoscopic myotomy, for example, bleeding and perforation. A DeepLabv3-based model was trained to delineate vessels, tissue structures and instruments on endoscopic still images from such procedures. The mean cross-validated Intersection over Union and Dice Score were 63% and 76%, respectively. Applied to standardised video clips from third-space endoscopic procedures, the algorithm showed a mean vessel detection rate of 85% with a false-positive rate of 0.75/min. These performance statistics suggest a potential clinical benefit for procedure safety, time and also training. KW - Artificial Intelligence KW - Endoscopy KW - Medical Image Computing Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-54293 VL - 71 IS - 12 SP - 2388 EP - 2390 PB - BMJ CY - London ER - TY - JOUR A1 - Knödler, Leonard A1 - Baecher, Helena A1 - Kauke-Navarro, Martin A1 - Prantl, Lukas A1 - Machens, Hans-Günther A1 - Scheuermann, Philipp A1 - Palm, Christoph A1 - Baumann, Raphael A1 - Kehrer, Andreas A1 - Panayi, Adriana C. A1 - Knoedler, Samuel T1 - Towards a Reliable and Rapid Automated Grading System in Facial Palsy Patients: Facial Palsy Surgery Meets Computer Science JF - Journal of Clinical Medicine N2 - Background: Reliable, time- and cost-effective, and clinician-friendly diagnostic tools are cornerstones in facial palsy (FP) patient management. Different automated FP grading systems have been developed but revealed persisting downsides such as insufficient accuracy and cost-intensive hardware. We aimed to overcome these barriers and programmed an automated grading system for FP patients utilizing the House and Brackmann scale (HBS). Methods: Image datasets of 86 patients seen at the Department of Plastic, Hand, and Reconstructive Surgery at the University Hospital Regensburg, Germany, between June 2017 and May 2021, were used to train the neural network and evaluate its accuracy. Nine facial poses per patient were analyzed by the algorithm. Results: The algorithm showed an accuracy of 100%. Oversampling did not result in altered outcomes, while the direct form displayed superior accuracy levels when compared to the modular classification form (n = 86; 100% vs. 99%). The Early Fusion technique was linked to improved accuracy outcomes in comparison to the Late Fusion and sequential method (n = 86; 100% vs. 96% vs. 97%). Conclusions: Our automated FP grading system combines high-level accuracy with cost- and time-effectiveness. Our algorithm may accelerate the grading process in FP patients and facilitate the FP surgeon’s workflow. Y1 - 2022 U6 - https://doi.org/10.3390/jcm11174998 VL - 11 IS - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Souza Jr., Luis Antonio de A1 - Palm, Christoph A1 - Mendel, Robert A1 - Hook, Christian A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Weber, Silke A. T. A1 - Papa, João Paulo T1 - A survey on Barrett's esophagus analysis using machine learning JF - Computers in Biology and Medicine N2 - This work presents a systematic review concerning recent studies and technologies of machine learning for Barrett's esophagus (BE) diagnosis and treatment. The use of artificial intelligence is a brand new and promising way to evaluate such disease. We compile some works published at some well-established databases, such as Science Direct, IEEEXplore, PubMed, Plos One, Multidisciplinary Digital Publishing Institute (MDPI), Association for Computing Machinery (ACM), Springer, and Hindawi Publishing Corporation. Each selected work has been analyzed to present its objective, methodology, and results. The BE progression to dysplasia or adenocarcinoma shows a complex pattern to be detected during endoscopic surveillance. Therefore, it is valuable to assist its diagnosis and automatic identification using computer analysis. The evaluation of the BE dysplasia can be performed through manual or automated segmentation through machine learning techniques. Finally, in this survey, we reviewed recent studies focused on the automatic detection of the neoplastic region for classification purposes using machine learning methods. KW - Speiseröhrenkrankheit KW - Diagnose KW - Mustererkennung KW - Maschinelles Lernen KW - Literaturbericht KW - Barrett's esophagus KW - Machine learning KW - Adenocarcinoma KW - Image processing KW - Pattern recognition KW - Computer-aided diagnosis Y1 - 2018 U6 - https://doi.org/10.1016/j.compbiomed.2018.03.014 VL - 96 SP - 203 EP - 213 PB - Elsevier ER - TY - JOUR A1 - Ott, Tankred A1 - Palm, Christoph A1 - Vogt, Robert A1 - Oberprieler, Christoph T1 - GinJinn: An object-detection pipeline for automated feature extraction from herbarium specimens JF - Applications in Plant Sciences N2 - PREMISE: The generation of morphological data in evolutionary, taxonomic, and ecological studies of plants using herbarium material has traditionally been a labor-intensive task. Recent progress in machine learning using deep artificial neural networks (deep learning) for image classification and object detection has facilitated the establishment of a pipeline for the automatic recognition and extraction of relevant structures in images of herbarium specimens. METHODS AND RESULTS: We implemented an extendable pipeline based on state-of-the-art deep-learning object-detection methods to collect leaf images from herbarium specimens of two species of the genus Leucanthemum. Using 183 specimens as the training data set, our pipeline extracted one or more intact leaves in 95% of the 61 test images. CONCLUSIONS: We establish GinJinn as a deep-learning object-detection tool for the automatic recognition and extraction of individual leaves or other structures from herbarium specimens. Our pipeline offers greater flexibility and a lower entrance barrier than previous image-processing approaches based on hand-crafted features. KW - Deep Learning KW - herbarium specimens KW - object detection KW - visual recognition KW - Deep Learning KW - Objekterkennung KW - Maschinelles Sehen KW - Pflanzen Y1 - 2020 U6 - https://doi.org/10.1002/aps3.11351 SN - 2168-0450 VL - 8 IS - 6 SP - e11351 PB - Wiley, Botanical Society of America ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Palm, Christoph A1 - Probst, Andreas A1 - Mendel, Robert A1 - Manzeneder, Johannes A1 - Prinz, Friederike A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Siersema, Peter A1 - Messmann, Helmut T1 - A technical review of artificial intelligence as applied to gastrointestinal endoscopy: clarifying the terminology JF - Endoscopy International Open N2 - The growing number of publications on the application of artificial intelligence (AI) in medicine underlines the enormous importance and potential of this emerging field of research. In gastrointestinal endoscopy, AI has been applied to all segments of the gastrointestinal tract most importantly in the detection and characterization of colorectal polyps. However, AI research has been published also in the stomach and esophagus for both neoplastic and non-neoplastic disorders. The various technical as well as medical aspects of AI, however, remain confusing especially for non-expert physicians. This physician-engineer co-authored review explains the basic technical aspects of AI and provides a comprehensive overview of recent publications on AI in gastrointestinal endoscopy. Finally, a basic insight is offered into understanding publications on AI in gastrointestinal endoscopy. KW - Diagnose KW - Maschinelles Lernen KW - Gastroenterologie KW - Künstliche Intelligenz KW - Barrett's esophagus KW - Deep learning Y1 - 2019 U6 - https://doi.org/10.1055/a-1010-5705 VL - 07 IS - 12 SP - 1616 EP - 1623 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - CHAP A1 - Wöhl, Rebecca A1 - Huber, Michaela A1 - Loibl, Markus A1 - Riebschläger, Birgit A1 - Nerlich, Michael A1 - Palm, Christoph T1 - The Impact of Semi-Automated Segmentation and 3D Analysis on Testing New Osteosynthesis Material T2 - Bildverarbeitung für die Medizin 2017; Algorithmen - Systeme - Anwendungen; Proceedings des Workshops vom 12. bis 14. März 2017 in Heidelberg N2 - A new protocol for testing osteosynthesis material postoperatively combining semi-automated segmentation and 3D analysis of surface meshes is proposed. By various steps of transformation and measuring, objective data can be collected. In this study the specifications of a locking plate used for mediocarpal arthrodesis of the wrist were examined. The results show, that union of the lunate, triquetrum, hamate and capitate was achieved and that the plate is comparable to coexisting arthrodesis systems. Additionally, it was shown, that the complications detected correlate to the clinical outcome. In synopsis, this protocol is considered beneficial and should be taken into account in further studies. KW - Osteosynthese KW - Implantatwerkstoff KW - Materialprüfung KW - Bildsegmentierung KW - Dreidimensionale Bildverarbeitung Y1 - 2017 U6 - https://doi.org/10.1007/978-3-662-54345-0_30 SP - 122 EP - 127 PB - Springer CY - Berlin ER - TY - CHAP A1 - Palm, Christoph T1 - Fusion of Serial 2D Section Images and MRI Reference BT - an Overview T2 - Workshop Innovative Verarbeitung bioelektrischer und biomagnetischer Signale (bbs2014), Berlin, 10.04.2014 N2 - Serial 2D section images with high resolution, resulting from innovative imaging methods become even more valuable, if they are fused with in vivo volumes. Achieving this goal, the 3D context of the sections would be restored, the deformations would be corrected and the artefacts would be eliminated. However, the registration in this field faces big challenges and is not solved in general. On the other hand, several approaches have been introduced dealing at least with some of these difficulties. Here, a brief overview of the topic is given and some of the solutions are presented. It does not constitute the claim to be a complete review, but could be a starting point for those who are interested in this field. KW - Kernspintomografie KW - Optimierung KW - Magnetic Resonance Imaging KW - MRI KW - Literaturbericht Y1 - 2014 U6 - https://doi.org/10.13140/RG.2.1.1358.3449 ER - TY - JOUR A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Palm, Christoph A1 - Probst, Andreas A1 - Muzalyova, Anna A1 - Scheppach, Markus W. A1 - Nagl, Sandra A1 - Schnoy, Elisabeth A1 - Römmele, Christoph A1 - Schulz, Dominik Andreas Helmut Otto A1 - Schlottmann, Jakob A1 - Prinz, Friederike A1 - Rauber, David A1 - Rückert, Tobias A1 - Matsumura, Tomoaki A1 - Fernández-Esparrach, Glòria A1 - Parsa, Nasim A1 - Byrne, Michael F. A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Influence of artificial intelligence on the diagnostic performance of endoscopists in the assessment of Barrett’s esophagus: a tandem randomized and video trial JF - Endoscopy N2 - Background This study evaluated the effect of an artificial intelligence (AI)-based clinical decision support system on the performance and diagnostic confidence of endoscopists in their assessment of Barrett’s esophagus (BE). Methods 96 standardized endoscopy videos were assessed by 22 endoscopists with varying degrees of BE experience from 12 centers. Assessment was randomized into two video sets: group A (review first without AI and second with AI) and group B (review first with AI and second without AI). Endoscopists were required to evaluate each video for the presence of Barrett’s esophagus-related neoplasia (BERN) and then decide on a spot for a targeted biopsy. After the second assessment, they were allowed to change their clinical decision and confidence level. Results AI had a stand-alone sensitivity, specificity, and accuracy of 92.2%, 68.9%, and 81.3%, respectively. Without AI, BE experts had an overall sensitivity, specificity, and accuracy of 83.3%, 58.1%, and 71.5%, respectively. With AI, BE nonexperts showed a significant improvement in sensitivity and specificity when videos were assessed a second time with AI (sensitivity 69.8% [95%CI 65.2%–74.2%] to 78.0% [95%CI 74.0%–82.0%]; specificity 67.3% [95%CI 62.5%–72.2%] to 72.7% [95%CI 68.2%–77.3%]). In addition, the diagnostic confidence of BE nonexperts improved significantly with AI. Conclusion BE nonexperts benefitted significantly from additional AI. BE experts and nonexperts remained significantly below the stand-alone performance of AI, suggesting that there may be other factors influencing endoscopists’ decisions to follow or discard AI advice. KW - Artificial Intelligence KW - Endoscopy KW - Medical Image Computing Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-72818 VL - 56 SP - 641 EP - 649 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - GEN A1 - Ebigbo, Alanna A1 - Rauber, David A1 - Ayoub, Mousa A1 - Birzle, Lisa A1 - Matsumura, Tomoaki A1 - Probst, Andreas A1 - Steinbrück, Ingo A1 - Nagl, Sandra A1 - Römmele, Christoph A1 - Meinikheim, Michael A1 - Scheppach, Markus W. A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Early Esophageal Cancer and the Generalizability of Artificial Intelligence T2 - Endoscopy N2 - Aims Artificial Intelligence (AI) systems in gastrointestinal endoscopy are narrow because they are trained to solve only one specific task. Unlike Narrow-AI, general AI systems may be able to solve multiple and unrelated tasks. We aimed to understand whether an AI system trained to detect, characterize, and segment early Barrett’s neoplasia (Barrett’s AI) is only capable of detecting this pathology or can also detect and segment other diseases like early squamous cell cancer (SCC). Methods 120 white light (WL) and narrow-band endoscopic images (NBI) from 60 patients (1 WL and 1 NBI image per patient) were extracted from the endoscopic database of the University Hospital Augsburg. Images were annotated by three expert endoscopists with extensive experience in the diagnosis and endoscopic resection of early esophageal neoplasias. An AI system based on DeepLabV3+architecture dedicated to early Barrett’s neoplasia was tested on these images. The AI system was neither trained with SCC images nor had it seen the test images prior to evaluation. The overlap between the three expert annotations („expert-agreement“) was the ground truth for evaluating AI performance. Results Barrett’s AI detected early SCC with a mean intersection over reference (IoR) of 92% when at least 1 pixel of the AI prediction overlapped with the expert-agreement. When the threshold was increased to 5%, 10%, and 20% overlap with the expert-agreement, the IoR was 88%, 85% and 82%, respectively. The mean Intersection Over Union (IoU) – a metric according to segmentation quality between the AI prediction and the expert-agreement – was 0.45. The mean expert IoU as a measure of agreement between the three experts was 0.60. Conclusions In the context of this pilot study, the predictions of SCC by a Barrett’s dedicated AI showed some overlap to the expert-agreement. Therefore, features learned from Barrett’s cancer-related training might be helpful also for SCC prediction. Our results allow different possible explanations. On the one hand, some Barrett’s cancer features generalize toward the related task of assessing early SCC. On the other hand, the Barrett’s AI is less specific to Barrett’s cancer than a general predictor of pathological tissue. However, we expect to enhance the detection quality significantly by extending the training to SCC-specific data. The insight of this study opens the way towards a transfer learning approach for more efficient training of AI to solve tasks in other domains. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1783775 VL - 56 IS - S 02 SP - S428 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Rauber, David A1 - Probst, Andreas A1 - Nagl, Sandra A1 - Römmele, Christoph A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Artificial Intelligence (AI) improves endoscopists’ vessel detection during endoscopic submucosal dissection (ESD) T2 - Endoscopy N2 - Aims While AI has been successfully implemented in detecting and characterizing colonic polyps, its role in therapeutic endoscopy remains to be elucidated. Especially third space endoscopy procedures like ESD and peroral endoscopic myotomy (POEM) pose a technical challenge and the risk of operator-dependent complications like intraprocedural bleeding and perforation. Therefore, we aimed at developing an AI-algorithm for intraprocedural real time vessel detection during ESD and POEM. Methods A training dataset consisting of 5470 annotated still images from 59 full-length videos (47 ESD, 12 POEM) and 179681 unlabeled images was used to train a DeepLabV3+neural network with the ECMT semi-supervised learning method. Evaluation for vessel detection rate (VDR) and time (VDT) of 19 endoscopists with and without AI-support was performed using a testing dataset of 101 standardized video clips with 200 predefined blood vessels. Endoscopists were stratified into trainees and experts in third space endoscopy. Results The AI algorithm had a mean VDR of 93.5% and a median VDT of 0.32 seconds. AI support was associated with a statistically significant increase in VDR from 54.9% to 73.0% and from 59.0% to 74.1% for trainees and experts, respectively. VDT significantly decreased from 7.21 sec to 5.09 sec for trainees and from 6.10 sec to 5.38 sec for experts in the AI-support group. False positive (FP) readings occurred in 4.5% of frames. FP structures were detected significantly shorter than true positives (0.71 sec vs. 5.99 sec). Conclusions AI improved VDR and VDT of trainees and experts in third space endoscopy and may reduce performance variability during training. Further research is needed to evaluate the clinical impact of this new technology. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1782891 VL - 56 IS - S 02 SP - S93 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Zellmer, Stephan A1 - Rauber, David A1 - Probst, Andreas A1 - Weber, Tobias A1 - Braun, Georg A1 - Römmele, Christoph A1 - Nagl, Sandra A1 - Schnoy, Elisabeth A1 - Messmann, Helmut A1 - Ebigbo, Alanna A1 - Palm, Christoph T1 - Artificial intelligence as a tool in the detection of the papillary ostium during ERCP T2 - Endoscopy N2 - Aims Endoscopic retrograde cholangiopancreaticography (ERCP) is the gold standard in the diagnosis as well as treatment of diseases of the pancreatobiliary tract. However, it is technically complex and has a relatively high complication rate. In particular, cannulation of the papillary ostium remains challenging. The aim of this study is to examine whether a deep-learning algorithm can be used to detect the major duodenal papilla and in particular the papillary ostium reliably and could therefore be a valuable tool for inexperienced endoscopists, particularly in training situation. Methods We analyzed a total of 654 retrospectively collected images of 85 patients. Both the major duodenal papilla and the ostium were then segmented. Afterwards, a neural network was trained using a deep-learning algorithm. A 5-fold cross-validation was performed. Subsequently, we ran the algorithm on 5 prospectively collected videos of ERCPs. Results 5-fold cross-validation on the 654 labeled data resulted in an F1 value of 0.8007, a sensitivity of 0.8409 and a specificity of 0.9757 for the class papilla, and an F1 value of 0.5724, a sensitivity of 0.5456 and a specificity of 0.9966 for the class ostium. Regardless of the class, the average F1 value (class papilla and class ostium) was 0.6866, the sensitivity 0.6933 and the specificity 0.9861. In 100% of cases the AI-detected localization of the papillary ostium in the prospectively collected videos corresponded to the localization of the cannulation performed by the endoscopist. Conclusions In the present study, the neural network was able to identify the major duodenal papilla with a high sensitivity and high specificity. In detecting the papillary ostium, the sensitivity was notably lower. However, when used on videos, the AI was able to identify the location of the subsequent cannulation with 100% accuracy. In the future, the neural network will be trained with more data. Thus, a suitable tool for ERCP could be established, especially in the training situation. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1783138 VL - 56 IS - S 02 SP - S198 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Scheppach, Markus W. A1 - Nunes, Danilo Weber A1 - Arizi, X. A1 - Rauber, David A1 - Probst, Andreas A1 - Nagl, Sandra A1 - Römmele, Christoph A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Procedural phase recognition in endoscopic submucosal dissection (ESD) using artificial intelligence (AI) T2 - Endoscopy N2 - Aims Recent evidence suggests the possibility of intraprocedural phase recognition in surgical operations as well as endoscopic interventions such as peroral endoscopic myotomy and endoscopic submucosal dissection (ESD) by AI-algorithms. The intricate measurement of intraprocedural phase distribution may deepen the understanding of the procedure. Furthermore, real-time quality assessment as well as automation of reporting may become possible. Therefore, we aimed to develop an AI-algorithm for intraprocedural phase recognition during ESD. Methods A training dataset of 364385 single images from 9 full-length ESD videos was compiled. Each frame was classified into one procedural phase. Phases included scope manipulation, marking, injection, application of electrical current and bleeding. Allocation of each frame was only possible to one category. This training dataset was used to train a Video Swin transformer to recognize the phases. Temporal information was included via logarithmic frame sampling. Validation was performed using two separate ESD videos with 29801 single frames. Results The validation yielded sensitivities of 97.81%, 97.83%, 95.53%, 85.01% and 87.55% for scope manipulation, marking, injection, electric application and bleeding, respectively. Specificities of 77.78%, 90.91%, 95.91%, 93.65% and 84.76% were measured for the same parameters. Conclusions The developed algorithm was able to classify full-length ESD videos on a frame-by-frame basis into the predefined classes with high sensitivities and specificities. Future research will aim at the development of quality metrics based on single-operator phase distribution. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1783804 VL - 56 IS - S 02 SP - S439 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Scheppach, Markus W. A1 - Rauber, David A1 - Stallhofer, Johannes A1 - Muzalyova, Anna A1 - Otten, Vera A1 - Manzeneder, Carolin A1 - Schwamberger, Tanja A1 - Wanzl, Julia A1 - Schlottmann, Jakob A1 - Tadic, Vidan A1 - Probst, Andreas A1 - Schnoy, Elisabeth A1 - Römmele, Christoph A1 - Fleischmann, Carola A1 - Meinikheim, Michael A1 - Miller, Silvia A1 - Märkl, Bruno A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Performance comparison of a deep learning algorithm with endoscopists in the detection of duodenal villous atrophy (VA) T2 - Endoscopy N2 - Aims  VA is an endoscopic finding of celiac disease (CD), which can easily be missed if pretest probability is low. In this study, we aimed to develop an artificial intelligence (AI) algorithm for the detection of villous atrophy on endoscopic images. Methods 858 images from 182 patients with VA and 846 images from 323 patients with normal duodenal mucosa were used for training and internal validation of an AI algorithm (ResNet18). A separate dataset was used for external validation, as well as determination of detection performance of experts, trainees and trainees with AI support. According to the AI consultation distribution, images were stratified into “easy” and “difficult”. Results Internal validation showed 82%, 85% and 84% for sensitivity, specificity and accuracy. External validation showed 90%, 76% and 84%. The algorithm was significantly more sensitive and accurate than trainees, trainees with AI support and experts in endoscopy. AI support in trainees was associated with significantly improved performance. While all endoscopists showed significantly lower detection for “difficult” images, AI performance remained stable. Conclusions The algorithm outperformed trainees and experts in sensitivity and accuracy for VA detection. The significant improvement with AI support suggests a potential clinical benefit. Stable performance of the algorithm in “easy” and “difficult” test images may indicate an advantage in macroscopically challenging cases. Y1 - 2023 U6 - https://doi.org/10.1055/s-0043-1765421 VL - 55 IS - S02 PB - Thieme ER - TY - GEN A1 - Scheppach, Markus W. A1 - Weber Nunes, Danilo A1 - Arizi, X. A1 - Rauber, David A1 - Probst, Andreas A1 - Nagl, Sandra A1 - Römmele, Christoph A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Single frame workflow recognition during endoscopic submucosal dissection (ESD) using artificial intelligence (AI) T2 - Endoscopy N2 - Aims  Precise surgical phase recognition and evaluation may improve our understanding of complex endoscopic procedures. Furthermore, quality control measurements and endoscopy training could benefit from objective descriptions of surgical phase distributions. Therefore, we aimed to develop an artificial intelligence algorithm for frame-by-frame operational phase recognition during endoscopic submucosal dissection (ESD). Methods  Full length ESD-videos from 31 patients comprising 6.297.782 single images were collected retrospectively. Videos were annotated on a frame-by-frame basis for the operational macro-phases diagnostics, marking, injection, dissection and bleeding. Further subphases were the application of electrical current, visible injection of fluid into the submucosal space and scope manipulation, leading to 11 phases in total. 4.975.699 frames (21 patients) were used for training of a video swin transformer using uniform frame sampling for temporal information. Hyperparameter tuning was performed with 897.325 further frames (6 patients), while 424.758 frames (4 patients) were used for validation. Results  The overall F1 scores on the test dataset for the macro-phases and all 11 phases were 0.96 and 0.90, respectively. The recall values for diagnostics, marking, injection, dissection and bleeding were 1.00, 1.00, 0.95, 0.96 and 0.93, respectively. Conclusions  The algorithm classified operational phases during ESD with high accuracy. A precise evaluation of phase distribution may allow for the development of objective quality metrics for quality control and training. Y1 - 2025 U6 - https://doi.org/10.1055/s-0045-1806324 VL - 57 IS - S 02 SP - S511 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Weigert, Markus A1 - Pietrzyk, Uwe A1 - Müller, Stefan P. A1 - Palm, Christoph A1 - Beyer, Thomas T1 - Whole-body PET/CT imaging BT - Combining software- and hardware-based co-registration JF - Zeitschrift für Medizinische Physik N2 - Aim Combined whole-body (WB) PET/CT imaging provides better overall co-registration compared to separate CT and PET. However, in clinical routine local PET-CT mis-registration cannot be avoided. Thus, the reconstructed PET tracer distribution may be biased when using the misaligned CT transmission data for CT-based attenuation correction (CT-AC). We investigate the feasibility of retrospective co-registration techniques to align CT and PET images prior to CT-AC, thus improving potentially the quality of combined PET/CT imaging in clinical routine. Methods First, using a commercial software registration package CT images were aligned to the uncorrected PET data by rigid and non-rigid registration methods. Co-registration accuracy of both alignment approaches was assessed by reviewing the PET tracer uptake patterns (visual, linked cursor display) following attenuation correction based on the original and co-registered CT. Second, we investigated non-rigid registration based on a prototype ITK implementation of the B-spline algorithm on a similar targeted MR-CT registration task, there showing promising results. Results Manual rigid, landmark-based co-registration introduced unacceptable misalignment, in particular in peripheral areas of the whole-body images. Manual, non-rigid landmark-based co-registration prior to CT-AC was successful with minor loco-regional distortions. Nevertheless, neither rigid nor non-rigid automatic co-registration based on the Mutual Information image to image metric succeeded in co-registering the CT and noAC-PET images. In contrast to widely available commercial software registration our implementation of an alternative automated, non-rigid B-spline co-registration technique yielded promising results in this setting with MR-CT data. Conclusion In clinical PET/CT imaging, retrospective registration of CT and uncorrected PET images may improve the quality of the AC-PET images. As of today no validated and clinically viable commercial registration software is in routine use. This has triggered our efforts in pursuing new approaches to a validated, non-rigid co-registration algorithm applicable to whole-body PET/CT imaging of which first results are presented here. This approach appears suitable for applications in retrospective WB-PET/CT alignment. Ziel Kombinierte PET/CT-Bildgebung ermöglicht verbesserte Koregistrierung von PET- und CT-Daten gegenüber separat akquirierten Bildern. Trotzdem entstehen in der klinischen Anwendung lokale Fehlregistrierungen, die zu Fehlern in der rekonstruierten PET- Tracerverteilung führen können, falls die unregistrierten CT-Daten zur Schwächungskorrektur (AC) der Emissionsdaten verwendet werden. Wir untersuchen daher die Anwendung von Bildregistrierungsalgorithmen vor der CT-basierten AC zur Verbesserung der PET-Aufnahmen. Methoden Mittels einer kommerziellen Registrierungssoftware wurden die CT-Daten eines PET/CT- Tomographen durch landmarken- und intensitätsbasierte rigide (starre) und nicht-rigide Registrierungsverfahren räumlich an die unkorrigierten PET-Emissionsdaten angepasst und zur AC verwendet. Zur Bewertung wurden die Tracerverteilungen in den PET-Bildern (vor AC, CT-AC, CT-AC nach Koregistrierung) visuell und mit Hilfe korrelierter Fadenkreuze verglichen. Zusätzlich untersuchten wir die ITK-Implementierung der bekannten B-spline basierten, nicht-rigiden Registrierungsansätze im Hinblick auf ihre Verwendbarkeit für die multimodale PET/CT-Ganzkörperregistrierung. Ergebnisse Mittels landmarkenbasierter, nicht-rigider Registrierung konnte die Tracerverteilung in den PET-Daten lokal verbessert werden. Landmarkenbasierte rigide Registrierung führte zu starker Fehlregistrierung in entfernten Körperregionen. Automatische rigide und nicht-rigide Registrierung unter Verwendung der Mutual-Information-Ähnlichkeitsmetrik versagte auf allen verwendeten Datensätzen. Die automatische Registrierung mit B-spline-Funktionen zeigte vielversprechende Resultate in der Anwendung auf einem ähnlich gelagerten CT–MR-Registrierungsproblem. Fazit Retrospektive, nicht-rigide Registrierung unkorrigierter PET- und CT-Aufnahmen aus kombinierten Aufnahmensystemen vor der AC kann die Qualität von PET-Aufnahmen im klinischen Einsatz verbessern. Trotzdem steht bis heute im klinischen Alltag keine validierte, automatische Registrierungssoftware zur Verfügung. Wir verfolgen dazu Ansätze für validierte, nicht-rigide Bildregistrierung für den klinischen Einsatz und präsentieren erste Ergebnisse. KW - PET/CT KW - combined imaging KW - image co-registration KW - attenuation KW - correction KW - Positronen-Emissions-Tomografie KW - Computertomografie KW - Bildgebendes Verfahren KW - Registrierung KW - Schwächung Y1 - 2008 U6 - https://doi.org/10.1016/j.zemedi.2007.07.004 VL - 18 IS - 1 SP - 59 EP - 66 ER - TY - GEN A1 - Roser, David A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Palm, Christoph A1 - Probst, Andreas A1 - Muzalyova, Anna A1 - Scheppach, Markus W. A1 - Nagl, Sandra A1 - Schnoy, Elisabeth A1 - Römmele, Christoph A1 - Schulz, Dominik Andreas Helmut Otto A1 - Schlottmann, Jakob A1 - Prinz, Friederike A1 - Rauber, David A1 - Rückert, Tobias A1 - Matsumura, Tomoaki A1 - Fernandez-Esparrach, G. A1 - Parsa, Nasim A1 - Byrne, Michael F. A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Human-Computer Interaction: Impact of Artificial Intelligence on the diagnostic confidence of endoscopists assessing videos of Barrett’s esophagus T2 - Endoscopy N2 - Aims Human-computer interactions (HCI) may have a relevant impact on the performance of Artificial Intelligence (AI). Studies show that although endoscopists assessing Barrett’s esophagus (BE) with AI improve their performance significantly, they do not achieve the level of the stand-alone performance of AI. One aspect of HCI is the impact of AI on the degree of certainty and confidence displayed by the endoscopist. Indirectly, diagnostic confidence when using AI may be linked to trust and acceptance of AI. In a BE video study, we aimed to understand the impact of AI on the diagnostic confidence of endoscopists and the possible correlation with diagnostic performance. Methods 22 endoscopists from 12 centers with varying levels of BE experience reviewed ninety-six standardized endoscopy videos. Endoscopists were categorized into experts and non-experts and randomly assigned to assess the videos with and without AI. Participants were randomized in two arms: Arm A assessed videos first without AI and then with AI, while Arm B assessed videos in the opposite order. Evaluators were tasked with identifying BE-related neoplasia and rating their confidence with and without AI on a scale from 0 to 9. Results The utilization of AI in Arm A (without AI first, with AI second) significantly elevated confidence levels for experts and non-experts (7.1 to 8.0 and 6.1 to 6.6, respectively). Only non-experts benefitted from AI with a significant increase in accuracy (68.6% to 75.5%). Interestingly, while the confidence levels of experts without AI were higher than those of non-experts with AI, there was no significant difference in accuracy between these two groups (71.3% vs. 75.5%). In Arm B (with AI first, without AI second), experts and non-experts experienced a significant reduction in confidence (7.6 to 7.1 and 6.4 to 6.2, respectively), while maintaining consistent accuracy levels (71.8% to 71.8% and 67.5% to 67.1%, respectively). Conclusions AI significantly enhanced confidence levels for both expert and non-expert endoscopists. Endoscopists felt significantly more uncertain in their assessments without AI. Furthermore, experts with or without AI consistently displayed higher confidence levels than non-experts with AI, irrespective of comparable outcomes. These findings underscore the possible role of AI in improving diagnostic confidence during endoscopic assessment. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1782859 SN - 1438-8812 VL - 56 IS - S 02 SP - 79 PB - Georg Thieme Verlag ER - TY - GEN A1 - Zellmer, Stephan A1 - Rauber, David A1 - Probst, Andreas A1 - Weber, Tobias A1 - Braun, Georg A1 - Nagl, Sandra A1 - Römmele, Christoph A1 - Schnoy, Elisabeth A1 - Birzle, Lisa A1 - Aehling, Niklas A1 - Schulz, Dominik Andreas Helmut Otto A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Künstliche Intelligenz als Hilfsmittel zur Detektion der Papilla duodeni major und des papillären Ostiums während der ERCP T2 - Zeitschrift für Gastroenterologie N2 - Einleitung  Die Endoskopische Retrograde Cholangiopankreatikographie (ERCP) ist der Goldstandard in der endoskopischen Therapie von Erkrankungen des pankreatobiliären Trakts. Allerdings ist sie technisch anspruchsvoll, schwer zu erlernen und mit einer relativ hohen Komplikationsrate assoziiert. Daher soll in der vorliegenden Machbarkeitsstudie geprüft werden, ob mithilfe eines Deeplearning- Algorithmus die Papille und das Ostium zuverlässig detektiert werden können und dieser für Endoskopiker, insbesondere in der Ausbildungssituation, ein geeignetes Hilfsmittel darstellen könnte. Material und Methodik Insgesamt wurden 1534 ERCP-Bilder von 134 Patienten analysiert, wobei sowohl die Papilla duodeni major als auch das Ostium segmentiert wurden. Anschließend erfolgte das Training eines neuronalen Netzes unter Verwendung eines Deep-Learning-Algorithmus. Für den Test des Algorithmus erfolgte eine fünffache Kreuzvalidierung. Ergebnisse  Auf den 1534 gelabelten Bildern wurden für die Klasse Papille ein F1-Wert von 0,7996, eine Sensitivität von 0,8488 und eine Spezifität von 0,9822 erzielt. Für die Klasse Ostium ergaben sich ein F1-Wert von 0,5198, eine Sensitivität von 0,5945 und eine Spezifität von 0,9974. Klassenübergreifend (Klasse Papille und Klasse Ostium) betrug der F1-Wert 0,6593, die Sensitivität 0,7216 und für die Spezifität 0,9898. Zusammenfassung  In der vorliegenden Machbarkeitsstudie zeigte das neuronale Netz eine hohe Sensitivität und eine sehr hohe Spezifität bei der Identifikation der Papilla duodeni major. Die Detektion des Ostiums erfolgte hingegen mit einer deutlich geringeren Sensitivität. Zukünftig ist eine Erweiterung des Trainingsdatensatzes um Videos und klinische Daten vorgesehen, um die Leistungsfähigkeit des Netzwerks zu verbessern. Hierdurch könnte langfristig ein geeignetes Assistenzsystem für die ERCP, insbesondere in der Ausbildungssituation etabliert werden. Y1 - 2025 U6 - https://doi.org/10.1055/s-0045-1806882 VL - 63 IS - 5 SP - e295 PB - Thieme CY - Stuttgart ER -