TY - GEN A1 - Scheppach, Markus W. A1 - Mendel, Robert A1 - Rauber, David A1 - Probst, Andreas A1 - Nagl, Sandra A1 - Römmele, Christoph A1 - Meinikheim, Michael A1 - Palm, Christoph A1 - Messmann, Helmut A1 - Ebigbo, Alanna T1 - Artificial Intelligence (AI) improves endoscopists’ vessel detection during endoscopic submucosal dissection (ESD) T2 - Endoscopy N2 - Aims While AI has been successfully implemented in detecting and characterizing colonic polyps, its role in therapeutic endoscopy remains to be elucidated. Especially third space endoscopy procedures like ESD and peroral endoscopic myotomy (POEM) pose a technical challenge and the risk of operator-dependent complications like intraprocedural bleeding and perforation. Therefore, we aimed at developing an AI-algorithm for intraprocedural real time vessel detection during ESD and POEM. Methods A training dataset consisting of 5470 annotated still images from 59 full-length videos (47 ESD, 12 POEM) and 179681 unlabeled images was used to train a DeepLabV3+neural network with the ECMT semi-supervised learning method. Evaluation for vessel detection rate (VDR) and time (VDT) of 19 endoscopists with and without AI-support was performed using a testing dataset of 101 standardized video clips with 200 predefined blood vessels. Endoscopists were stratified into trainees and experts in third space endoscopy. Results The AI algorithm had a mean VDR of 93.5% and a median VDT of 0.32 seconds. AI support was associated with a statistically significant increase in VDR from 54.9% to 73.0% and from 59.0% to 74.1% for trainees and experts, respectively. VDT significantly decreased from 7.21 sec to 5.09 sec for trainees and from 6.10 sec to 5.38 sec for experts in the AI-support group. False positive (FP) readings occurred in 4.5% of frames. FP structures were detected significantly shorter than true positives (0.71 sec vs. 5.99 sec). Conclusions AI improved VDR and VDT of trainees and experts in third space endoscopy and may reduce performance variability during training. Further research is needed to evaluate the clinical impact of this new technology. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1782891 VL - 56 IS - S 02 SP - S93 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Zellmer, Stephan A1 - Rauber, David A1 - Probst, Andreas A1 - Weber, Tobias A1 - Braun, Georg A1 - Römmele, Christoph A1 - Nagl, Sandra A1 - Schnoy, Elisabeth A1 - Messmann, Helmut A1 - Ebigbo, Alanna A1 - Palm, Christoph T1 - Artificial intelligence as a tool in the detection of the papillary ostium during ERCP T2 - Endoscopy N2 - Aims Endoscopic retrograde cholangiopancreaticography (ERCP) is the gold standard in the diagnosis as well as treatment of diseases of the pancreatobiliary tract. However, it is technically complex and has a relatively high complication rate. In particular, cannulation of the papillary ostium remains challenging. The aim of this study is to examine whether a deep-learning algorithm can be used to detect the major duodenal papilla and in particular the papillary ostium reliably and could therefore be a valuable tool for inexperienced endoscopists, particularly in training situation. Methods We analyzed a total of 654 retrospectively collected images of 85 patients. Both the major duodenal papilla and the ostium were then segmented. Afterwards, a neural network was trained using a deep-learning algorithm. A 5-fold cross-validation was performed. Subsequently, we ran the algorithm on 5 prospectively collected videos of ERCPs. Results 5-fold cross-validation on the 654 labeled data resulted in an F1 value of 0.8007, a sensitivity of 0.8409 and a specificity of 0.9757 for the class papilla, and an F1 value of 0.5724, a sensitivity of 0.5456 and a specificity of 0.9966 for the class ostium. Regardless of the class, the average F1 value (class papilla and class ostium) was 0.6866, the sensitivity 0.6933 and the specificity 0.9861. In 100% of cases the AI-detected localization of the papillary ostium in the prospectively collected videos corresponded to the localization of the cannulation performed by the endoscopist. Conclusions In the present study, the neural network was able to identify the major duodenal papilla with a high sensitivity and high specificity. In detecting the papillary ostium, the sensitivity was notably lower. However, when used on videos, the AI was able to identify the location of the subsequent cannulation with 100% accuracy. In the future, the neural network will be trained with more data. Thus, a suitable tool for ERCP could be established, especially in the training situation. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1783138 VL - 56 IS - S 02 SP - S198 PB - Thieme CY - Stuttgart ER - TY - GEN ED - Maier, Andreas ED - Deserno, Thomas M. ED - Handels, Heinz ED - Maier-Hein, Klaus ED - Palm, Christoph ED - Tolxdorff, Thomas T1 - Bildverarbeitung für die Medizin 2024 BT - Proceedings, German Workshop on Medical Image Computing, Erlangen, March 10-12, 2024 N2 - Seit mehr als 25 Jahren ist der Workshop "Bildverarbeitung für die Medizin" als erfolgreiche Veranstaltung etabliert. Ziel ist auch 2024 wieder die Darstellung aktueller Forschungsergebnisse und die Vertiefung der Gespräche zwischen Wissenschaftlern, Industrie und Anwendern. Die Beiträge dieses Bandes - viele davon in englischer Sprache - umfassen alle Bereiche der medizinischen Bildverarbeitung, insbesondere die Bildgebung und -akquisition, Segmentierung und Analyse, Visualisierung und Animation, computerunterstützte Diagnose sowie bildgestützte Therapieplanung und Therapie. Hierbei kommen Methoden des maschinelles Lernens, der biomechanischen Modellierung sowie der Validierung und Qualitätssicherung zum Einsatz. KW - Bildverarbeitung KW - Computerunterstützte Medizin KW - Bildgebendes Verfahren KW - Bildanalyse KW - Deep Learning Y1 - 2024 SN - 978-3-658-44037-4 U6 - https://doi.org/10.1007/978-3-658-44037-4 SN - 1431-472X PB - Springer CY - Wiesbaden ER - TY - JOUR A1 - Tobias, Rueckert A1 - Daniel, Rueckert A1 - Palm, Christoph T1 - Corrigendum to “Methods and datasets for segmentation of minimally invasive surgical instruments in endoscopic images and videos: A review of the state of the art” [Comput. Biol. Med. 169 (2024) 107929] JF - Computers in Biology and Medicine N2 - The authors regret that the SAR-RARP50 dataset is missing from the description of publicly available datasets presented in Chapter 4. Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-70337 N1 - Aufsatz unter: https://opus4.kobv.de/opus4-oth-regensburg/frontdoor/index/index/docId/6983 PB - Elsevier ER - TY - CHAP A1 - Gutbrod, Max A1 - Geisler, Benedikt A1 - Rauber, David A1 - Palm, Christoph ED - Maier, Andreas ED - Deserno, Thomas M. ED - Handels, Heinz ED - Maier-Hein, Klaus ED - Palm, Christoph ED - Tolxdorff, Thomas T1 - Data Augmentation for Images of Chronic Foot Wounds T2 - Bildverarbeitung für die Medizin 2024: Proceedings, German Workshop on Medical Image Computing, March 10-12, 2024, Erlangen N2 - Training data for Neural Networks is often scarce in the medical domain, which often results in models that struggle to generalize and consequently showpoor performance on unseen datasets. Generally, adding augmentation methods to the training pipeline considerably enhances a model’s performance. Using the dataset of the Foot Ulcer Segmentation Challenge, we analyze two additional augmentation methods in the domain of chronic foot wounds - local warping of wound edges along with projection and blurring of shapes inside wounds. Our experiments show that improvements in the Dice similarity coefficient and Normalized Surface Distance metrics depend on a sensible selection of those augmentation methods. Y1 - 2024 U6 - https://doi.org/10.1007/978-3-658-44037-4_71 SP - 261 EP - 266 PB - Springer CY - Wiesbaden ER - TY - JOUR A1 - Hammer, Simone A1 - Nunes, Danilo Weber A1 - Hammer, Michael A1 - Zeman, Florian A1 - Akers, Michael A1 - Götz, Andrea A1 - Balla, Annika A1 - Doppler, Michael Christian A1 - Fellner, Claudia A1 - Da Platz Batista Silva, Natascha A1 - Thurn, Sylvia A1 - Verloh, Niklas A1 - Stroszczynski, Christian A1 - Wohlgemuth, Walter Alexander A1 - Palm, Christoph A1 - Uller, Wibke T1 - Deep learning-based differentiation of peripheral high-flow and low-flow vascular malformations in T2-weighted short tau inversion recovery MRI JF - Clinical hemorheology and microcirculation N2 - BACKGROUND Differentiation of high-flow from low-flow vascular malformations (VMs) is crucial for therapeutic management of this orphan disease. OBJECTIVE A convolutional neural network (CNN) was evaluated for differentiation of peripheral vascular malformations (VMs) on T2-weighted short tau inversion recovery (STIR) MRI. METHODS 527 MRIs (386 low-flow and 141 high-flow VMs) were randomly divided into training, validation and test set for this single-center study. 1) Results of the CNN's diagnostic performance were compared with that of two expert and four junior radiologists. 2) The influence of CNN's prediction on the radiologists' performance and diagnostic certainty was evaluated. 3) Junior radiologists' performance after self-training was compared with that of the CNN. RESULTS Compared with the expert radiologists the CNN achieved similar accuracy (92% vs. 97%, p = 0.11), sensitivity (80% vs. 93%, p = 0.16) and specificity (97% vs. 100%, p = 0.50). In comparison to the junior radiologists, the CNN had a higher specificity and accuracy (97% vs. 80%, p <  0.001; 92% vs. 77%, p <  0.001). CNN assistance had no significant influence on their diagnostic performance and certainty. After self-training, the junior radiologists' specificity and accuracy improved and were comparable to that of the CNN. CONCLUSIONS Diagnostic performance of the CNN for differentiating high-flow from low-flow VM was comparable to that of expert radiologists. CNN did not significantly improve the simulated daily practice of junior radiologists, self-training was more effective. KW - magnetic resonance imaging KW - deep learning KW - Vascular malformation Y1 - 2024 U6 - https://doi.org/10.3233/CH-232071 SP - 1 EP - 15 PB - IOP Press ET - Pre-press ER - TY - JOUR A1 - Souza Jr., Luis Antonio A1 - Pacheco, André G.C. A1 - Passos, Leandro A. A1 - Santana, Marcos C. S. A1 - Mendel, Robert A1 - Ebigbo, Alanna A1 - Probst, Andreas A1 - Messmann, Helmut A1 - Palm, Christoph A1 - Papa, João Paulo T1 - DeepCraftFuse: visual and deeply-learnable features work better together for esophageal cancer detection in patients with Barrett’s esophagus JF - Neural Computing and Applications N2 - Limitations in computer-assisted diagnosis include lack of labeled data and inability to model the relation between what experts see and what computers learn. Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their accountability and transparency level must be improved to transfer this success into clinical practice. The reliability of machine learning decisions must be explained and interpreted, especially for supporting the medical diagnosis. While deep learning techniques are broad so that unseen information might help learn patterns of interest, human insights to describe objects of interest help in decision-making. This paper proposes a novel approach, DeepCraftFuse, to address the challenge of combining information provided by deep networks with visual-based features to significantly enhance the correct identification of cancerous tissues in patients affected with Barrett’s esophagus (BE). We demonstrate that DeepCraftFuse outperforms state-of-the-art techniques on private and public datasets, reaching results of around 95% when distinguishing patients affected by BE that is either positive or negative to esophageal cancer. KW - Deep Learning Y1 - 2024 U6 - https://doi.org/10.1007/s00521-024-09615-z PB - Springer CY - London ER - TY - GEN A1 - Ebigbo, Alanna A1 - Rauber, David A1 - Ayoub, Mousa A1 - Birzle, Lisa A1 - Matsumura, Tomoaki A1 - Probst, Andreas A1 - Steinbrück, Ingo A1 - Nagl, Sandra A1 - Römmele, Christoph A1 - Meinikheim, Michael A1 - Scheppach, Markus W. A1 - Palm, Christoph A1 - Messmann, Helmut T1 - Early Esophageal Cancer and the Generalizability of Artificial Intelligence T2 - Endoscopy N2 - Aims Artificial Intelligence (AI) systems in gastrointestinal endoscopy are narrow because they are trained to solve only one specific task. Unlike Narrow-AI, general AI systems may be able to solve multiple and unrelated tasks. We aimed to understand whether an AI system trained to detect, characterize, and segment early Barrett’s neoplasia (Barrett’s AI) is only capable of detecting this pathology or can also detect and segment other diseases like early squamous cell cancer (SCC). Methods 120 white light (WL) and narrow-band endoscopic images (NBI) from 60 patients (1 WL and 1 NBI image per patient) were extracted from the endoscopic database of the University Hospital Augsburg. Images were annotated by three expert endoscopists with extensive experience in the diagnosis and endoscopic resection of early esophageal neoplasias. An AI system based on DeepLabV3+architecture dedicated to early Barrett’s neoplasia was tested on these images. The AI system was neither trained with SCC images nor had it seen the test images prior to evaluation. The overlap between the three expert annotations („expert-agreement“) was the ground truth for evaluating AI performance. Results Barrett’s AI detected early SCC with a mean intersection over reference (IoR) of 92% when at least 1 pixel of the AI prediction overlapped with the expert-agreement. When the threshold was increased to 5%, 10%, and 20% overlap with the expert-agreement, the IoR was 88%, 85% and 82%, respectively. The mean Intersection Over Union (IoU) – a metric according to segmentation quality between the AI prediction and the expert-agreement – was 0.45. The mean expert IoU as a measure of agreement between the three experts was 0.60. Conclusions In the context of this pilot study, the predictions of SCC by a Barrett’s dedicated AI showed some overlap to the expert-agreement. Therefore, features learned from Barrett’s cancer-related training might be helpful also for SCC prediction. Our results allow different possible explanations. On the one hand, some Barrett’s cancer features generalize toward the related task of assessing early SCC. On the other hand, the Barrett’s AI is less specific to Barrett’s cancer than a general predictor of pathological tissue. However, we expect to enhance the detection quality significantly by extending the training to SCC-specific data. The insight of this study opens the way towards a transfer learning approach for more efficient training of AI to solve tasks in other domains. Y1 - 2024 U6 - https://doi.org/10.1055/s-0044-1783775 VL - 56 IS - S 02 SP - S428 PB - Thieme CY - Stuttgart ER - TY - CHAP A1 - Rudolph, Clarissa ED - Klapeer, C. M. ED - Leinus, J. ED - Martinsen, F. ED - Mauer, H. ED - Nüthen, I. T1 - Gleichstellungspolitik als politikwissenschaftliche Praxis T2 - Handbuch Politik und Geschlecht Y1 - 2024 PB - Verlag Barbara Budrich ET - Erscheinungsdatum: ca. 18.03.2024 ER - TY - JOUR A1 - Knoedler, Leonard A1 - Dean, Jillian A1 - Knoedler, Samuel A1 - Kauke-Navarro, Martin A1 - Hollmann, Katharina A1 - Alfertshofer, Michael A1 - Helm, Sabrina A1 - Prantl, Lukas A1 - Schliermann, Rainer T1 - Hard shell, soft core? Multi-disciplinary and multi-national insights into mental toughness among surgeons JF - Frontiers in Surgery N2 - Background: With the prevalence of burnout among surgeons posing a significant threat to healthcare outcomes, the mental toughness of medical professionals has come to the fore. Mental toughness is pivotal for surgical performance and patient safety, yet research into its dynamics within a global and multi-specialty context remains scarce. This study aims to elucidate the factors contributing to mental toughness among surgeons and to understand how it correlates with surgical outcomes and personal well-being. Methods: Utilizing a cross-sectional design, this study surveyed 104 surgeons from English and German-speaking countries using the Mental Toughness Questionnaire (MTQ-18) along with additional queries about their surgical practice and general life satisfaction. Descriptive and inferential statistical analyses were applied to investigate the variations in mental toughness across different surgical domains and its correlation with professional and personal factors. Results: The study found a statistically significant higher level of mental toughness in micro-surgeons compared to macro-surgeons and a positive correlation between mental toughness and surgeons' intent to continue their careers. A strong association was also observed between general life satisfaction and mental toughness. No significant correlations were found between the application of psychological skills and mental toughness. Conclusion: Mental toughness varies significantly among surgeons from different specialties and is influenced by professional dedication and personal life satisfaction. These findings suggest the need for targeted interventions to foster mental toughness in the surgical community, potentially enhancing surgical performance and reducing burnout. Future research should continue to explore these correlations, with an emphasis on longitudinal data and the development of resilience-building programs. KW - mental toughness KW - mental health KW - resilience KW - robustness KW - psychology KW - surgery Y1 - 2024 U6 - https://doi.org/10.3389/fsurg.2024.1361406 N1 - Correspondign author der OTH Regensburg: Rainer Schliermann (und Leonard Knoedler) VL - 11 PB - Frontiers ER -