TY - JOUR A1 - Glavan, Gašper A1 - Belyaeva, Inna A1 - Shamonin (Chamonine), Mikhail T1 - Transient Response of Macroscopic Deformation of Magnetoactive Elastomeric Cylinders in Uniform Magnetic Fields JF - Polymers N2 - Significant deformations of bodies made from compliant magnetoactive elastomers (MAE) in magnetic fields make these materials promising for applications in magnetically controlled actuators for soft robotics. Reported experimental research in this context was devoted to the behaviour in the quasi-static magnetic field, but the transient dynamics are of great practical importance. This paper presents an experimental study of the transient response of apparent longitudinal and transverse strains of a family of isotropic and anisotropic MAE cylinders with six different aspect ratios in time-varying uniform magnetic fields. The time dependence of the magnetic field has a trapezoidal form, where the rate of both legs is varied between 52 and 757 kA/(s·m) and the maximum magnetic field takes three values between 153 and 505 kA/m. It is proposed to introduce four characteristic times: two for the delay of the transient response during increasing and decreasing magnetic field, as well as two for rise and fall times. To facilitate the comparison between different magnetic field rates, these characteristic times are further normalized on the rise time of the magnetic field ramp. The dependence of the normalized characteristic times on the aspect ratio, the magnetic field slew rate, maximum magnetic field values, initial internal structure (isotropic versus anisotropic specimens) and weight fraction of the soft-magnetic filler are obtained and discussed in detail. The normalized magnetostrictive hysteresis loop is introduced, and used to explain why the normalized delay times vary with changing experimental parameters. KW - magnetoactive elastomer KW - magnetorheological elastomer KW - macroscopic deformation KW - magnetostriction KW - time-varying magnetic field Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-71067 SN - 2073-4360 N1 - Corresponding author der OTH Regensburg: Gašper Glavan VL - 16 IS - 5, Special Issue Magnetic Polymer Composites: Design and Application II PB - MDPI CY - Basel, Schweiz ER - TY - JOUR A1 - Rückert, Tobias A1 - Rückert, Daniel A1 - Palm, Christoph T1 - Methods and datasets for segmentation of minimally invasive surgical instruments in endoscopic images and videos: A review of the state of the art JF - Computers in Biology and Medicine N2 - In the field of computer- and robot-assisted minimally invasive surgery, enormous progress has been made in recent years based on the recognition of surgical instruments in endoscopic images and videos. In particular, the determination of the position and type of instruments is of great interest. Current work involves both spatial and temporal information, with the idea that predicting the movement of surgical tools over time may improve the quality of the final segmentations. The provision of publicly available datasets has recently encouraged the development of new methods, mainly based on deep learning. In this review, we identify and characterize datasets used for method development and evaluation and quantify their frequency of use in the literature. We further present an overview of the current state of research regarding the segmentation and tracking of minimally invasive surgical instruments in endoscopic images and videos. The paper focuses on methods that work purely visually, without markers of any kind attached to the instruments, considering both single-frame semantic and instance segmentation approaches, as well as those that incorporate temporal information. The publications analyzed were identified through the platforms Google Scholar, Web of Science, and PubMed. The search terms used were “instrument segmentation”, “instrument tracking”, “surgical tool segmentation”, and “surgical tool tracking”, resulting in a total of 741 articles published between 01/2015 and 07/2023, of which 123 were included using systematic selection criteria. A discussion of the reviewed literature is provided, highlighting existing shortcomings and emphasizing the available potential for future developments. KW - Deep Learning KW - Minimal-invasive Chirurgie KW - Bildsegmentierung KW - Surgical instrument segmentation KW - Surgical instrument tracking KW - Spatio-temporal information KW - Endoscopic surgery KW - Robot-assisted surgery Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-69830 N1 - Corresponding author: Tobias Rückert N1 - Corrigendum unter: https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/7033 VL - 169 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pongratz, Christian A1 - Tix, Janek A1 - Wolfrum, Johannes A1 - Gerke, Steffen A1 - Ehrlich, Ingo A1 - Brünig, Michael T1 - Test Setup for Investigating the Impact Behavior of Biaxially Prestressed Composite Laminates JF - Experimental Techniques N2 - Instrumented impact testing and compression-after-impact testing are important to adequately qualify material behavior and safely design composite structures. However, the stresses to which fiber-reinforced plastic components are typically subjected in practice are not considered in the impact test methods recommended in guidelines or standards. In this paper, a test setup for investigating the impact behavior of composite specimens under plane uniaxial and biaxial preloading is presented. For this purpose, a special test setup consisting of a biaxial testing machine and a specially designed drop-weight tower was developed. The design decisions were derived from existing guidelines and standards with the aim of inducing barely visible impact damage in laminated carbon fiber-reinforced plastic specimens. Several measurement systems have been integrated into the setup to allow comprehensive observation of the impact event and specimen behavior. A feasibility test was performed with biaxially prestressed carbon fiber-reinforced plastic specimens in comparison with unstressed reference tests. The compressive-tensile prestressing resulted in lower maximum contact forces, higher maximum deflections, higher residual deflections and a different damage pattern, which was investigated by light microscopic analysis. Finally, the functionality of the experimental setup is discussed, and the results seem to indicate that the test setup and parameters were properly chosen to investigate the effect of prestresses on the impacts behavior of composite structures, in particular for barely visible subsequent damages. KW - Mechanical Engineering KW - Mechanics of Materials KW - Faserverbundwerkstoff KW - Schlagprüfung Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-70355 SN - 0732-8818 N1 - Corresponding authors: Christian Pongratz und Ingo Ehrlich PB - Springer Nature ER - TY - JOUR A1 - Tauwald, Sandra Melina A1 - Erzinger, Florian A1 - Quadrio, Maurizio A1 - Rütten, Markus A1 - Stemmer, Christian A1 - Krenkel, Lars T1 - Tomo-PIV in a patient-specific model of human nasal cavities: a methodological approach JF - Measurement Science and Technology N2 - The human nose serves as the primary gateway for air entering the respiratory system and plays a vital role in breathing. Nasal breathing difficulties are a significant health concern, leading to substantial healthcare costs for patients. Understanding nasal airflow dynamics is crucial for comprehending respiratory mechanisms. This article presents a detailed study using tomo-Particle Image Velocimetry (PIV) to investigate nasal airflow dynamics while addressing its accuracy. Embedded in the OpenNose project, the work described aims to provide a validation basis for different numerical approaches to upper airway flow. The study includes the manufacturing of a transparent silicone model based on a clinical CT scan, refractive index matching to minimize optical distortions, and precise flow rate adjustments based on physiological breathing cycles. This method allows for spatial high-resolution investigations in different regions of interest within the nasopharynx during various phases of the breathing cycle. The results demonstrate the accuracy of the investigations, enabling detailed analysis of flow structures and gradients. This spatial high-resolution tomo-PIV approach provides valuable insights into the complex flow phenomena occurring during the physiological breathing cycle in the nasopharynx. The study's findings contribute to advancements in non-free-of-sight experimental flow investigation of complex cavities under nearly realistic conditions. Furthermore, reliable and accurate experimental data is crucial for properly validating numerical approaches that compute this patient-specific flow for clinical purposes. Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-70393 N1 - Corresponding author: Sandra Melina Tauwald VL - 35 IS - 5 PB - IOP Publishing ER - TY - JOUR A1 - Pangerl, Jonas A1 - Sukul, Pritam A1 - Rück, Thomas A1 - Fuchs, Patricia A1 - Weigl, Stefan A1 - Miekisch, Wolfram A1 - Bierl, Rudolf A1 - Matysik, Frank-Michael T1 - An inexpensive UV-LED photoacoustic based real-time sensor-system detecting exhaled trace-acetone JF - Photoacoustics N2 - n this research we present a low-cost system for breath acetone analysis based on UV-LED photoacoustic spectroscopy. We considered the end-tidal phase of exhalation, which represents the systemic concentrations of volatile organic compounds (VOCs) – providing clinically relevant information about the human health. This is achieved via the development of a CO2-triggered breath sampling system, which collected alveolar breath over several minutes in sterile and inert containers. A real-time mass spectrometer is coupled to serve as a reference device for calibration measurements and subsequent breath analysis. The new sensor system provided a 3σ detection limit of 8.3 ppbV and an NNEA of 1.4E-9 Wcm 1Hz 0.5. In terms of the performed breath analysis measurements, 12 out of 13 fell within the error margin of the photoacoustic measurement system, demonstrating the reliability of the measurements in the field. KW - Photoacoustic spectroscopy KW - Real-time mass-spectrometry KW - Breath analysis KW - Acetone KW - UV-LED Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-71279 SN - 2213-5979 N1 - Corresponding author der OTH Regensburg: Jonas Pangerl VL - 38 PB - Elsevier ER - TY - JOUR A1 - Schuderer, Matthias A1 - Rill, Georg A1 - Schaeffer, Thomas A1 - Schulz, Carsten T1 - Friction modeling from a practical point of view JF - Multibody System Dynamics N2 - AbstractRegularized static friction models have been used successfully for many years. However, they are unable to maintain static friction in detail. For this reason, dynamic friction models have been developed and published in the literature. However, commercial multibody simulation packages such as Adams, RecurDyn, and Simpack have developed their own specific stick-slip models instead of adopting one of the public domain approaches. This article introduces the fundamentals of these commercial models and their behavior from a practical point of view. The stick-slip models were applied to a simple test model and a more sophisticated model of a festoon cable system using their standard parameters. KW - Multibody dynamics KW - Friction KW - Stick-slip effect KW - Adams KW - RecurDyn KW - Simpack Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-72513 SN - 1384-5640 N1 - Corresponding author: Matthias Schuderer PB - Springernature ER - TY - JOUR A1 - Franke, Markus A1 - Wagner, Marcus T1 - Transient surrogate modeling of modally reduced structures with discontinuous loads and damping JF - Archive of Applied Mechanics N2 - In this work, a surrogate model for structural, transient and discontinuously excited finite element method simulations is developed. This allows to reduce the computational effort of repeated calculations of identical models under different load cases. The architecture of the surrogate combines fully connected neural network layers with long short-term memory layers. For the reproduction of different damping ratios, a categorical variable is added to the continuous input data. Based on a recursive flow of the predicted data back to the input layer, long-term dependencies do not vanish due to short-input sequences. The system dimension is reduced by applying the model-order reduction technique for modal decomposition. The high accuracy of the surrogate and the reduction of computational costs are shown on an academic example of a cantilever beam and a real-world example of a robot. The advantages of our approach are illustrated in comparison with state-of-the-art surrogates for transient finite element analysis. By using the surrogate proposed in this study, oscillations due to discontinuous excitation of mechanical structures can be reproduced. For this purpose, only short-input sequences are necessary since the excitation of the oscillations does not have to be part of the input sequence during the whole duration of the oscillations. Due to the categorical variable for the damping ratio, the surrogate can account for the influence of different damping in parameter studies. KW - Discontinuous loads KW - Modal decomposition KW - Surrogate modeling KW - Long short-term memory KW - Finite element method Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-72834 N1 - Corresponding author der OTH Regensburg: Markus Franke VL - 94 IS - 5 PB - Springer Nature ER - TY - JOUR A1 - Knoedler, Leonard A1 - Dean, Jillian A1 - Knoedler, Samuel A1 - Kauke-Navarro, Martin A1 - Hollmann, Katharina A1 - Alfertshofer, Michael A1 - Helm, Sabrina A1 - Prantl, Lukas A1 - Schliermann, Rainer T1 - Hard shell, soft core? Multi-disciplinary and multi-national insights into mental toughness among surgeons JF - Frontiers in Surgery N2 - Background: With the prevalence of burnout among surgeons posing a significant threat to healthcare outcomes, the mental toughness of medical professionals has come to the fore. Mental toughness is pivotal for surgical performance and patient safety, yet research into its dynamics within a global and multi-specialty context remains scarce. This study aims to elucidate the factors contributing to mental toughness among surgeons and to understand how it correlates with surgical outcomes and personal well-being. Methods: Utilizing a cross-sectional design, this study surveyed 104 surgeons from English and German-speaking countries using the Mental Toughness Questionnaire (MTQ-18) along with additional queries about their surgical practice and general life satisfaction. Descriptive and inferential statistical analyses were applied to investigate the variations in mental toughness across different surgical domains and its correlation with professional and personal factors. Results: The study found a statistically significant higher level of mental toughness in micro-surgeons compared to macro-surgeons and a positive correlation between mental toughness and surgeons' intent to continue their careers. A strong association was also observed between general life satisfaction and mental toughness. No significant correlations were found between the application of psychological skills and mental toughness. Conclusion: Mental toughness varies significantly among surgeons from different specialties and is influenced by professional dedication and personal life satisfaction. These findings suggest the need for targeted interventions to foster mental toughness in the surgical community, potentially enhancing surgical performance and reducing burnout. Future research should continue to explore these correlations, with an emphasis on longitudinal data and the development of resilience-building programs. KW - mental toughness KW - mental health KW - resilience KW - robustness KW - psychology KW - surgery Y1 - 2024 U6 - https://doi.org/10.3389/fsurg.2024.1361406 N1 - Correspondign author der OTH Regensburg: Rainer Schliermann (und Leonard Knoedler) VL - 11 PB - Frontiers ER - TY - JOUR A1 - Schulz, Carsten A1 - Vogl, Yannick A1 - Geiger, Benjamin A1 - Schaeffer, Thomas T1 - Pros and cons of Lumped Mass Modelling of conveyor belts using a two-roller system JF - Forschung im Ingenieurwesen N2 - Im Betrieb von Förderbändern auftretende Phänomene sind das Bandwandern in Achsrichtung der Walzen und die Bandverformung in der Bandebene [1, S. 142]. Das Bandwandern ist bisher detailliert untersucht [2–4], während die Bandverformung Gegenstand weniger Veröffentlichungen ist. Deshalb wird in diesem Artikel eine Methode zur Berechnung der sich im dynamischen Betrieb einstellenden Verformung eines elastischen Förderbandes vorgestellt. Dazu wird ein Mehrkörpersimulations-Modell basierend auf der Lumped-Mass-Modellierung verwendet. Als Untersuchungsbeispiel dient ein Zwei-Walzensystem mit flexiblen und zylindrischen Walzen, sowie ein flexibles Förderband. Es zeigt sich, dass mit der Lumped-Mass-Modellierung eine dynamische Bandverformung, die von der gewählten Diskretisierung abhängt, berechnet werden kann. Aufgrund dieser Abhängigkeit ist es notwendig eine Konvergenzanalyse durchzuführen. Zusätzlich ist darauf zu achten, dass die künstliche Anregung aufgrund der Lumped-Mass-Modellierung nicht mit einer Eigenfrequenz des Modells zusammenfällt. Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-72891 SN - 0015-7899 N1 - Corresponding author der OTH Regensburg: Carsten Schulz VL - 88 IS - 1 PB - Springer Nature ER -