TY - CHAP A1 - Fuhrmann, Thomas T1 - Motivation Centered Learning T2 - 2018 IEEE Frontiers in Education Conference (FIE), 3-6 Oct. 2018, San Jose, CA, USA N2 - This Research Work in Progress Paper evaluates students’ motivation sources and shows the high impact that work of professors has on students’ motivation. Common goal of most professors is to help students acquiring knowledge and competencies that are relevant for their further life. From the beginning of Universities’ history, lectures are usually chosen to reach this goal but it is seen in recent years that they are in many cases not the optimal choice. In the last years, many efforts were made to increase students knowledge gain. From learning and motivation psychology research, many details are known how humans remember and transfer knowledge. These research results are used to create new lecture formats to activate students. Research based learning, project based lab courses, problem based learning, feedback systems, flipped classroom, blended learning and gamification in lectures are only some examples for new formats. Common goal of all these new types of learning formats is to increasing students’ motivation and to enhance learning success. In this paper, evaluations using a questionnaire with open questions were done among first year students, bachelor students before graduation and alumni, about their sources of motivation and demotivation. Interesting curricula and lectures with application related topics and possibilities for own work are the main sources of motivation. Enthusiastic professors with high competences and good lecture didactics also contribute to students’ motivation. On the other side, demotivated professors with boring lectures play a much higher role for demotivating students. Therefore, it is necessary to integrate aspects of student motivation into curriculum and lecture design and professors should become aware that they are important role-models for motivating or demotivating students. KW - Computational modeling KW - Electrical engineering KW - Information technology KW - Psychology KW - Social networking (online) KW - Task analysis KW - Urban areas Y1 - 2018 U6 - https://doi.org/10.1109/FIE.2018.8658436 SP - 1 EP - 5 PB - IEEE ER - TY - CHAP A1 - Wick, Michael A1 - Lindner, Gerhard A1 - Zimmer, Katja A1 - Schreiner, Rupert A1 - Fuhrmann, Thomas A1 - Seebauer, Gudrun A1 - Xu, Boqing A1 - Zheng, Jihong A1 - Wang, Ning ED - Liu, Xu ED - Zhang, Xi-Cheng T1 - German-Chinese cooperative Bachelor in engineering physics/optoelectronics T2 - 14th Conference on Education and Training in Optics and Photonics: ETOP 2017; Hangzhou, China 29.05.2017 - 31.05.2017 N2 - The University of Shanghai for Science and Technology (USST), the Coburg University of Applied Sciences and Arts (CUASA) and the OTH Regensburg, University of Applied Sciences (OTHR) established an English taught international cooperative bachelor program in the area of Engineering Physics/Optoelectronics. Students from China study their first four semesters at USST. They continue their studies in Germany for the last three semesters, including an internship and a bachelor thesis, graduating with a Chinese and a German bachelor degree. Students from Germany study their third and fourth semester at USST to gain international experience. While the first cohort of Chinese students is currently in Germany, the second cohort of German students is in Shanghai. Up to now the feedback regarding this study program is completely positive, thus it is planned to develop it further. Y1 - 2017 SN - 9781510613812 U6 - https://doi.org/10.1117/12.2269943 PB - SPIE ER - TY - JOUR A1 - Kratzer, Simon A1 - Westner, Markus A1 - Strahringer, Susanne T1 - Traction with fraction: Strategic IS management in SMEs through Fractional CIOs JF - International Journal of Information Systems and Project Management N2 - Small and medium-sized enterprises (SMEs) increasingly need to manage nformation technology (IT) effectively in order to remain competitive. However, compared to larger organizations, SMEs often face challenges in terms of resources and employer attractiveness, and regularly do not have the need to employ a Chief Information Officer (CIO) on a full-time basis. To address this issue, a growing number of global experts have begun to provide CIO services on a part-time basis for multiple clients simultaneously. This approach allows SMEs to tap into the expertise of experienced IT leaders at a fraction of the cost and without committing to long-term arrangements. While these professionals, known as “Fractional CIOs”, have proven their value in the field, there has been a lack of academic research on this emerging trend. Therefore, we carried out a comprehensive research project between 2020 and 2023, involving 62 Fractional CIOs from 10 countries. The research produced a definition, different types of engagements, and success factors for Fractional CIOs and their engagements. This paper summarizes these findings for a wider audience of academics and practitioners. KW - Fractional CIO KW - Chief Information Officer KW - SMEs KW - small businesses Y1 - 2024 U6 - https://doi.org/10.12821/ijispm120101 SN - 2182-7788 VL - 12 IS - 1 SP - 5 EP - 16 ER - TY - JOUR A1 - Westner, Markus A1 - Kratzer, Simon A1 - Drechsler, Andreas A1 - Strahringer, Susanne T1 - The Fractional CIO in SMEs: conceptualization and research agenda JF - Information Systems and e-Business Management N2 - We conceptualize the new phenomenon of the Fractional Chief InformationOfficer (CIO) as a part-time executive who usually works for more than one pri-marily small- to medium-sized enterprise (SME) and develop promising avenuesfor future research on Fractional CIOs. We conduct an empirical study by drawingon semi-structured interviews with 40 individuals from 10 different countries whooccupy a Fractional CIO role. We derive a definition for the Fractional CIO, dis-tinguish it from other forms of employment, and compare it with existing researchon CIO roles. Further, we find four salient engagement types of Fractional CIOsoffering value for SMEs in various situations: Strategic IT management, Restruc-turing, Rapid scaling, and Hands-on support. The results reveal similarities withexisting CIO roles as well as novel insights concerning the different engagementtypes. Lastly, we propose a research agenda for the Fractional CIO field, based onfour research themes derived from existing CIO research and insights from theinterviews. KW - Fractional CIO KW - Virtual CIO KW - IT leadership KW - Part-time management KW - SMEs KW - Small businesses KW - Interim management Y1 - 2022 U6 - https://doi.org/10.1007/s10257-022-00557-4 VL - 20 SP - 581 EP - 611 PB - Springer ER - TY - JOUR A1 - Bartsch, Alexander A1 - Beham, Daniela A1 - Gebhardt, Jakob A1 - Ehrlich, Ingo A1 - Schratzenstaller, Thomas A1 - Monkman, Gareth J. T1 - Mechanical Properties of NdPrFeB Based Magnetoactive Bisphenol-Free Boron-Silicate Polymers JF - Journal of Nanomedicine and Nanotechnology N2 - Following a ban on many materials containing bisphenol-A, new bisphenol-free Boron silicates have been found as substitutes. The purpose of this study is to describe the mechanical properties of these bisphenol-free magnetoactive borosilicate polymers containing hard magnetic particles. Samples of 0%, 33% and 66% by wt. were loaded for compression using a universal testing machine. The maximum forces occurring for different travel speeds were compared before and after post-magnetization treatments. The post-magnetization included 2 stages. In addition, the change in mechanical properties within 24 hours after the post-magnetization process was investigated. Furthermore, the influence of speed and particle content were investigated. In general, there is a correlation between the required compressive force and, the level of post-magnetization stress, the increase in travel speed and particle content in the boron silicate. Comparison of the non-post-magnetized and post-magnetized samples using two-tailed t-tests shows that the p-values for all weight fraction changes in NdPrFeB particles and travel speeds are less than 0.001. Also, a comparison between tests in which the traverse speed was varied also showed significant changes in the resulting compression forces. The same is valid for changes in the weight ratio of the NdPrFeB particles in the samples. For post-magnetized samples, no significant difference can be observed in the first 24 hours following magnetization. In summary, the material presents viscoelastic, plastic force-displacement behavior, which can be well recognized by its bi-linear curve shape. The investigation shows that borosilicate polymers based on NdPrFeB can have their mechanical behavior modified and controlled by post-magnetization processes. This opens new possibilities for many future applications. Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-67425 UR - https://www.walshmedicalmedia.com/open-access/mechanical-properties-of-ndprfeb-based-magnetoactive-bisphenolfree-boronsilicate-polymers-124385.html SN - 2157-7439 N1 - Corresponding author: Alexander Bartsch VL - 14 IS - 6 PB - Walsh Medical Media ER - TY - JOUR A1 - Koenig, Eric A1 - Guertler, Katherine T1 - One Size Does Not Fit All: Individuality and Perceptions of Improvement and Satisfaction Among TE Students JF - English Teaching & Learning N2 - Academic self-regulation is a key factor for motivation and learning achievement. Yet with the large range of individual factors, this is not a one-size-fits-all proposition. This study of L2 Technical English students at two German universities explored learners’ expectations and motivations, in particular regarding self-regulation and self-efficacy via the individual’s time investment in self-led study. In an initial survey, learners (N=1646) reported on their English skill levels and anticipated learning habits. Complementarily, the retrospective survey investigated learners’ (N=796) actual behavior during the course, their perceptions of language skill improvement, and their satisfaction. The initial survey indicates a clear understanding that time investment in self-regulated study will lead to greater improvement, an outcome confirmed in the retrospective survey. Additionally, students who invested more time in their coursework were more satisfied with their achievement, although most learners acknowledge they should have studied more. The results verify that learners recognize the nexus between self-regulation and language skill improvement, yet university students are not satisfied with their capacity to self-regulate their language learning strategies. While differences in students’ skill levels and academic self-efficacy result in divergent degrees of progress, students of all types report benefits to their language skills when motivated to self-regulated study. KW - English KW - Technical English KW - Self-efficacy KW - Self-regulation KW - Motivation Y1 - 2021 U6 - https://doi.org/10.1007/s42321-021-00076-4 SN - 1023-7267 VL - 45 IS - 3 SP - 303 EP - 324 PB - Springer Science and Business Media ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Artificial Intelligence (AI) – assisted vessel and tissue recognition during third space endoscopy (Smart ESD) T2 - Zeitschrift für Gastroenterologie N2 - Clinical setting  Third space procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex minimally invasive techniques with an elevated risk for operator-dependent adverse events such as bleeding and perforation. This risk arises from accidental dissection into the muscle layer or through submucosal blood vessels as the submucosal cutting plane within the expanding resection site is not always apparent. Deep learning algorithms have shown considerable potential for the detection and characterization of gastrointestinal lesions. So-called AI – clinical decision support solutions (AI-CDSS) are commercially available for polyp detection during colonoscopy. Until now, these computer programs have concentrated on diagnostics whereas an AI-CDSS for interventional endoscopy has not yet been introduced. We aimed to develop an AI-CDSS („Smart ESD“) for real-time intra-procedural detection and delineation of blood vessels, tissue structures and endoscopic instruments during third-space endoscopic procedures. Characteristics of Smart ESD  An AI-CDSS was invented that delineates blood vessels, tissue structures and endoscopic instruments during third-space endoscopy in real-time. The output can be displayed by an overlay over the endoscopic image with different modes of visualization, such as a color-coded semitransparent area overlay, or border tracing (demonstration video). Hereby the optimal layer for dissection can be visualized, which is close above or directly at the muscle layer, depending on the applied technique (ESD or POEM). Furthermore, relevant blood vessels (thickness> 1mm) are delineated. Spatial proximity between the electrosurgical knife and a blood vessel triggers a warning signal. By this guidance system, inadvertent dissection through blood vessels could be averted. Technical specifications  A DeepLabv3+ neural network architecture with KSAC and a 101-layer ResNeSt backbone was used for the development of Smart ESD. It was trained and validated with 2565 annotated still images from 27 full length third-space endoscopic videos. The annotation classes were blood vessel, submucosal layer, muscle layer, electrosurgical knife and endoscopic instrument shaft. A test on a separate data set yielded an intersection over union (IoU) of 68%, a Dice Score of 80% and a pixel accuracy of 87%, demonstrating a high overlap between expert and AI segmentation. Further experiments on standardized video clips showed a mean vessel detection rate (VDR) of 85% with values of 92%, 70% and 95% for POEM, rectal ESD and esophageal ESD respectively. False positive measurements occurred 0.75 times per minute. 7 out of 9 vessels which caused intraprocedural bleeding were caught by the algorithm, as well as both vessels which required hemostasis via hemostatic forceps. Future perspectives  Smart ESD performed well for vessel and tissue detection and delineation on still images, as well as on video clips. During a live demonstration in the endoscopy suite, clinical applicability of the innovation was examined. The lag time for processing of the live endoscopic image was too short to be visually detectable for the interventionist. Even though the algorithm could not be applied during actual dissection by the interventionist, Smart ESD appeared readily deployable during visual assessment by ESD experts. Therefore, we plan to conduct a clinical trial in order to obtain CE-certification of the algorithm. This new technology may improve procedural safety and speed, as well as training of modern minimally invasive endoscopic resection techniques. KW - Artificial Intelligence KW - Medical Image Computing KW - Endoscopy KW - Bildgebendes Verfahren KW - Medizin KW - Künstliche Intelligenz KW - Endoskopie Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1755110 VL - 60 IS - 08 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Scheppach, Markus W. A1 - Probst, Andreas A1 - Prinz, Friederike A1 - Schwamberger, Tanja A1 - Schlottmann, Jakob A1 - Gölder, Stefan Karl A1 - Walter, Benjamin A1 - Steinbrück, Ingo A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - INFLUENCE OF AN ARTIFICIAL INTELLIGENCE (AI) BASED DECISION SUPPORT SYSTEM (DSS) ON THE DIAGNOSTIC PERFORMANCE OF NON-EXPERTS IN BARRETT´S ESOPHAGUS RELATED NEOPLASIA (BERN) T2 - Endoscopy N2 - Aims Barrett´s esophagus related neoplasia (BERN) is difficult to detect and characterize during endoscopy, even for expert endoscopists. We aimed to assess the add-on effect of an Artificial Intelligence (AI) algorithm (Barrett-Ampel) as a decision support system (DSS) for non-expert endoscopists in the evaluation of Barrett’s esophagus (BE) and BERN. Methods Twelve videos with multimodal imaging white light (WL), narrow-band imaging (NBI), texture and color enhanced imaging (TXI) of histologically confirmed BE and BERN were assessed by expert and non-expert endoscopists. For each video, endoscopists were asked to identify the area of BERN and decide on the biopsy spot. Videos were assessed by the AI algorithm and regions of BERN were highlighted in real-time by a transparent overlay. Finally, endoscopists were shown the AI videos and asked to either confirm or change their initial decision based on the AI support. Results Barrett-Ampel correctly identified all areas of BERN, irrespective of the imaging modality (WL, NBI, TXI), but misinterpreted two inflammatory lesions (Accuracy=75%). Expert endoscopists had a similar performance (Accuracy=70,8%), while non-experts had an accuracy of 58.3%. When AI was implemented as a DSS, non-expert endoscopists improved their diagnostic accuracy to 75%. Conclusions AI may have the potential to support non-expert endoscopists in the assessment of videos of BE and BERN. Limitations of this study include the low number of videos used. Randomized clinical trials in a real-life setting should be performed to confirm these results. KW - Artificial Intelligence KW - Barrett's Esophagus KW - Speiseröhrenkrankheit KW - Künstliche Intelligenz KW - Diagnose Y1 - 2022 U6 - https://doi.org/10.1055/s-00000012 VL - 54 IS - S 01 SP - S39 PB - Thieme ER - TY - JOUR A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - ARTIFICIAL INTELLIGENCE (AI) – ASSISTED VESSEL AND TISSUE RECOGNITION IN THIRD-SPACE ENDOSCOPY JF - Endoscopy N2 - Aims Third-space endoscopy procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex interventions with elevated risk of operator-dependent adverse events, such as intra-procedural bleeding and perforation. We aimed to design an artificial intelligence clinical decision support solution (AI-CDSS, “Smart ESD”) for the detection and delineation of vessels, tissue structures, and instruments during third-space endoscopy procedures. Methods Twelve full-length third-space endoscopy videos were extracted from the Augsburg University Hospital database. 1686 frames were annotated for the following categories: Submucosal layer, blood vessels, electrosurgical knife and endoscopic instrument. A DeepLabv3+neural network with a 101-layer ResNet backbone was trained and validated internally. Finally, the ability of the AI system to detect visible vessels during ESD and POEM was determined on 24 separate video clips of 7 to 46 seconds duration and showing 33 predefined vessels. These video clips were also assessed by an expert in third-space endoscopy. Results Smart ESD showed a vessel detection rate (VDR) of 93.94%, while an average of 1.87 false positive signals were recorded per minute. VDR of the expert endoscopist was 90.1% with no false positive findings. On the internal validation data set using still images, the AI system demonstrated an Intersection over Union (IoU), mean Dice score and pixel accuracy of 63.47%, 76.18% and 86.61%, respectively. Conclusions This is the first AI-CDSS aiming to mitigate operator-dependent limitations during third-space endoscopy. Further clinical trials are underway to better understand the role of AI in such procedures. KW - Artificial Intelligence KW - Third-Space Endoscopy KW - Smart ESD Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1745037 VL - 54 IS - S01 SP - S175 PB - Thieme ER - TY - JOUR A1 - Hartmann, Robin A1 - Nieberle, Felix A1 - Palm, Christoph A1 - Brébant, Vanessa A1 - Prantl, Lukas A1 - Kuehle, Reinald A1 - Reichert, Torsten E. A1 - Taxis, Juergen A1 - Ettl, Tobias T1 - Utility of Smartphone-based Three-dimensional Surface Imaging for Digital Facial Anthropometry JF - JPRAS Open N2 - Background The utilization of three-dimensional (3D) surface imaging for facial anthropometry is a significant asset for patients undergoing maxillofacial surgery. Notably, there have been recent advancements in smartphone technology that enable 3D surface imaging. In this study, anthropometric assessments of the face were performed using a smartphone and a sophisticated 3D surface imaging system. Methods 30 healthy volunteers (15 females and 15 males) were included in the study. An iPhone 14 Pro (Apple Inc., USA) using the application 3D Scanner App (Laan Consulting Corp., USA) and the Vectra M5 (Canfield Scientific, USA) were employed to create 3D surface models. For each participant, 19 anthropometric measurements were conducted on the 3D surface models. Subsequently, the anthropometric measurements generated by the two approaches were compared. The statistical techniques employed included the paired t-test, paired Wilcoxon signed-rank test, Bland–Altman analysis, and calculation of the intraclass correlation coefficient (ICC). Results All measurements showed excellent agreement between smartphone-based and Vectra M5-based measurements (ICC between 0.85 and 0.97). Statistical analysis revealed no statistically significant differences in the central tendencies for 17 of the 19 linear measurements. Despite the excellent agreement found, Bland–Altman analysis revealed that the 95% limits of agreement between the two methods exceeded ±3 mm for the majority of measurements. Conclusion Digital facial anthropometry using smartphones can serve as a valuable supplementary tool for surgeons, enhancing their communication with patients. However, the proposed data suggest that digital facial anthropometry using smartphones may not yet be suitable for certain diagnostic purposes that require high accuracy. KW - Three-dimensional surface imaging KW - Stereophotogrammetry KW - Smartphone-based surface imaging KW - Digital anthropometry KW - Facial anthropometry Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-70348 VL - 39 SP - 330 EP - 343 PB - Elsevier ER -