TY - GEN A1 - Altenbuchner, Amelie A1 - Haug, Sonja A1 - Mohr, Christa A1 - Scorna, Ulrike A1 - Weber, Karsten T1 - The impact of nurse advisors and online advice services on treatment adherence in multiple sclerosis (MS) T2 - 7th Joint European Committee for Treatment and Research in Multiple Sclerosis - Americas Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS-ACTRIMS), 25.-27.10.2017, Paris Y1 - 2017 UR - https://onlinelibrary.ectrims-congress.eu/ectrims/2017/ACTRIMS-ECTRIMS2017/199863/amelie.altenbuchner.the.impact.of.nurse.advisors.and.online.advice.services.on.html ER - TY - JOUR A1 - Arribas, Julia A1 - Antonelli, Giulio A1 - Frazzoni, Leonardo A1 - Fuccio, Lorenzo A1 - Ebigbo, Alanna A1 - van der Sommen, Fons A1 - Ghatwary, Noha A1 - Palm, Christoph A1 - Coimbra, Miguel A1 - Renna, Francesco A1 - Bergman, Jacques J.G.H.M. A1 - Sharma, Prateek A1 - Messmann, Helmut A1 - Hassan, Cesare A1 - Dinis-Ribeiro, Mario J. T1 - Standalone performance of artificial intelligence for upper GI neoplasia: a meta-analysis JF - Gut N2 - Objective: Artificial intelligence (AI) may reduce underdiagnosed or overlooked upper GI (UGI) neoplastic and preneoplastic conditions, due to subtle appearance and low disease prevalence. Only disease-specific AI performances have been reported, generating uncertainty on its clinical value. Design: We searched PubMed, Embase and Scopus until July 2020, for studies on the diagnostic performance of AI in detection and characterisation of UGI lesions. Primary outcomes were pooled diagnostic accuracy, sensitivity and specificity of AI. Secondary outcomes were pooled positive (PPV) and negative (NPV) predictive values. We calculated pooled proportion rates (%), designed summary receiving operating characteristic curves with respective area under the curves (AUCs) and performed metaregression and sensitivity analysis. Results: Overall, 19 studies on detection of oesophageal squamous cell neoplasia (ESCN) or Barrett's esophagus-related neoplasia (BERN) or gastric adenocarcinoma (GCA) were included with 218, 445, 453 patients and 7976, 2340, 13 562 images, respectively. AI-sensitivity/specificity/PPV/NPV/positive likelihood ratio/negative likelihood ratio for UGI neoplasia detection were 90% (CI 85% to 94%)/89% (CI 85% to 92%)/87% (CI 83% to 91%)/91% (CI 87% to 94%)/8.2 (CI 5.7 to 11.7)/0.111 (CI 0.071 to 0.175), respectively, with an overall AUC of 0.95 (CI 0.93 to 0.97). No difference in AI performance across ESCN, BERN and GCA was found, AUC being 0.94 (CI 0.52 to 0.99), 0.96 (CI 0.95 to 0.98), 0.93 (CI 0.83 to 0.99), respectively. Overall, study quality was low, with high risk of selection bias. No significant publication bias was found. Conclusion: We found a high overall AI accuracy for the diagnosis of any neoplastic lesion of the UGI tract that was independent of the underlying condition. This may be expected to substantially reduce the miss rate of precancerous lesions and early cancer when implemented in clinical practice. KW - Artificial Intelligence Y1 - 2021 U6 - https://doi.org/10.1136/gutjnl-2020-321922 VL - 70 IS - 8 SP - 1458 EP - 1468 PB - BMJ CY - London ER - TY - GEN A1 - Auer, Simon A1 - Reinker, Lukas A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - Comparing calculated and measured muscle activity of thigh muscles in dynamic motion. T2 - 27th Congress of the European Society of Biomechanics, 26 - 29 June 2022, Porto, Portugal Y1 - 2022 UR - https://drive.google.com/uc?id=1RBguxyHZE-Wr2y6ktOWK06_3lQg2M9Rb&export=download&confirm=t SP - 640 ER - TY - CHAP A1 - Birkenmaier, Clemens A1 - Krenkel, Lars ED - Dillmann, Andreas ED - Heller, Gerd ED - Krämer, Ewald ED - Wagner, Claus T1 - Convolutional Neural Networks for Approximation of Blood Flow in Artificial Lungs T2 - New Results in Numerical and Experimental Fluid Mechanics XIII: Contributions to the 22nd STAB/DGLR Symposium N2 - Blood flow in channels of varying diameters <500μm exhibits strong non-linear effects. Multiphase finite volume approaches are feasible, but still computationally costly. Here, the feasibility of applying convolutional neural networks for blood flow prediction in artificial lungs is investigated. Training targets are precomputed using an Eulerian two-phase approach. To match with experimental data, the interphase drag and lift, as well as intraphase shear-thinning are adapted. A recursively branching regression network and convolution/deconvolution networks with plain skip connections and densely connected skips are investigated. A priori knowledge is incorporated in the loss functional to prevent the network from learning non-physical solutions. Inference from neural networks is approximately six orders of magnitude faster than the classical finite volume approach. Even if resulting in comparably coarse flow fields, the neural network predictions can be used as close to convergence initial solutions greatly accelerating classical flow computations. KW - Deep learning fluid mechanics KW - Multiphase blood flow Y1 - 2021 SN - 978-3-030-79560-3 U6 - https://doi.org/10.1007/978-3-030-79561-0_43 IS - 1. Auflage SP - 451 EP - 460 PB - Springer International Publishing CY - Cham ER - TY - CHAP A1 - Birkenmaier, Clemens A1 - Krenkel, Lars ED - Chinesta, F. ED - Abgrall, R. ED - Allix, O. ED - Kalistke, M T1 - Convolutional Neural Networks for Approximation of Internal Non-Newtonian Multiphase Flow Fields T2 - 14th World Congress on Computational Mechanics (WCCM), ECCOMAS Congress 2020: 19–24 July 2020, Paris, France N2 - Neural networks (NNs) as an alternative method for universal approximation of differential equations have proven to be computationally efficient and still sufficiently accurate compared to established methods such as the finite volume method (FVM). Additionally, analysing weights and biases can give insights into the underlying physical laws. FVM and NNs are both based upon spacial discretisation. Since a Cartesian and equidistant grid is a raster graphics, image-to-image regression techniques can be used to predict phase velocity fields as well as particle and pressure distributions from simple mass flow boundary conditions. The impact of convolution layer depth and number of channels of a ConvolutionDeconvolution Regression Network (CDRN), on prediction performance of internal non-Newtownian multiphase flows is investigated. Parametric training data with 2055 sets is computed using FVM. To capture significant non-Newtownian effects of a particle-laden fluid (e.g. blood) flowing through small and non-straight channels, an Euler-Euler multiphase approach is used. The FVM results are normalized and mapped onto an equidistant grid as supervised learning target. The investigated NNs consist of n= {3, 5, 7} corresponding encoding/decoding blocks and different skip connections. Regardless of the convolution depth (i.e. number of blocks), the deepest spacial down-sampling via strided convolution is adjusted to result in a 1 × 1 × f · 2nfeature map, with f = {8, 16, 32}. The prediction performance expressed is as channel-averaged normalized root mean squared error (NRMSE). With a NRMSE of < 2 · 10-3, the best preforming NN has f = 32 initial feature maps, a kernel size of k = 4, n = 5 blocks and dense skip connections. Average inference time from this NN takes < 7 · 10-3s. Worst accuracy at NRMSE of approx 9 · 10-3is achieved without any skips, at k = 2, f = 16 and n = 3, but deployment takes only < 2 · 10-3s Given an adequate training, the prediction accuracy improves with convolution depth, where more features have higher impact on deeper NNs. Due to skip connections and batch normalisation, training is similarly efficient, regardless of the depth. This is further improved by blocks with dense connections, but at the price of a drastically larger model. Depending on geometrical complexity, spacial resolution is critical, as it increases the number of learnables and memory requirements massively. KW - Deep Learning KW - Convolutional neural networks KW - Non-Newtonian multiphase flow Y1 - 2021 U6 - https://doi.org/10.23967/wccm-eccomas.2020.107 PB - CIMNE ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Probst, Andreas A1 - Manzeneder, Johannes A1 - Prinz, Friederike A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Real-time use of artificial intelligence in the evaluation of cancer in Barrett’s oesophagus JF - Gut N2 - Based on previous work by our group with manual annotation of visible Barrett oesophagus (BE) cancer images, a real-time deep learning artificial intelligence (AI) system was developed. While an expert endoscopist conducts the endoscopic assessment of BE, our AI system captures random images from the real-time camera livestream and provides a global prediction (classification), as well as a dense prediction (segmentation) differentiating accurately between normal BE and early oesophageal adenocarcinoma (EAC). The AI system showed an accuracy of 89.9% on 14 cases with neoplastic BE. KW - Speiseröhrenkrankheit KW - Diagnose KW - Maschinelles Lernen KW - Barrett's esophagus KW - Deep learning KW - real-time Y1 - 2020 U6 - https://doi.org/10.1136/gutjnl-2019-319460 VL - 69 IS - 4 SP - 615 EP - 616 PB - BMJ CY - London ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Mendel, Robert A1 - Rückert, Tobias A1 - Schuster, Laurin A1 - Probst, Andreas A1 - Manzeneder, Johannes A1 - Prinz, Friederike A1 - Mende, Matthias A1 - Steinbrück, Ingo A1 - Faiss, Siegbert A1 - Rauber, David A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Deprez, Pierre A1 - Oyama, Tsuneo A1 - Takahashi, Akiko A1 - Seewald, Stefan A1 - Sharma, Prateek A1 - Byrne, Michael F. A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Endoscopic prediction of submucosal invasion in Barrett’s cancer with the use of Artificial Intelligence: A pilot Study JF - Endoscopy N2 - Background and aims: The accurate differentiation between T1a and T1b Barrett’s cancer has both therapeutic and prognostic implications but is challenging even for experienced physicians. We trained an Artificial Intelligence (AI) system on the basis of deep artificial neural networks (deep learning) to differentiate between T1a and T1b Barrett’s cancer white-light images. Methods: Endoscopic images from three tertiary care centres in Germany were collected retrospectively. A deep learning system was trained and tested using the principles of cross-validation. A total of 230 white-light endoscopic images (108 T1a and 122 T1b) was evaluated with the AI-system. For comparison, the images were also classified by experts specialized in endoscopic diagnosis and treatment of Barrett’s cancer. Results: The sensitivity, specificity, F1 and accuracy of the AI-system in the differentiation between T1a and T1b cancer lesions was 0.77, 0.64, 0.73 and 0.71, respectively. There was no statistically significant difference between the performance of the AI-system and that of human experts with sensitivity, specificity, F1 and accuracy of 0.63, 0.78, 0.67 and 0.70 respectively. Conclusion: This pilot study demonstrates the first multicenter application of an AI-based system in the prediction of submucosal invasion in endoscopic images of Barrett’s cancer. AI scored equal to international experts in the field, but more work is necessary to improve the system and apply it to video sequences and in a real-life setting. Nevertheless, the correct prediction of submucosal invasion in Barret´s cancer remains challenging for both experts and AI. KW - Maschinelles Lernen KW - Neuronales Netz KW - Speiseröhrenkrebs KW - Diagnose KW - Artificial Intelligence KW - Machine learning KW - Adenocarcinoma KW - Barrett’s cancer KW - submucosal invasion Y1 - 2021 U6 - https://doi.org/10.1055/a-1311-8570 VL - 53 IS - 09 SP - 878 EP - 883 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Barrett esophagus: What to expect from Artificial Intelligence? JF - Best Practice & Research Clinical Gastroenterology N2 - The evaluation and assessment of Barrett’s esophagus is challenging for both expert and nonexpert endoscopists. However, the early diagnosis of cancer in Barrett’s esophagus is crucial for its prognosis, and could save costs. Pre-clinical and clinical studies on the application of Artificial Intelligence (AI) in Barrett’s esophagus have shown promising results. In this review, we focus on the current challenges and future perspectives of implementing AI systems in the management of patients with Barrett’s esophagus. KW - Deep Learning KW - Künstliche Intelligenz KW - Computerunterstützte Medizin KW - Barrett KW - Adenocarcinoma KW - Artificial intelligence KW - Deep learning KW - Convolutional neural networks Y1 - 2021 U6 - https://doi.org/10.1016/j.bpg.2021.101726 SN - 1521-6918 VL - 52-53 IS - June-August PB - Elsevier ER - TY - JOUR A1 - Ebigbo, Alanna A1 - Palm, Christoph A1 - Probst, Andreas A1 - Mendel, Robert A1 - Manzeneder, Johannes A1 - Prinz, Friederike A1 - Souza Jr., Luis Antonio de A1 - Papa, João Paulo A1 - Siersema, Peter A1 - Messmann, Helmut T1 - A technical review of artificial intelligence as applied to gastrointestinal endoscopy: clarifying the terminology JF - Endoscopy International Open N2 - The growing number of publications on the application of artificial intelligence (AI) in medicine underlines the enormous importance and potential of this emerging field of research. In gastrointestinal endoscopy, AI has been applied to all segments of the gastrointestinal tract most importantly in the detection and characterization of colorectal polyps. However, AI research has been published also in the stomach and esophagus for both neoplastic and non-neoplastic disorders. The various technical as well as medical aspects of AI, however, remain confusing especially for non-expert physicians. This physician-engineer co-authored review explains the basic technical aspects of AI and provides a comprehensive overview of recent publications on AI in gastrointestinal endoscopy. Finally, a basic insight is offered into understanding publications on AI in gastrointestinal endoscopy. KW - Diagnose KW - Maschinelles Lernen KW - Gastroenterologie KW - Künstliche Intelligenz KW - Barrett's esophagus KW - Deep learning Y1 - 2019 U6 - https://doi.org/10.1055/a-1010-5705 VL - 07 IS - 12 SP - 1616 EP - 1623 PB - Georg Thieme Verlag CY - Stuttgart ER - TY - JOUR A1 - Eigenberger, Andreas A1 - Felthaus, Oliver A1 - Schratzenstaller, Thomas A1 - Haerteis, Silke A1 - Utpatel, Kirsten A1 - Prantl, Lukas T1 - The Effects of Shear Force-Based Processing of Lipoaspirates on White Adipose Tissue and the Differentiation Potential of Adipose Derived Stem Cells JF - cells N2 - Autologous lipotransfer is a promising method for tissue regeneration, because white adipose tissue contains a heterogeneous cell population, including mesenchymal stem cells, endothelial cells, immune cells, and adipocytes. In order to improve the outcome, adipose tissue can be processed before application. In this study, we investigated changes caused by mechanical processing. Lipoaspirates were processed using sedimentation, first-time centrifugation, shear-force homogenization, and second-time centrifugation. The average adipocyte size, stromal vascular cell count, and adipocyte depot size were examined histologically at every processing step. In addition, the adipose derived stem cells (ADSCs) were isolated and differentiated osteogenically and adipogenically. While homogenization causes a disruption of adipocyte depots, the shape of the remaining adipocytes is not changed. On average, these adipocytes are smaller than the depot adipocytes, they are surrounded by the ECM, and therefore mechanically more stable. The volume loss of adipocyte depots leads to a significant enrichment of stromal vascular cells such as ADSCs. However, the mechanical processing does not change the potential of the ADSCs to differentiate adipogenically or steogenically. It thus appears that mechanically processed lipoaspirates are promising for the reparation of even mechanically stressed tissue as that found in nasolabial folds. The changes resulting from the processing correspond more to a filtration of mechanically less stable components than to a manipulation of the tissue. KW - white adipose tissue KW - lipograft KW - stem cells KW - fat grafting KW - surgery KW - cell-enriched lipotransfer KW - CELT KW - lipoaspirate Y1 - 2022 U6 - https://doi.org/10.3390/cells11162543 VL - 11 IS - 16 PB - MDPI CY - Basel ER - TY - JOUR A1 - Förstl, Nikolas A1 - Adler, Ina A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - Technologies for Evaluation of Pelvic Floor Functionality: A Systematic Review JF - Sensors N2 - Pelvic floor dysfunction is a common problem in women and has a negative impact on their quality of life. The aim of this review was to provide a general overview of the current state of technology used to assess pelvic floor functionality. It also provides literature research of the physiological and anatomical factors that correlate with pelvic floor health. This systematic review was conducted according to the PRISMA guidelines. The PubMed, ScienceDirect, Cochrane Library, and IEEE databases were searched for publications on sensor technology for the assessment of pelvic floor functionality. Anatomical and physiological parameters were identified through a manual search. In the systematic review, 114 publications were included. Twelve different sensor technologies were identified. Information on the obtained parameters, sensor position, test activities, and subject characteristics was prepared in tabular form from each publication. A total of 16 anatomical and physiological parameters influencing pelvic floor health were identified in 17 published studies and ranked for their statistical significance. Taken together, this review could serve as a basis for the development of novel sensors which could allow for quantifiable prevention and diagnosis, as well as particularized documentation of rehabilitation processes related to pelvic floor dysfunctions. Y1 - 2024 U6 - https://doi.org/10.3390/s24124001 N1 - Die Preprint-Version ist ebenfalls in diesem Repositorium verzeichnet unter: https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/7306 VL - 24 IS - 12 PB - MDPI ER - TY - JOUR A1 - Förstl, Nikolas A1 - Süß, Franz A1 - Englert, Carsten A1 - Dendorfer, Sebastian T1 - Design of a reverse shoulder implant to measure shoulder stiffness during implant component positioning JF - Medical Engineering & Physics N2 - To avoid dislocation of the shoulder joint after reverse total shoulder arthroplasty, it is important to achieve sufficient shoulder stability when placing the implant components during surgery. One parameter for assessing shoulder stability can be shoulder stiffness. The aim of this research was to develop a temporary reverse shoulder implant prototype that would allow intraoperative measurement of shoulder stiffness while varying the position of the implant components. Joint angle and torque measurement techniques were developed to determine shoulder stiffness. Hall sensors were used to measure the joint angles by converting the magnetic flux densities into angles. The accuracy of the joint angle measurements was tested using a test bench. Torques were determined by using thin-film pressure sensors. Various mechanical mechanisms for variable positioning of the implant components were integrated into the prototype. The results of the joint angle measurements showed measurement errors of less than 5° in a deflection range of ±15° adduction/abduction combined with ±45° flexion/extension. The proposed design provides a first approach for intra-operative assessment of shoulder stiffness. The findings can be used as a technological basis for further developments. Y1 - 2023 U6 - https://doi.org/10.1016/j.medengphy.2023.104059 N1 - Corresponding author: Sebstian Dendorfer VL - 121 PB - Elsevier ET - Journal Pre-proof ER - TY - JOUR A1 - Giordano, Katharina A1 - Lauer, Norina A1 - Leusch, Vera A1 - Kreiter, Daniel A1 - Corsten, Sabine T1 - Tablet-based biography work in long-term care homes to support quality of life and prevent depression JF - Educational Gerontology N2 - Older adults in long-term care homes are at high risk of experiencing reduced quality of life (QoL) and depression. Technology-assisted biography work can have a positive impact on QoL and mood, but there is little research on its use with this target group. The purpose of this paper is to examine the effect of tablet-based biography work conducted by volunteers on the QoL of residents and volunteers. A pretest-posttest control group design with an intervention period of 3 months and a 3-month follow-up was used. Results show a significant increase in participation for volunteers and residents after the intervention, which is stable for residents until follow-up. Volunteers also show significant improvement in mental QoL immediately after the intervention. There were no significant effects for life satisfaction, self-esteem, or depression. No significant changes were found for the control group. Digitally conducted tablet-based biography work appears to have effects on QoL-associated outcomes. KW - Biografieforschung KW - Senioren KW - Tablet PC KW - biography work KW - long-term care KW - tablet support Y1 - 2023 U6 - https://doi.org/10.1080/03601277.2023.2225362 SN - 1521-0472 SN - 0360-1277 SP - 1 EP - 14 PB - Taylor and Francis CY - London ER - TY - CHAP A1 - Glémarec, Yann A1 - Hörmann, Amelie A1 - Lauer, Norina A1 - Buche, Cédric A1 - Lugrin, Jean-Luc A1 - Latoschik, Marc Erich T1 - Towards Virtual Audience Simulation For Speech Therapy T2 - Proceedings of the 23rd ACM International Conference on Intelligent Virtual Agents (IVA '23), Würzburg, September 19 - 22, 2023 N2 - The utilization of virtual reality (VR) technology has shown promise in various therapeutic applications, particularly in exposure therapy for reducing fear of certain situations objects or activities, e.g. fear of height, or negative evaluation of others in social situations. VR has been shown to yield positive outcomes in follow-up studies, and provides a safe and ecological therapeutic environment for therapists and their patients. This paper presents a collaborative effort to develop a VR speech therapy system which simulates a virtual audience for users to practice their public speaking skills. We describe a novel web-based graphica user interface that enables therapists to manage the therapy session using a simple timeline. Lastly, we present the results from a qualitative study with therapists and teachers with functional dysphonia, which highlight the potential of such an application to support and augment the therapists’ work and the remaining challenges regarding the design of natural interactions, agent behaviours and scenario customisation for patients. KW - Stimme KW - Virtuelle Realität Y1 - 2023 SN - 78-1-4503-9994-4 U6 - https://doi.org/10.1145/3570945.3607348 PB - Association for Computing Machinery CY - New York ER - TY - GEN A1 - Kögler, Michael A1 - Ismail, Khaled M. A1 - Rusavy, Zdenek A1 - Kalis, Vladimir A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - Influence of bed height and stance on accoucheurs lower back and glenohumeral load during simulated childbirth T2 - 31st meeting of Czech Urogynaecological Society, Prague, 2022 Y1 - 2022 ER - TY - JOUR A1 - Lauer, Norina A1 - Corsten, Sabine T1 - Quality of life in leaders and members of peer-led aphasia support groups – preliminary results of a systematic approach JF - Aphasiology Y1 - 2018 U6 - https://doi.org/10.1080/02687038.2018.1485839 VL - 32 IS - sup1: International Aphasia Rehabilitation Conference (IARC) SP - 119 EP - 121 PB - Taylor&Francis ER - TY - GEN A1 - Lauer, Norina A1 - Corsten, Sabine T1 - Supporting peer-led aphasia support groups with a specific training program: a first proof of concept BT - Poster T2 - International Aphasia Rehabilitation Conference, London Y1 - 2016 ER - TY - JOUR A1 - Lingel, Maximilian P. A1 - Haus, Moritz A1 - Paschke, Lukas A1 - Foltan, Maik A1 - Lubnow, Matthias A1 - Gruber, Michael A1 - Krenkel, Lars A1 - Lehle, Karla T1 - Clinical relevance of cell-free DNA during venovenous extracorporeal membrane oxygenation JF - Artificial organs N2 - BACKGROUND: Thrombosis remains a critical complication during venovenous extracorporeal membrane oxygenation (VV ECMO). The involvement of neutrophil extracellular traps (NETs) in thrombogenesis has to be discussed. The aim was to verify NETs in the form of cell-free DNA (cfDNA) in the plasma of patients during ECMO. METHODS: A fluorescent DNA-binding dye (QuantifFluor®, Promega) was used to detect cell-free DNA in plasma samples. cfDNA concentrations from volunteers (n = 21) and patients (n = 9) were compared and correlated with clinical/technical data before/during support, ECMO end and time of a system exchange. RESULTS: Before ECMO, patients with a median (IQR) age of 59 (51/63) years, SOFA score of 11 (10/15), and ECMO run time of 9.0 (7.0/19.5) days presented significantly higher levels of cfDNA compared to volunteers (6.4 (5.8/7.9) ng/μL vs. 5.9 (5.4/6.3) ng/μL; p = 0.044). Within 2 days after ECMO start, cfDNA, inflammatory, and hemolysis parameters remained unchanged, while platelets decreased (p = 0.005). After ECMO removal at the end of therapy, cfDNA, inflammation, and coagulation data (except antithrombin III) remained unchanged. The renewal of a system resulted in known alterations in fibrinogen, d-dimers, and platelets, while cfDNA remained unchanged. CONCLUSION: Detection of cfDNA in plasma of ECMO patients was not an indicator of acute and circuit-induced thrombogenesis. KW - blood KW - cell- free DNA KW - coagulation KW - ECMO KW - inflammation KW - neutrophil extracellular traps Y1 - 2023 U6 - https://doi.org/10.1111/aor.14616 SN - 1525-1594 VL - 47 IS - 11 SP - 1720 EP - 1731 PB - Wiley ER - TY - GEN A1 - Meinikheim, Michael A1 - Mendel, Robert A1 - Probst, Andreas A1 - Scheppach, Markus W. A1 - Schnoy, Elisabeth A1 - Nagl, Sandra A1 - Römmele, Christoph A1 - Prinz, Friederike A1 - Schlottmann, Jakob A1 - Golger, Daniela A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - AI-assisted detection and characterization of early Barrett's neoplasia: Results of an Interim analysis T2 - Endoscopy N2 - Aims  Evaluation of the add-on effect an artificial intelligence (AI) based clinical decision support system has on the performance of endoscopists with different degrees of expertise in the field of Barrett's esophagus (BE) and Barrett's esophagus-related neoplasia (BERN). Methods  The support system is based on a multi-task deep learning model trained to solve a segmentation and several classification tasks. The training approach represents an extension of the ECMT semi-supervised learning algorithm. The complete system evaluates a decision tree between estimated motion, classification, segmentation, and temporal constraints, to decide when and how the prediction is highlighted to the observer. In our current study, ninety-six video cases of patients with BE and BERN were prospectively collected and assessed by Barrett's specialists and non-specialists. All video cases were evaluated twice – with and without AI assistance. The order of appearance, either with or without AI support, was assigned randomly. Participants were asked to detect and characterize regions of dysplasia or early neoplasia within the video sequences. Results  Standalone sensitivity, specificity, and accuracy of the AI system were 92.16%, 68.89%, and 81.25%, respectively. Mean sensitivity, specificity, and accuracy of expert endoscopists without AI support were 83,33%, 58,20%, and 71,48 %, respectively. Gastroenterologists without Barrett's expertise but with AI support had a comparable performance with a mean sensitivity, specificity, and accuracy of 76,63%, 65,35%, and 71,36%, respectively. Conclusions  Non-Barrett's experts with AI support had a similar performance as experts in a video-based study. Y1 - 2023 U6 - https://doi.org/10.1055/s-0043-1765437 VL - 55 IS - S02 PB - Thieme ER - TY - JOUR A1 - Melzner, Maximilian A1 - Engelhardt, Lucas A1 - Simon, Ulrich A1 - Dendorfer, Sebastian T1 - Electromyography-Based Validation of a Musculoskeletal Hand Model JF - Journal of Biomechanical Engineering N2 - Regarding the prevention of injuries and rehabilitation of the human hand, musculoskeletal simulations using an inverse dynamics approach allow for insights of the muscle recruitment and thus acting forces on the hand. Currently, several hand models from various research groups are in use, which are mainly validated by the comparison of numerical and anatomical moment arms. In contrast to this validation and model-building technique by cadaver studies, the aim of this study is to further validate a recently published hand model [1] by analyzing numerically calculated muscle activities in comparison to experimentally measured electromyographical signals of the muscles. Therefore, the electromyographical signals of 10 hand muscles of five test subjects performing seven different hand movements were measured. The kinematics of these tasks were used as input for the hand model, and the numerical muscle activities were computed. To analyze the relationship between simulated and measured activities, the time difference of the muscle on- and off-set points was calculated, which resulted in a mean on- and off-set time difference of 0.58 s between the experimental data and the model. The largest differences were detected for movements that mainly addressed the wrist. One major issue comparing simulated and measured muscle activities of the hand is cross-talk. Nevertheless, the results show that the hand model fits the experiment quite accurately despite some limitations and is a further step toward patient-specific modeling of the upper extremity. KW - Elektromyographie KW - Biomechanik KW - Simulation KW - Electromyography KW - Muscle KW - Musculoskeletal system KW - Signals KW - Simulation Y1 - 2021 U6 - https://doi.org/10.1115/1.4052115 VL - 144 IS - 2 PB - American Society of Mechanical Engineers, ASME ER -