TY - CHAP A1 - Herrmann, David A1 - Schaeffer, Leon A1 - Lehmann, Lukas A1 - Böhm, Valter A1 - Rieffel, John T1 - Basic Investigations on a Compliant 2D Tensegrity Grid for the Use in Soft Robotic Applications T2 - 2024 6th International Conference on Reconfigurable Mechanisms and Robots (ReMAR), 23-26 June 2024, Chicago, IL, USA N2 - The use of compliant tensegrity grids in soft robotic applications is a promising research topic. By using these grids, systems with large shape and stiffness change ability can be realized. In this paper, different tensegrity grid variants, consisting of rigid members indirectly connected via compliant tensioned members, are presented. A selected grid variant is analyzed in more detail for shape adaptation. Therefore the use of the grid as end effector in form-fit grippers is selected as a specific application case. Covariance Matrix Adaptation Evolution Strategies are used to optimize actuators for two given shape function variants and an evaluation is carried out. Y1 - 2024 SN - 979-8-3503-9596-9 U6 - https://doi.org/10.1109/ReMAR61031.2024.10619926 SP - 652 EP - 657 PB - IEEE ER - TY - JOUR A1 - Becker, Tatiana I. A1 - Raikher, Yuriy L. A1 - Stolbov, Oleg V. A1 - Böhm, Valter A1 - Zimmermann, Klaus T1 - Magnetoactive elastomers for magnetically tunable vibrating sensor systems JF - Physical Sciences Reviews N2 - Magnetoactive elastomers (MAEs) are a special type of smart materials consisting of an elastic matrix with embedded microsized particles that are made of ferromagnetic materials with high or low coercivity. Due to their composition, such elastomers possess unique magnetic field-dependent material properties. The present paper compiles the results of investigations on MAEs towards an approach of their potential application as vibrating sensor elements with adaptable sensitivity. Starting with the model-based and experimental studies of the free vibrational behavior displayed by cantilevers made of MAEs, it is shown that the first bending eigenfrequency of the cantilevers depends strongly on the strength of an applied uniform magnetic field. The investigations of the forced vibration response of MAE beams subjected to in-plane kinematic excitation confirm the possibility of active magnetic control of the amplitude-frequency characteristics. With change of the uniform field strength, the MAE beam reveals different steady-state responses for the same excitation, and the resonance may occur at various ranges of the excitation frequency. Nonlinear dependencies of the amplification ratio on the excitation frequency are obtained for different magnitudes of the applied field. Furthermore, it is shown that the steady-state vibrations of MAE beams can be detected based on the magnetic field distortion. The field difference, which is measured simultaneously on the sides of a vibrating MAE beam, provides a signal with the same frequency as the excitation and an amplitude proportional to the amplitude of resulting vibrations. The presented prototype of the MAE-based vibrating unit with the field-controlled “configuration” can be implemented for realization of acceleration sensor systems with adaptable sensitivity. The ongoing research on MAEs is oriented to the use of other geometrical forms along with beams, e.g. two-dimensional structures such as membranes. KW - adaptable sensor unit KW - amplification ratio KW - bending vibration KW - eigenfrequency KW - Magnetic field control KW - magnetoactive elastomer Y1 - 2020 U6 - https://doi.org/10.1515/psr-2019-0125 SN - 2365-659X VL - 7 IS - 10 SP - 1 EP - 28 PB - de Gruyter ER - TY - GEN A1 - Herrmann, David A1 - Schaeffer, Leon A1 - Böhm, Valter ED - Flores, Paulo ED - Marques, Filipe ED - Da Rodrigues Silva, Mariana T1 - Theoretical considerations on 2D multistable tensegrity structures based on equilateral triangles T2 - MMT Symposium (Mechanism and Machine Theory Symposium): Book of Abstracts ; June 26-28, 2024. - Guimarães, Portugal Y1 - 2024 SN - 978-989-33-6448-2 IS - 1. edition SP - 403 EP - 404 PB - Departamento de Engenharia Mecânica, Universidade do Minho CY - Guimarães, Portugal ER - TY - JOUR A1 - Prem, Nina A1 - Sindersberger, Dirk A1 - Striegl, Birgit A1 - Böhm, Valter A1 - Monkman, Gareth J. T1 - Shape memory effects using magnetoactive Boron-organo-silicon oxide polymers JF - Macromolecular Chemistry and Physics N2 - Thermomechanical shape memory materials have certain disadvantages when it comes to 3D volumetric reproduction intended for rapid prototyping or robotic prehension. The need to constantly supply energy to counteract elastic retraction forces in order to maintain the required geometry, together with the inability to achieve conformal stability at elevated temperatures, limits the application of thermal shape memory polymers. Form removal also presents problems as most viscoelastic materials do not ensure demolding stability. This work demonstrates how magnetoactive boron−organo−silicon oxide polymers under the influence of an applied magnetic field can be used to achieve energy free sustainable volumetric shape memory effects over extended periods. The rheopectic properties of boron−organo−silicon oxide materials sustain form removal without mold distortion. Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-23205 N1 - Corresponding Author: Gareth J. Monkman VL - 221 IS - 15 SP - 1 EP - 8 PB - Wiley ER - TY - CHAP A1 - Schaeffer, Leon A1 - Herrmann, David A1 - Böhm, Valter T1 - Voruntersuchung einer vorgespannten nachgiebigen Struktur für den Einsatz in dynamischen Handorthesen T2 - 9. IFToMM D-A-CH Konferenz, 16./17. März 2023, Universität Basel N2 - In diesem Beitrag erfolgt die theoretische Untersuchung einer zweidimensionalen nachgiebigen Tensegrity-Struktur in Hinsicht auf ihre potenzielle Eignung als Basisstruktur für eine dynamische Handorthese. Translatorische und rotatorische relative Bewegungsmöglichkeiten zwischen den Drucksegmenten der Struktur sind möglich, da diese Segmente durch nachgiebige Zugsegmente miteinander verbunden sind. Die Form der Struktur und ihre Vorspannung in einer statisch stabilen Gleichgewichtskonfiguration werden mit Hilfe der Minimierung des Kräfte- und Momentenungleichgewichts, der Betrachtung der potentiellen Energie der Struktur und einem Ansatz mittels statischer Finite-Elemente-Methode (FEM) in Abhängigkeit der Segmentparameter untersucht. N2 - This paper presents a theoretical investigation of a two-dimensional compliant tensegrity structure with respect to its potential suitability as a base structure for a dynamic hand orthosis. Translational and rotational relative motion possibilities between the pressure segments of the structure are possible, as these segments are connected by compliant tension segments. The shape of the structure and its preload in a static stable equilibrium configuration are investigated using minimization of force and moment imbalance, consideration of the potential energy of the structure, and a static finite element method (FEM) approach as a function of segment parameters. T2 - Preliminary investigation of a prestressed compliant structure for use in dynamic hand orthoses Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:465-20230314-153711-8 PB - DuEPublico CY - Duisburg-Essen ER - TY - JOUR A1 - Schaeffer, Leon A1 - Herrmann, David A1 - Schratzenstaller, Thomas A1 - Dendorfer, Sebastian A1 - Böhm, Valter T1 - Preliminary theoretical considerations on the stiffness characteristics of a tensegrity joint for the use in dynamic orthoses JF - Journal of Medical Robotics Research N2 - Early motion therapy plays an important role for effective long-term healing of joint injuries. In many cases, conventional dynamic orthoses fail to address the intricate movement possibilities of the underlying joints, limited by their simplistic joint representations, often represented by revolute joints, enabling rotations by only one axis. In this paper, a two-dimensional compliant tensegrity joint for use in biomedical applications is investigated. It consists of two compressed members and five compliant tensioned members. Relative movement possibilities are realized by the intrinsic compliance of the structure. In the development of these systems, the first step is the determination of the static stable equilibrium. This analysis is conducted in this paper by considering the potential energy approach or by using the geometric nonlinear finite element method. The mechanical behavior of the structure is assessed with a specific emphasis on its mechanical compliance. The primary objective of this study is the investigation of the influence of structural parameters on the overall stiffness and movability of the structure. The results underscore the significant effect of member parameters on the stiffness and movability of the compliant tensegrity joint, particularly under varying load magnitudes. These findings provide insights for optimizing the joint’s performance, contributing to its potential application in advanced orthotic and exoskeleton devices. KW - mechanical compliance KW - flexibility ellipsis KW - form-finding KW - tensegrity joint Y1 - 2023 U6 - https://doi.org/10.1142/S2424905X23400081 PB - World Scientific ER - TY - JOUR A1 - Geith, Markus A. A1 - Swidergal, Krzysztof A1 - Hochholdinger, Bernd A1 - Schratzenstaller, Thomas A1 - Wagner, Marcus A1 - Holzapfel, Gerhard A. T1 - On the importance of modeling balloon folding, pleating, and stent crimping: An FE study comparing experimental inflation tests JF - International Journal for Numerical Methods in Biomedical Engineering N2 - Finite element (FE)–based studies of preoperative processes such as folding,pleating, and stent crimping with a comparison with experimental inflation tests are not yet available. Therefore, a novel workflow is presented in which residual stresses of balloon folding and pleating, as well as stent crimping, and the geometries of all contact partners were ultimately implemented in an FE code to simulate stent expansion by using an implicit solver. The numerical results demonstrate that the incorporation of residual stresses and strains experienced during the production step significantly increased the accuracy of the subsequent simulations, especially of the stent expansion model. During the preoperative processes, stresses inside the membrane and the stent material also reached a rather high level. Hence, there can be no presumption that balloon catheters or stents are undamaged before the actual surgery. The implementation of the realistic geometry, in particular the balloon tapers, and the blades of the process devices improved the simulation of the expansion mech-anisms, such as dogboning, concave bending, or overexpansion of stent cells. This study shows that implicit solvers are able to precisely simulate the mentioned preoperative processes and the stent expansion procedure without a preceding manipulation of the simulation time or physical mass. KW - Catheter KW - Coronary KW - Crimping KW - Finite element KW - Stent KW - Stent KW - Implantation KW - Simulation KW - Finite-Elemente-Methode Y1 - 2019 U6 - https://doi.org/10.1002/cnm.3249 N1 - This study was funded by the Bavarian Research Foundation within the project “PIZ‐225‐18” VL - 35 IS - 11 PB - Wiley ER - TY - GEN A1 - Geith, Markus A. A1 - Swidergal, Krzysztof A1 - Schratzenstaller, Thomas A1 - Holzapfel, Gerhard A. A1 - Wagner, Marcus T1 - Numerical analysis of stent delivery systems during pre- and intraoperative processes T2 - 15. Deutsches LS-DYNA Forum, 15.-17.10.2018, Bamberg Y1 - 2018 UR - https://www.researchgate.net/publication/335260823_Numerical_analysis_of_stent_delivery_systems_during_pre-_and_intraoperative_processes ER - TY - CHAP A1 - Ottawa, Patrycja A1 - Romano, Marco A1 - Ehrlich, Ingo A1 - Wagner, Marcus A1 - Gebbeken, Norbert T1 - The influence of ondulation in fabric reinforced composites on dynamic properties in a mesoscopic scale T2 - 11. LS-DYNA Forum, 9. - 10. Oktober 2012, Ulm N2 - Structural mechanic properties of fiber reinforced plastics depend on the single components’ properties, namely matrix and fiber [5]. Simple micromechanic homogenization theories reach a limit when a laminate consists of fabric reinforced layers instead of unidirectional layers. The ondulations of warp and fill yarn caused by the textile semi-finished product are the reason why the mesoscopic scale, which is in between the microscopic and the macroscopic scale, has to be taken into account when mechanically characterizing fabric reinforced composites [3]. In this scale a mesomechanic kinematic can be derived analytically. Especially, when considering free damped vibrations of structures the repeated acting of the kinematic correlation significantly affects the damping behaviour to higher values compared to theoretically predicted damping ratios. The model is investigated using Finite-Element-Analyses and basically validated experimentally. Y1 - 2012 UR - https://www.dynamore.de/de/download/papers/dynamore/de/download/papers/ls-dyna-forum-2012/documents/materials-5-2 SP - 171 EP - 172 ER - TY - RPRT A1 - Hederer, Sebastian A1 - Wagner, Marcus ED - Baier, Wolfgang T1 - Entwicklung und Implementierung eines konstitutiven Modells zur Beschreibung der Plastizität von Dualphasenstähle bei großen plastischen Deformationen T2 - Forschungsbericht 2018 / Ostbayerische Technische Hochschule Regensburg Y1 - 2018 UR - https://doi.org/10.35096/othr/pub-1382 SN - 9783981820911 SP - 68 EP - 69 ER -