TY - CHAP A1 - Middel, Luise A1 - Palm, Christoph A1 - Erdt, Marius T1 - Synthesis of Medical Images Using GANs T2 - Uncertainty for safe utilization of machine learning in medical imaging and clinical image-based procedures. First International Workshop, UNSURE 2019, and 8th International Workshop, CLIP 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019 N2 - The success of artificial intelligence in medicine is based on the need for large amounts of high quality training data. Sharing of medical image data, however, is often restricted by laws such as doctor-patient confidentiality. Although there are publicly available medical datasets, their quality and quantity are often low. Moreover, datasets are often imbalanced and only represent a fraction of the images generated in hospitals or clinics and can thus usually only be used as training data for specific problems. The introduction of generative adversarial networks (GANs) provides a mean to generate artificial images by training two convolutional networks. This paper proposes a method which uses GANs trained on medical images in order to generate a large number of artificial images that could be used to train other artificial intelligence algorithms. This work is a first step towards alleviating data privacy concerns and being able to publicly share data that still contains a substantial amount of the information in the original private data. The method has been evaluated on several public datasets and quantitative and qualitative tests showing promising results. KW - Neuronale Netze KW - Deep Learning KW - Generative adversarial networks KW - Machine Learning KW - Artificial Intelligence KW - Data privacy KW - Deep Learning KW - Bilderzeugung KW - Datenschutz Y1 - 2019 SN - 978-3-030-32688-3 U6 - https://doi.org/10.1007/978-3-030-32689-0_13 SN - 0302-9743 SP - 125 EP - 134 PB - Springer Nature CY - Cham ER - TY - CHAP A1 - Weiherer, Maximilian A1 - Zorn, Martin A1 - Wittenberg, Thomas A1 - Palm, Christoph ED - Tolxdorff, Thomas ED - Deserno, Thomas M. ED - Handels, Heinz ED - Maier, Andreas ED - Maier-Hein, Klaus H. ED - Palm, Christoph T1 - Retrospective Color Shading Correction for Endoscopic Images T2 - Bildverarbeitung für die Medizin 2020. Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 15. bis 17. März 2020 in Berlin N2 - In this paper, we address the problem of retrospective color shading correction. An extension of the established gray-level shading correction algorithm based on signal envelope (SE) estimation to color images is developed using principal color components. Compared to the probably most general shading correction algorithm based on entropy minimization, SE estimation does not need any computationally expensive optimization and thus can be implemented more effciently. We tested our new shading correction scheme on artificial as well as real endoscopic images and observed promising results. Additionally, an indepth analysis of the stop criterion used in the SE estimation algorithm is provided leading to the conclusion that a fixed, user-defined threshold is generally not feasible. Thus, we present new ideas how to develop a non-parametric version of the SE estimation algorithm using entropy. KW - Endoskopie KW - Bildgebendes Verfahren KW - Farbenraum KW - Graustufe Y1 - 2020 SN - 978-3-658-29266-9 U6 - https://doi.org/10.1007/978-3-658-29267-6 SP - 14 EP - 19 PB - Springer Vieweg CY - Wiesbaden ER - TY - CHAP A1 - Palm, Christoph A1 - Keysers, Daniel A1 - Lehmann, Thomas M. A1 - Spitzer, Klaus T1 - Gabor Filtering of Complex Hue/Saturation Images for Color Texture Classification T2 - Proceedings of the 5th Joint Conference on Information Science (JCIS) 2, The Association for Intelligent Machinery, Atlantic City, NJ, 2000 N2 - Objective: Complex hue/saturation images as a new approach for color texture classification using Gabor filters are introduced and compared with common techniques. Method: The interpretation of hue and saturationas polar coordinates allows direct use of the HSV-colorspace for Fourier transform. This technique is applied for Gabor feature extraction of color textures. In contrast to other color features based on the RGB-colorspace [1] the combination of color bands is done previous to the filtering. Results: The performance of the new HS-featuresis compared with that of RGB based as well as grayscale Gabor features by evaluating the classifi-cation of 30 natural textures. The new HS-featuresshow same results like the best RGB features but allow a more compact representation. On the averagethe color features improve the results of grayscale features. Conclusion: The consideration of the color information enhances the classification of color texture. The choice of colorspace cannot be adjudged finally, but the introduced features suggest the use of the HSV-colorspace with less features than RGB. Y1 - 2000 UR - http://www.keysers.net/daniel/files/JCIS2000_palm.pdf SP - 45 EP - 49 ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Probst, Andreas A1 - Manzeneder, Johannes A1 - Prinz, Friederike A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Real-time use of artificial intelligence in the evaluation of cancer in Barrett’s oesophagus JF - Gut N2 - Based on previous work by our group with manual annotation of visible Barrett oesophagus (BE) cancer images, a real-time deep learning artificial intelligence (AI) system was developed. While an expert endoscopist conducts the endoscopic assessment of BE, our AI system captures random images from the real-time camera livestream and provides a global prediction (classification), as well as a dense prediction (segmentation) differentiating accurately between normal BE and early oesophageal adenocarcinoma (EAC). The AI system showed an accuracy of 89.9% on 14 cases with neoplastic BE. KW - Speiseröhrenkrankheit KW - Diagnose KW - Maschinelles Lernen KW - Barrett's esophagus KW - Deep learning KW - real-time Y1 - 2020 U6 - https://doi.org/10.1136/gutjnl-2019-319460 VL - 69 IS - 4 SP - 615 EP - 616 PB - BMJ CY - London ER - TY - JOUR A1 - Arribas, Julia A1 - Antonelli, Giulio A1 - Frazzoni, Leonardo A1 - Fuccio, Lorenzo A1 - Ebigbo, Alanna A1 - van der Sommen, Fons A1 - Ghatwary, Noha A1 - Palm, Christoph A1 - Coimbra, Miguel A1 - Renna, Francesco A1 - Bergman, Jacques J.G.H.M. A1 - Sharma, Prateek A1 - Messmann, Helmut A1 - Hassan, Cesare A1 - Dinis-Ribeiro, Mario J. T1 - Standalone performance of artificial intelligence for upper GI neoplasia: a meta-analysis JF - Gut N2 - Objective: Artificial intelligence (AI) may reduce underdiagnosed or overlooked upper GI (UGI) neoplastic and preneoplastic conditions, due to subtle appearance and low disease prevalence. Only disease-specific AI performances have been reported, generating uncertainty on its clinical value. Design: We searched PubMed, Embase and Scopus until July 2020, for studies on the diagnostic performance of AI in detection and characterisation of UGI lesions. Primary outcomes were pooled diagnostic accuracy, sensitivity and specificity of AI. Secondary outcomes were pooled positive (PPV) and negative (NPV) predictive values. We calculated pooled proportion rates (%), designed summary receiving operating characteristic curves with respective area under the curves (AUCs) and performed metaregression and sensitivity analysis. Results: Overall, 19 studies on detection of oesophageal squamous cell neoplasia (ESCN) or Barrett's esophagus-related neoplasia (BERN) or gastric adenocarcinoma (GCA) were included with 218, 445, 453 patients and 7976, 2340, 13 562 images, respectively. AI-sensitivity/specificity/PPV/NPV/positive likelihood ratio/negative likelihood ratio for UGI neoplasia detection were 90% (CI 85% to 94%)/89% (CI 85% to 92%)/87% (CI 83% to 91%)/91% (CI 87% to 94%)/8.2 (CI 5.7 to 11.7)/0.111 (CI 0.071 to 0.175), respectively, with an overall AUC of 0.95 (CI 0.93 to 0.97). No difference in AI performance across ESCN, BERN and GCA was found, AUC being 0.94 (CI 0.52 to 0.99), 0.96 (CI 0.95 to 0.98), 0.93 (CI 0.83 to 0.99), respectively. Overall, study quality was low, with high risk of selection bias. No significant publication bias was found. Conclusion: We found a high overall AI accuracy for the diagnosis of any neoplastic lesion of the UGI tract that was independent of the underlying condition. This may be expected to substantially reduce the miss rate of precancerous lesions and early cancer when implemented in clinical practice. KW - Artificial Intelligence Y1 - 2021 U6 - https://doi.org/10.1136/gutjnl-2020-321922 VL - 70 IS - 8 SP - 1458 EP - 1468 PB - BMJ CY - London ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Rückert, Tobias A1 - Schuster, Laurin A1 - Probst, Andreas A1 - Manzeneder, Johannes A1 - Prinz, Friederike A1 - Mende, Matthias A1 - Steinbrück, Ingo A1 - Faiss, Siegbert A1 - Rauber, David A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Deprez, Pierre A1 - Oyama, Tsuneo A1 - Takahashi, Akiko A1 - Seewald, Stefan A1 - Sharma, Prateek A1 - Byrne, Michael F. A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Endoscopic prediction of submucosal invasion in Barrett’s cancer with the use of Artificial Intelligence: A pilot Study JF - Endoscopy N2 - Background and aims: The accurate differentiation between T1a and T1b Barrett’s cancer has both therapeutic and prognostic implications but is challenging even for experienced physicians. We trained an Artificial Intelligence (AI) system on the basis of deep artificial neural networks (deep learning) to differentiate between T1a and T1b Barrett’s cancer white-light images. Methods: Endoscopic images from three tertiary care centres in Germany were collected retrospectively. A deep learning system was trained and tested using the principles of cross-validation. A total of 230 white-light endoscopic images (108 T1a and 122 T1b) was evaluated with the AI-system. For comparison, the images were also classified by experts specialized in endoscopic diagnosis and treatment of Barrett’s cancer. Results: The sensitivity, specificity, F1 and accuracy of the AI-system in the differentiation between T1a and T1b cancer lesions was 0.77, 0.64, 0.73 and 0.71, respectively. There was no statistically significant difference between the performance of the AI-system and that of human experts with sensitivity, specificity, F1 and accuracy of 0.63, 0.78, 0.67 and 0.70 respectively. Conclusion: This pilot study demonstrates the first multicenter application of an AI-based system in the prediction of submucosal invasion in endoscopic images of Barrett’s cancer. AI scored equal to international experts in the field, but more work is necessary to improve the system and apply it to video sequences and in a real-life setting. Nevertheless, the correct prediction of submucosal invasion in Barret´s cancer remains challenging for both experts and AI. KW - Maschinelles Lernen KW - Neuronales Netz KW - Speiseröhrenkrebs KW - Diagnose KW - Artificial Intelligence KW - Machine learning KW - Adenocarcinoma KW - Barrett’s cancer KW - submucosal invasion Y1 - 2021 U6 - https://doi.org/10.1055/a-1311-8570 VL - 53 IS - 09 SP - 878 EP - 883 PB - Thieme CY - Stuttgart ER - TY - INPR A1 - Weiherer, Maximilian A1 - Eigenberger, Andreas A1 - Brébant, Vanessa A1 - Prantl, Lukas A1 - Palm, Christoph T1 - Learning the shape of female breasts: an open-access 3D statistical shape model of the female breast built from 110 breast scans N2 - We present the Regensburg Breast Shape Model (RBSM) – a 3D statistical shape model of the female breast built from 110 breast scans, and the first ever publicly available. Together with the model, a fully automated, pairwise surface registration pipeline used to establish correspondence among 3D breast scans is introduced. Our method is computationally efficient and requires only four landmarks to guide the registration process. In order to weaken the strong coupling between breast and thorax, we propose to minimize the variance outside the breast region as much as possible. To achieve this goal, a novel concept called breast probability masks (BPMs) is introduced. A BPM assigns probabilities to each point of a 3D breast scan, telling how likely it is that a particular point belongs to the breast area. During registration, we use BPMs to align the template to the target as accurately as possible inside the breast region and only roughly outside. This simple yet effective strategy significantly reduces the unwanted variance outside the breast region, leading to better statistical shape models in which breast shapes are quite well decoupled from the thorax. The RBSM is thus able to produce a variety of different breast shapes as independently as possible from the shape of the thorax. Our systematic experimental evaluation reveals a generalization ability of 0.17 mm and a specificity of 2.8 mm for the RBSM. Ultimately, our model is seen as a first step towards combining physically motivated deformable models of the breast and statistical approaches in order to enable more realistic surgical outcome simulation. KW - Statistical shape mode KW - Surgical outcome simulation KW - 3D breast scan registration KW - Non-rigid surface registration KW - Breast imaging Y1 - 2021 ER - TY - CHAP A1 - Palm, Christoph A1 - Pelkmann, Annegret A1 - Lehmann, Thomas M. A1 - Spitzer, Klaus T1 - Distortion Correction of Laryngoscopic Images T2 - Advances in quantitative laryngoscopy, voice and speech research, Proceedings of the 3rd international workshop Aachen, RWTH N2 - Laryngoscopic images of the vocal tract are used for diagnostic purposes. Quantitative mea-surements like changes of the glottis size or the surface of the vocal cords during an image sequence can be helpful to describe the healing process or to compare the findings of diffe-rent patients. Typically the endoscopic images are circulary symmetric distorted (barrel di-stortion). Therefore measurements of geometric dimensions depend on the object´s position in the image. In this paper an algorithm is presented which allows the computation of the translational invariant "real" object size by correcting the image distortion without using additional calibration of the optical environment. KW - image distortion KW - camera calibration KW - multiple regression analysis Y1 - 1998 UR - https://pdfs.semanticscholar.org/e9d8/eb27af24bd79f482821441c2bf0eee7b3fe6.pdf?_ga=2.183754286.985176231.1591560247-1467258391.1581026068 SP - 117 EP - 125 ER - TY - CHAP A1 - Palm, Christoph A1 - Scholl, Ingrid A1 - Lehmann, Thomas M. A1 - Spitzer, Klaus ED - Lehmann, Thomas M. ED - Metzler, V. ED - Spitzer, Klaus ED - Tolxdorff, Thomas T1 - Quantitative Farbmessung in laryngoskopischen Bildern T2 - Bildverarbeitung für die Medizin N2 - Quantitative Farbmessungen sollen die Diagnostik laryngealer Erkrankungen unterstützen. Dabei wird der Farbeindruck nicht nur durch die Reflexionseigenschaften des Gewebes sondern auch durch die Farbe der verwendeten Lichtquelle beeinflußt. Der hier vorgestellte Farbkonstanz-Algorithmus basiert auf dem dichromatischen Reflexionsmodell und liefert eine pixelweise Trennung des Farbbildes in seine beiden Faxbanteile. Die Körperfarbe entspricht dabei der gewebespezifischen Reflexion, die Oberfächenfarbe der Strahlung der Lichtquelle. KW - Farbkonstanz KW - quantitative Farbmessung KW - dichromatisches Reflexionsmodell KW - Laryngoskopie Y1 - 1998 U6 - https://doi.org/10.1007/978-3-642-58775-7_81 SP - 412 EP - 416 PB - Springer CY - Berlin ER - TY - JOUR A1 - Mendel, Robert A1 - Rauber, David A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Palm, Christoph T1 - Error-Correcting Mean-Teacher: Corrections instead of consistency-targets applied to semi-supervised medical image segmentation JF - Computers in Biology and Medicine N2 - Semantic segmentation is an essential task in medical imaging research. Many powerful deep-learning-based approaches can be employed for this problem, but they are dependent on the availability of an expansive labeled dataset. In this work, we augment such supervised segmentation models to be suitable for learning from unlabeled data. Our semi-supervised approach, termed Error-Correcting Mean-Teacher, uses an exponential moving average model like the original Mean Teacher but introduces our new paradigm of error correction. The original segmentation network is augmented to handle this secondary correction task. Both tasks build upon the core feature extraction layers of the model. For the correction task, features detected in the input image are fused with features detected in the predicted segmentation and further processed with task-specific decoder layers. The combination of image and segmentation features allows the model to correct present mistakes in the given input pair. The correction task is trained jointly on the labeled data. On unlabeled data, the exponential moving average of the original network corrects the student’s prediction. The combined outputs of the students’ prediction with the teachers’ correction form the basis for the semi-supervised update. We evaluate our method with the 2017 and 2018 Robotic Scene Segmentation data, the ISIC 2017 and the BraTS 2020 Challenges, a proprietary Endoscopic Submucosal Dissection dataset, Cityscapes, and Pascal VOC 2012. Additionally, we analyze the impact of the individual components and examine the behavior when the amount of labeled data varies, with experiments performed on two distinct segmentation architectures. Our method shows improvements in terms of the mean Intersection over Union over the supervised baseline and competing methods. Code is available at https://github.com/CloneRob/ECMT. KW - Semi-supervised Segmentation KW - Mean-Teacher KW - Pseudo-labels KW - Medical Imaging Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-57790 SN - 0010-4825 N1 - Corresponding author der OTH Regensburg: Robert Mendel VL - 154 IS - March PB - Elsevier ER -