TY - CHAP A1 - Reindl, Andrea A1 - Meier, Hans A1 - Niemetz, Michael T1 - Software Framework for the Simulation of a Decentralized Battery Management System Consisting of Intelligent Battery Cells T2 - 2019 IEEE Student Conference on Research and Development (SCOReD), 15-17 Oct. 2019, Bandar Seri Iskandar, Malaysia N2 - Conventional battery management systems typically adopt hierarchical master-slave architectures. With regard to an uninterruptible power supply, the most significant disadvantage of central structures is the dependency of the errorfree function of the superior master board. The decentralized battery management system presented in this paper, consisting of consumers, generators and intelligent battery cells, is controlled without any central coordination authority. For this purpose, an intelligent control algorithm and a leader election algorithm are implemented on the microcontrollers of the battery cells. To test different control and election strategies, a software framework is presented for the complete simulation of the decentralized battery management system consisting of equal participants. KW - autonomous systems KW - Battery management system KW - decentralized control KW - distributed management KW - fault tolerant control KW - power system security KW - Renewable energy sources KW - uninterruptible power systems Y1 - 2019 U6 - https://doi.org/10.1109/SCORED.2019.8896284 SP - 75 EP - 80 ER - TY - CHAP A1 - Blank, M. A1 - Brunner, Stefan A1 - Fuhrmann, Thomas A1 - Meier, Hans A1 - Niemetz, Michael T1 - Embedded Linux in engineering education T2 - 2015 IEEE Global Engineering Education Conference (EDUCON), 18-20 March 2015, Tallinn, Estonia N2 - With the availability of cost effective embedded Linux solutions and the increasing complexity of embedded devices because of growing calculation power and communication demand, Linux is getting increasingly interesting as an operating system for the design of embedded control solutions. This is the case for almost all technical applications in electrical engineering like energy distribution systems, high level communication, signal processing or industrial automation. In the engineering master courses at the OTH Regensburg, a lecture is offered introducing students to Linux with a strong focus on embedded applications. This paper describes the concept of the lecture including the laboratory set up and gives some examples of embedded Linux projects performed by students. KW - Engineering Education KW - Linux KW - Operating systems KW - Ports (Computers) KW - Universal Serial Bus KW - Vehicles KW - Wireless communication Y1 - 2015 U6 - https://doi.org/10.1109/EDUCON.2015.7095964 SP - 145 EP - 150 PB - IEEE ER - TY - CHAP A1 - Meister, Johannes A1 - Yeap, Kim Ho A1 - Goh, Magdalene Wan Ching A1 - Nisar, Humaira A1 - Fischer, Johannes A1 - Meier, Hans ED - Nedjah, Nadia ED - Abd El-Latif, Ahmed A. ED - Gupta, Brij B. ED - Mourelle, Luiza M. T1 - The Design of a Pheromone-Based Robotic Varroa Trap for Beekeeping Applications T2 - Robotics and AI for Cybersecurity and Critical Infrastructure in Smart Cities Y1 - 2022 SN - 978-3-030-96736-9 U6 - https://doi.org/10.1007/978-3-030-96737-6_2 SP - 21 EP - 56 PB - Springer International Publishing CY - Cham ER - TY - CHAP A1 - Meier, Hans A1 - Reindl, Andrea A1 - Wetzel, Daniel A1 - Niemetz, Michael T1 - Comparative Analysis of CAN, CAN FD and Ethernet for Networked Control Systems T2 - Embedded World 2021 Exhibition & Conference: 1.-5.3.2021, digital, conference proceedings N2 - Networked control systems as e.g., battery management systems, smart grids or vehicular systems, consist of sensors, actuators and controllers with a communication network in the control loop. The data rate and the reliability of the underlying communication network are key factors since delays or message losses directly affect the system control. In addition, the processor load caused by the communication is significant as it influences the calculation of system states and the setting of control parameters. The power consumption of the communication network has a further impact on the energy efficiency of the respective application. In this paper, the communication technologies Controller Area Network (CAN), Controller Area Network Flexible Data-rate (CAN FD) and Ethernet are compared in the context of networked control systems with focus on a decentralized battery management system. First, the message processing time and the processor load are measured. With regard to energy efficiency, the maximum power consumption is determined. The Bit Error Rates (BER) and the Residual Error Rates (RER) are calculated to evaluate the reliability. Finally, the receive FIFO load under high traffic conditions is examined. Index Terms—Networked control systems, decentralized battery management system, microcontrollers, communication systems, Ethernet, Controller Area Network (CAN), Controller Area Network Flexible Data-rate (CAN FD) energy efficiency, energy consumption, bit error rate, residual error rate, processor load. Y1 - 2021 UR - https://www.researchgate.net/publication/354995738_Comparative_Analysis_of_CAN_CAN_FD_and_Ethernet_for_Networked_Control_Systems/link/615706baa6fae644fbb85b95/download PB - WEKA Fachmedien ER - TY - CHAP A1 - Wetzel, Daniel A1 - Reindl, Andrea A1 - Meier, Hans A1 - Niemetz, Michael A1 - Farmbauer, Michael T1 - A Customized Python Interface for Windows OS for a Low Budget USB-to-CAN-Adapter T2 - International Conference on Electrical, Computer and Energy Technologies (ICECET 2022): 20-22 July 2022, Prague, Czech Republic N2 - Over the last three decades, the Controller Area Network (CAN) has become the dominant communication in embedded systems. Especially for automotive systems it offers advantages including high robustness, low error rate and high reliability combined with low power consumption. Therefore, learning the basics of this bus system is substantial in this field. Nowadays, various media about the functionality and use of CAN exist which make it easy to read into the topic. But often, theory alone is not sufficient. To deepen the understanding, practical implementation contributes significantly. However, affordable and easy-to-use CAN devices for training purposes are scarce. Existing equipment can be divided into expensive professional devices, which have many functions and inexpensive ones for hobbyists, which require difficult configurations. Therefore, a practical solution is a low-budget device equipped with an overlay which deals with the time consuming configurations. This paper covers the development of a python interface for a purchasable cost effective CAN device for Windows OS. The intention is to create an easy-to-use program that enables beginners to get in touch with CAN and collect practical experience. At the start, a brief explanation of the CAN functionality is given. After that, we introduce the hardware used in this project. Next, the software part covers the development of the interface and the integration of this interface into python-can. Furthermore, a virtual playground is introduced for testing purposes. Also, to demonstrate the functionality of the interface, a test program is executed in conjunction with a logic analyzer. KW - Controller area network KW - User Interface KW - USB to CAN KW - Windows KW - python-CAN Y1 - 2022 SN - 978-1-66547-087-2 U6 - https://doi.org/10.1109/ICECET55527.2022.9872574 PB - IEEE CY - Piscataway, NJ, USA ER - TY - CHAP A1 - Körner, Patrick A1 - Reindl, Andrea A1 - Meier, Hans A1 - Niemetz, Michael T1 - A Theoretical Comparison of Different Virtual Synchronous Generator Implementations on Inverters T2 - 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe): 05-09 September 2022, Hannover, Germany N2 - The goal to overcome the global climate crisis leads to a rising demand for the usage of Renewable Energy Sources (RES). Decentralized control strategies are needed to allow the integration of RES into the grid. The Virtual Synchronous Generator (VSG) is proposed as a method to add virtual inertia to the grid by emulating the rotating mass of a Synchronous Generator (SG) on the control algorithm of an inverter. This paper presents the VSG control structure as well as the mathematical description in a unified form. Due to the fact that classical droop control can be seen as a special form of the VSG, their correlation is highlighted by evaluating the steady state output characteristics of the inverter. Furthermore, a theoretical comparison between different VSG topologies, including the VISMA-Method 2 and the synchronverter, is given. In order to achieve better voltage stability, principles to add virtual impedance to the inverter's output are described. Y1 - 2022 UR - https://ieeexplore.ieee.org/document/9907497 PB - IEEE ER - TY - CHAP A1 - Reindl, Andrea A1 - Wetzel, Daniel A1 - Niemetz, Michael A1 - Meier, Hans T1 - Leader Election in a Distributed CAN-Based Multi-Microcontroller System T2 - 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), 19-21 July 2023, Tenerife, Canary Islands, Spain N2 - In a distributed system, functionally equivalent nodes work together to form a system with improved availability, reliability and fault tolerance. Thereby, the purpose is to achieve a common control objective. As multiple components cooperate to accomplish tasks, coordination between them is required. Electing a node as the temporary leader can be a possible solution to perform coordination. This work presents a self-stabilizing algorithm for the election of a leader in dynamically reconfigurable bus topology-based broadcast systems with a message and time complexity of O(1). The election is performed dynamically, i.e., not only when the leader node fails, and is criterion-based. The criterion used is a performance related value which evaluates the properties of the node regarding the ability to perform the tasks of the leader. The increased demands on the leader are taken into account and a re-election is started when the criterion value drops below a predefined level. The goal here is to distribute the load more evenly and to reduce the probability of failure due to overload of individual nodes. For improved system availability and reduced fault rates, a management level consisting of leader, assistant and co-assistant is introduced. This reduces the number of required messages and the duration in case of non-initial election. For further reduction of required messages to uniquely determine a leader, the CAN protocol is exploited. The proposed algorithm selects a node with an improved failure rate and a reduced message and hence time complexity while satisfying the safety and termination constraints. The operation of the algorithm is validated using a hardware test setup. KW - broadcast communication KW - computational complexity KW - controller area networks KW - coordination KW - decentralized applications KW - distributed systems KW - failure analysis KW - Fault tolerance KW - fault tolerant computing KW - Fault tolerant systems KW - Hardware KW - Heuristic algorithms KW - Leader election KW - load balancing KW - Mechatronics KW - message complexity KW - microcontrollers KW - performance related election KW - probability KW - Protocols KW - self-stabilization KW - telecommunication network topology KW - Voting Y1 - 2023 SN - 979-8-3503-2297-2 U6 - https://doi.org/10.1109/ICECCME57830.2023.10252250 SP - 1 EP - 8 PB - IEEE CY - Piscataway, NJ, USA ER - TY - CHAP A1 - Reindl, Andrea A1 - Lausser, Florian A1 - Eriksson, Lars A1 - Park, Sangyoung A1 - Niemetz, Michael A1 - Meier, Hans ED - Pinker, Jiří T1 - Control Oriented Mathematical Modeling of a Bidirectional DC-DC Converter - Part 1: Buck Mode T2 - 28th International Conference on Applied Electronics (AE) 2023, Pilsen, 6-7 September 2023 N2 - Parallel connection of different batteries equipped with bidirectional DC-DC converters offers an increase of the total storage capacity, the provision of higher currents and an improvement of reliability and system availability. To share the load current among the DC-DC converters while maintaining the safe operating range of the batteries, appropriate controllers are needed. The basis for the design of these control approaches requires knowledge of both the static and dynamic characteristics of the DC-DC converter used. In this paper, the small signal analysis of a DC-DC converter in buck mode is shown using the circuit averaging technique. The paper gives an overview of all required transfer functions:. The control and line to output transfer functions for CCM and DCM relevant for average current mode control as well as for voltage control are derived and their poles and zeros are determined. This provides the basis for stability consideration, analysis of the overall control structure and controller design. KW - Analytical models KW - Average modeling KW - Batteries KW - bidirectional dc-dc converter KW - buck mode KW - circuit-averaging technique KW - continuous conduction mode KW - DC-DC power converters KW - derivation of transfer functions KW - discontinuous conduction mode KW - half-bridge KW - Mathematical models KW - Reliability KW - Signal analysis KW - small signal analysis KW - Stability analysis Y1 - 2023 SN - 979-8-3503-3554-5 U6 - https://doi.org/10.1109/AE58099.2023.10274168 SP - 1 EP - 7 PB - University of West Bohemia CY - Pilsen ER - TY - CHAP A1 - Reindl, Andrea A1 - Langer, Tobias A1 - Meier, Hans A1 - Niemetz, Michael T1 - Comparative Reliability Analysis for Single and Dual CAN (FD) Systems T2 - 27th 2022 International Conference on Applied Electronics (AE): 6-7 September 2022, Pilsen, Czech Republic N2 - Modern cyber-physical systems, such as autonomous vehicles, advanced driver assistance systems, automation systems and battery management systems, result in extended communication requirements regarding the reliability and the availability. The Controller Area Network (CAN) is a broadcast-based protocol which is still used as a standard for serial communication between individual microcontrollers due to its reliability and low power consumption. In addition, it provides mechanisms for detecting transmission errors and retransmitting messages in the event of an error. The enhancement CAN Flexible Data-Rate (CAN FD) offers increased data rates and transmission rates in order to meet the data throughput requirements. In this paper, the mechanisms for reliable data transmission in a CAN FD network are analyzed. To improve reliability, a second identical CAN-FD network is added to the system, using the additional CAN interface already available on common microcontrollers. The redundant communication network is examined in terms of failure rates and the mean time to failure. The reliability over the operation time is calculated for the single and the redundant version of the CAN FD network using the failure rate limits of the ASIL levels. Y1 - 2022 SN - 9781665494816 U6 - https://doi.org/10.1109/AE54730.2022.9920078 SP - 1 EP - 6 PB - IEEE ER -