TY - CHAP A1 - Schaeffer, Leon A1 - Herrmann, David A1 - Böhm, Valter T1 - Theoretical considerations on a 2D compliant tensegrity joint in context of a biomedical application T2 - Engineering for a changing world : 60th ISC, Ilmenau Scientific Colloquium, Technische Universität Ilmenau, September 4-8, 2023 N2 - In this paper, a two-dimensional compliant tensegrity joint was investigated for potential biomedical applications such as orthotics or exoskeletons. The structure consists of two compressed members connected by five compliant tensioned members. The concept is based on the tensegrity principle, which allows the realization of dynamic orthoses without conventional hinge joints. Another advantage is the adaptability to the individual needs of the patient through a suitable design of the structure and the careful selection of the characteristics of the elements. Using geometric nonlinear analysis, the mechanical behavior of the structure was investigated, focusing on mechanical compliance. The main objective was to determine the influence of the initial length and stiffness of the tensioned members and the influence of the magnitude of external forces on the overall stiffness of the movable member of the structure. The results highlight the significant impact of member parameters on the structure's stiffness and movability under varying load magnitudes. The research laid the foundation for future development of dynamic orthoses based on this structure. Y1 - 2023 U6 - https://doi.org/10.22032/dbt.58879 SP - 1 EP - 15 PB - Technische Universität Ilmenau CY - Ilmenau ER - TY - CHAP A1 - Schaeffer, Leon A1 - Herrmann, David A1 - Böhm, Valter T1 - Preliminary considerations on the form-finding of a tensegrity joint to be used in dynamic orthoses T2 - 8th International Conference on Biomedical Engineering and Applications (ICBEA 2024), Tokio, 18-21. March 2024 Y1 - 2024 PB - ACM ET - accepted paper ER - TY - JOUR A1 - Schaeffer, Leon A1 - Herrmann, David A1 - Schratzenstaller, Thomas A1 - Dendorfer, Sebastian A1 - Böhm, Valter T1 - Preliminary theoretical considerations on the stiffness characteristics of a tensegrity joint for the use in dynamic orthoses JF - Journal of Medical Robotics Research N2 - Early motion therapy plays an important role for effective long-term healing of joint injuries. In many cases, conventional dynamic orthoses fail to address the intricate movement possibilities of the underlying joints, limited by their simplistic joint representations, often represented by revolute joints, enabling rotations by only one axis. In this paper, a two-dimensional compliant tensegrity joint for use in biomedical applications is investigated. It consists of two compressed members and five compliant tensioned members. Relative movement possibilities are realized by the intrinsic compliance of the structure. In the development of these systems, the first step is the determination of the static stable equilibrium. This analysis is conducted in this paper by considering the potential energy approach or by using the geometric nonlinear finite element method. The mechanical behavior of the structure is assessed with a specific emphasis on its mechanical compliance. The primary objective of this study is the investigation of the influence of structural parameters on the overall stiffness and movability of the structure. The results underscore the significant effect of member parameters on the stiffness and movability of the compliant tensegrity joint, particularly under varying load magnitudes. These findings provide insights for optimizing the joint’s performance, contributing to its potential application in advanced orthotic and exoskeleton devices. KW - mechanical compliance KW - flexibility ellipsis KW - form-finding KW - tensegrity joint Y1 - 2023 U6 - https://doi.org/10.1142/S2424905X23400081 PB - World Scientific ER - TY - JOUR A1 - Schecklmann, Martin A1 - Schmausser, Maximilian A1 - Klinger, Felix A1 - Kreuzer, Peter M. A1 - Krenkel, Lars A1 - Langguth, Berthold T1 - Resting motor threshold and magnetic field output of the figure-of-8 and the double-cone coil JF - scientific reports N2 - The use of the double-cone (DC) coil in transcranial magnetic stimulation (TMS) is promoted with the notion that the DC coil enables stimulation of deeper brain areas in contrast to conventional figure-of-8 (Fo8) coils. However, systematic comparisons of these two coil types with respect to the spatial distribution of the magnetic field output and also to the induced activity in superficial and deeper brain areas are limited. Resting motor thresholds of the left and right first dorsal interosseous (FDI) and tibialis anterior (TA) were determined with the DC and the Fo8 coil in 17 healthy subjects. Coils were orientated over the corresponding motor area in an angle of 45 degrees for the hand area with the handle pointing in posterior direction and in medio-lateral direction for the leg area. Physical measurements were done with an automatic gantry table using a Gaussmeter. Resting motor threshold was higher for the leg area in contrast to the hand area and for the Fo8 in contrast to the DC coil. Muscle by coil interaction was also significant providing higher differences between leg and hand area for the Fo8 (about 27%) in contrast to the DC coil (about 15%). Magnetic field strength was higher for the DC coil in contrast to the Fo8 coil. The DC coil produces a higher magnetic field with higher depth of penetration than the figure of eight coil. KW - ANTERIOR CINGULATE CORTEX KW - CONNECTIVITY KW - Depression KW - FRONTAL-CORTEX KW - PREDICTOR KW - RTMS KW - STIMULATION KW - TMS Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-58034-2 VL - 10 IS - 1 PB - Nature ER - TY - JOUR A1 - Schedlbauer, Jürgen A1 - Raptis, Georgios A1 - Ludwig, Bernd T1 - Medical informatics labor market analysis using web crawling, web scraping, and text mining JF - International Journal of Medical Informatics N2 - Objectives The European University Association (EUA) defines “employability” as a major goal of higher education. Therefore, competence-based orientation is an important aspect of education. The representation of a standardized job profile in the field of medical informatics, which is based on the most common labor market requirements, is fundamental for identifying and conveying the learning goals corresponding to these competences. Methods To identify the most common requirements, we extracted 544 job advertisements from the German job portal, STEPSTONE. This process was conducted via a program we developed in R with the “rvest” library, utilizing web crawling, web extraction, and text mining. After removing duplicates and filtering for jobs that required a bachelor's degree, 147 job advertisements remained, from which we extracted qualification terms. We categorized the terms into six groups: professional expertise, soft skills, teamwork, processes, learning, and problem-solving abilities. Results The results showed that only 45% of the terms are related to professional expertise, while 55% are related to soft skills. Studies of employee soft skills have shown similar results. The most prevalent terms were programming, experience, project, and server. Our second major finding is the importance of experience, further underlining how essential practical skills are. Conclusions Previous studies used surveys and narrative descriptions. This is the first study to use web crawling, web extraction, and text mining. Our research shows that soft skills and specialist knowledge carry equal weight. The insights gained from this study may be of assistance in developing curricula for medical informatics. KW - Medical informatics KW - Graduate employability KW - Text mining KW - Competence-based education KW - Soft skills Y1 - 2021 U6 - https://doi.org/10.1016/j.ijmedinf.2021.104453 SN - 1386-5056 VL - 150 IS - June PB - Elsevier ER - TY - JOUR A1 - Scheer, Clara A1 - Kubowitsch, Simone A1 - Dendorfer, Sebastian A1 - Jansen, Petra T1 - Happy Enough to Relax? How Positive and Negative Emotions Activate Different Muscular Regions in the Back - an Explorative Study JF - Frontiers in Psychology N2 - Embodiment theories have proposed a reciprocal relationship between emotional state and bodily reactions. Besides large body postures, recent studies have found emotions to affect rather subtle bodily expressions, such as slumped or upright sitting posture. This study investigated back muscle activity as an indication of an effect of positive and negative emotions on the sitting position. The electromyography (EMG) activity of six back muscles was recorded in 31 healthy subjects during exposure to positive and negative affective pictures. A resting period was used as a control condition. Increased muscle activity patterns in the back were found during the exposure to negative emotional stimuli, which was mainly measured in the lumbar and thorax regions. The positive emotion condition caused no elevated activity. The findings show that negative emotions lead to increased differential muscle activity in the back and thus corroborate those of previous research that emotion affects subtle bodily expressions. KW - electromyography KW - muscle activity KW - emotion KW - sadness KW - happiness KW - embodiment Y1 - 2021 U6 - https://doi.org/10.3389/fpsyg.2021.511746 SN - 1664-1078 VL - Volume 12 IS - May 2021 PB - Frontiers Media ER - TY - GEN A1 - Scheppach, Markus A1 - Rauber, David A1 - Stallhofer, Johannes A1 - Muzalyova, Anna A1 - Otten, Vera A1 - Manzeneder, Carolin A1 - Schwamberger, Tanja A1 - Wanzl, Julia A1 - Schlottmann, Jakob A1 - Tadic, Vidan A1 - Probst, Andreas A1 - Schnoy, Elisabeth A1 - Römmele, Christoph A1 - Fleischmann, Carola A1 - Meinikheim, Michael A1 - Miller, Silvia A1 - Märkl, Bruno A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Performance comparison of a deep learning algorithm with endoscopists in the detection of duodenal villous atrophy (VA) T2 - Endoscopy N2 - Aims  VA is an endoscopic finding of celiac disease (CD), which can easily be missed if pretest probability is low. In this study, we aimed to develop an artificial intelligence (AI) algorithm for the detection of villous atrophy on endoscopic images. Methods 858 images from 182 patients with VA and 846 images from 323 patients with normal duodenal mucosa were used for training and internal validation of an AI algorithm (ResNet18). A separate dataset was used for external validation, as well as determination of detection performance of experts, trainees and trainees with AI support. According to the AI consultation distribution, images were stratified into “easy” and “difficult”. Results Internal validation showed 82%, 85% and 84% for sensitivity, specificity and accuracy. External validation showed 90%, 76% and 84%. The algorithm was significantly more sensitive and accurate than trainees, trainees with AI support and experts in endoscopy. AI support in trainees was associated with significantly improved performance. While all endoscopists showed significantly lower detection for “difficult” images, AI performance remained stable. Conclusions The algorithm outperformed trainees and experts in sensitivity and accuracy for VA detection. The significant improvement with AI support suggests a potential clinical benefit. Stable performance of the algorithm in “easy” and “difficult” test images may indicate an advantage in macroscopically challenging cases. Y1 - 2023 U6 - https://doi.org/10.1055/s-0043-1765421 VL - 55 IS - S02 PB - Thieme ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Artificial Intelligence (AI) – assisted vessel and tissue recognition during third space endoscopy (Smart ESD) T2 - Zeitschrift für Gastroenterologie N2 - Clinical setting  Third space procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex minimally invasive techniques with an elevated risk for operator-dependent adverse events such as bleeding and perforation. This risk arises from accidental dissection into the muscle layer or through submucosal blood vessels as the submucosal cutting plane within the expanding resection site is not always apparent. Deep learning algorithms have shown considerable potential for the detection and characterization of gastrointestinal lesions. So-called AI – clinical decision support solutions (AI-CDSS) are commercially available for polyp detection during colonoscopy. Until now, these computer programs have concentrated on diagnostics whereas an AI-CDSS for interventional endoscopy has not yet been introduced. We aimed to develop an AI-CDSS („Smart ESD“) for real-time intra-procedural detection and delineation of blood vessels, tissue structures and endoscopic instruments during third-space endoscopic procedures. Characteristics of Smart ESD  An AI-CDSS was invented that delineates blood vessels, tissue structures and endoscopic instruments during third-space endoscopy in real-time. The output can be displayed by an overlay over the endoscopic image with different modes of visualization, such as a color-coded semitransparent area overlay, or border tracing (demonstration video). Hereby the optimal layer for dissection can be visualized, which is close above or directly at the muscle layer, depending on the applied technique (ESD or POEM). Furthermore, relevant blood vessels (thickness> 1mm) are delineated. Spatial proximity between the electrosurgical knife and a blood vessel triggers a warning signal. By this guidance system, inadvertent dissection through blood vessels could be averted. Technical specifications  A DeepLabv3+ neural network architecture with KSAC and a 101-layer ResNeSt backbone was used for the development of Smart ESD. It was trained and validated with 2565 annotated still images from 27 full length third-space endoscopic videos. The annotation classes were blood vessel, submucosal layer, muscle layer, electrosurgical knife and endoscopic instrument shaft. A test on a separate data set yielded an intersection over union (IoU) of 68%, a Dice Score of 80% and a pixel accuracy of 87%, demonstrating a high overlap between expert and AI segmentation. Further experiments on standardized video clips showed a mean vessel detection rate (VDR) of 85% with values of 92%, 70% and 95% for POEM, rectal ESD and esophageal ESD respectively. False positive measurements occurred 0.75 times per minute. 7 out of 9 vessels which caused intraprocedural bleeding were caught by the algorithm, as well as both vessels which required hemostasis via hemostatic forceps. Future perspectives  Smart ESD performed well for vessel and tissue detection and delineation on still images, as well as on video clips. During a live demonstration in the endoscopy suite, clinical applicability of the innovation was examined. The lag time for processing of the live endoscopic image was too short to be visually detectable for the interventionist. Even though the algorithm could not be applied during actual dissection by the interventionist, Smart ESD appeared readily deployable during visual assessment by ESD experts. Therefore, we plan to conduct a clinical trial in order to obtain CE-certification of the algorithm. This new technology may improve procedural safety and speed, as well as training of modern minimally invasive endoscopic resection techniques. KW - Artificial Intelligence KW - Medical Image Computing KW - Endoscopy KW - Bildgebendes Verfahren KW - Medizin KW - Künstliche Intelligenz KW - Endoskopie Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1755110 VL - 60 IS - 08 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - JOUR A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - ARTIFICIAL INTELLIGENCE (AI) – ASSISTED VESSEL AND TISSUE RECOGNITION IN THIRD-SPACE ENDOSCOPY JF - Endoscopy N2 - Aims Third-space endoscopy procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex interventions with elevated risk of operator-dependent adverse events, such as intra-procedural bleeding and perforation. We aimed to design an artificial intelligence clinical decision support solution (AI-CDSS, “Smart ESD”) for the detection and delineation of vessels, tissue structures, and instruments during third-space endoscopy procedures. Methods Twelve full-length third-space endoscopy videos were extracted from the Augsburg University Hospital database. 1686 frames were annotated for the following categories: Submucosal layer, blood vessels, electrosurgical knife and endoscopic instrument. A DeepLabv3+neural network with a 101-layer ResNet backbone was trained and validated internally. Finally, the ability of the AI system to detect visible vessels during ESD and POEM was determined on 24 separate video clips of 7 to 46 seconds duration and showing 33 predefined vessels. These video clips were also assessed by an expert in third-space endoscopy. Results Smart ESD showed a vessel detection rate (VDR) of 93.94%, while an average of 1.87 false positive signals were recorded per minute. VDR of the expert endoscopist was 90.1% with no false positive findings. On the internal validation data set using still images, the AI system demonstrated an Intersection over Union (IoU), mean Dice score and pixel accuracy of 63.47%, 76.18% and 86.61%, respectively. Conclusions This is the first AI-CDSS aiming to mitigate operator-dependent limitations during third-space endoscopy. Further clinical trials are underway to better understand the role of AI in such procedures. KW - Artificial Intelligence KW - Third-Space Endoscopy KW - Smart ESD Y1 - 2022 U6 - https://doi.org/10.1055/s-0042-1745037 VL - 54 IS - S01 SP - S175 PB - Thieme ER - TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Probst, Andreas A1 - Rauber, David A1 - Rueckert, Tobias A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Real-time detection and delineation of tissue during third-space endoscopy using artificial intelligence (AI) T2 - Endoscopy N2 - Aims  AI has proven great potential in assisting endoscopists in diagnostics, however its role in therapeutic endoscopy remains unclear. Endoscopic submucosal dissection (ESD) is a technically demanding intervention with a slow learning curve and relevant risks like bleeding and perforation. Therefore, we aimed to develop an algorithm for the real-time detection and delineation of relevant structures during third-space endoscopy. Methods  5470 still images from 59 full length videos (47 ESD, 12 POEM) were annotated. 179681 additional unlabeled images were added to the training dataset. Consequently, a DeepLabv3+ neural network architecture was trained with the ECMT semi-supervised algorithm (under review elsewhere). Evaluation of vessel detection was performed on a dataset of 101 standardized video clips from 15 separate third-space endoscopy videos with 200 predefined blood vessels. Results  Internal validation yielded an overall mean Dice score of 85% (68% for blood vessels, 86% for submucosal layer, 88% for muscle layer). On the video test data, the overall vessel detection rate (VDR) was 94% (96% for ESD, 74% for POEM). The median overall vessel detection time (VDT) was 0.32 sec (0.3 sec for ESD, 0.62 sec for POEM). Conclusions  Evaluation of the developed algorithm on a video test dataset showed high VDR and quick VDT, especially for ESD. Further research will focus on a possible clinical benefit of the AI application for VDR and VDT during third-space endoscopy. KW - Speiseröhrenkrankheit KW - Künstliche Intelligenz KW - Artificial Intelligence Y1 - 2023 U6 - https://doi.org/10.1055/s-0043-1765128 VL - 55 IS - S02 SP - S53 EP - S54 PB - Thieme ER -