TY - CHAP A1 - Al-Munajjed, Amir Andreas A1 - Nolte, Daniel A1 - Rasmussen, John A1 - Dendorfer, Sebastian T1 - Force distribution in the foot during braking – a musculoskeletal approach T2 - Human Modeling Symposium 2014, Munich, Germany N2 - High loads can appear in the individual joints of the human foot while the driver uses the pedals, in particular, during breaking. Measuring these internal forces is very difficult or almost impossible; therefore, advanced models are necessary to perform musculoskeletal simulations. The objective of this investigation was to see what loads are acting in the individual foot joints from the phalanges to calcaneus and talus during different brake scenarios. The Glasgow-Maastricht AnyBody Foot Model with 26 separate segments, connected by joints, ligaments and muscles was used inside the AnyBody Modeling System to compute individual mid foot joint loads. The amount, the direction of the force and additionally also the load insertion point was varied for several simulations. Figure 1: Seated musculoskeletal body model with applied brake force and forces for the lateral, intermediate and medial cuneiform-navicular joint for two different brake forces. The simulation showed that for the different brake scenarios, different muscles will be activated in the human and therefore different loads are apply in the fore-and mid-foot, respectively. The torso of the subject was assumed to be fixed in the seat. Further studies are ongoing to simulate the seat as an elastic element that allows different H-point locations according to the different loadings in the foot from the brake pedal using a new inverse dynamics analysis method called force-dependent kinematics. Y1 - 2014 UR - https://www.researchgate.net/publication/281229902_Force_distribution_in_the_foot_during_braking_-a_musculoskeletal_approach ER - TY - CHAP A1 - Andersen, Michael Skipper A1 - de Zee, Mark A1 - Dendorfer, Sebastian A1 - MacWilliams, Bruce A1 - Rasmussen, John T1 - Validation of a detailed lower extremity model based on the Klein Horsman data set T2 - Proceedings of the 12th International Symposium on Computer Simulation in Biomechanics (ISB 2009), July 2nd - 4th 2009, Cape Town, South Africa Y1 - 2009 SP - 27 EP - 28 ER - TY - JOUR A1 - Auer, Simon A1 - Krutsch, Werner A1 - Renkawitz, Tobias A1 - Kubowitsch, Simone A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - Kognitiver Stress führt zu unphysiologisch erhöhten Kniebelastungen im Profifußball JF - Sports Orthopaedics and Traumatology Y1 - 2020 U6 - https://doi.org/10.1016/j.orthtr.2020.04.122 VL - 36 IS - 2 SP - 202 EP - 203 PB - Elsevier ER - TY - GEN A1 - Auer, Simon A1 - Krutsch, Werner A1 - Renkawitz, Tobias A1 - Kubowitsch, Simone A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - Effect of mental demand on leg loading in highly dynamic motion T2 - AnyBody online Webinar, Oct 2020 N2 - Football players have a high risk of leg muscle injuries, especially when exposed to mental stress. Injuries to muscles of the thigh are common in amateur and professional football, representing almost a third of all injuries. These injuries occur primarily in non-contact situations and from overuse. They can lead to a range of costs, including financial costs associated with treatment as well as those associated with long-term recovery, and absence from training and/or competition. Further, there is a high risk of injury recurrence and subsequent injury. Y1 - 2020 ER - TY - JOUR A1 - Auer, Simon A1 - Kubowitsch, Simone A1 - Dendorfer, Sebastian T1 - Kombinierter Einfluss von psychologischen und biomechanischen Faktoren auf die muskulären Belastungen beim Fußballspielen JF - Die Orthopädie N2 - When mental stress and musculoskeletal loading interact, the risk for injury increases due to altered body kinematics and increased muscle tension. These changes can be detected with musculoskeletal models, and mental loading and stress must be analyzed at emotional, cognitive, and behavioral levels. To investigate these kinematic and loading changes under stress, competitive athletes were subjected to mental stress during highly dynamic movements, and musculoskeletal models were used to analyze the biomechanical loading. It was shown that under mental stress, independent of the subjective perception, a strong change in muscle forces can occur. Accordingly, competitive athletes should undergo screenings to assess individual movement patterns and promote general stress resilience. N2 - Für Fußballer:innen stellen muskuläre Verletzungen der unteren Extremitäten ein großes Problem dar. Ein Beispiel hierfür liefert die Nationalmannschaftsstürmerin Alexandra Popp, die aufgrund muskulärer Probleme das EM-Finale 2022 in Wembley kurzfristig verpasste. Oftmals stehen gerade hohe Anspannungssituationen in zeitlichem Zusammenhang mit Verletzungen, der Einfluss der psychischen Beanspruchung auf die biomechanischen Belastungen wird jedoch meist nur wenig beachtet. KW - Biologische Modelle KW - Biomechanik KW - Leistungssportler KW - Bewegung KW - Resilienz, psychologische KW - Biological models KW - Biomechanics KW - Elite athletes KW - Movement KW - Resilience, psychological Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-65113 N1 - Corresponding author: Sebastian Dendorfer VL - 52 IS - 11 SP - 1 EP - 6 PB - Springer ER - TY - CHAP A1 - Auer, Simon A1 - Kubowitsch, Simone A1 - Krutsch, Werner A1 - Renkawitz, Tobias A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - Effect of mental demand on knee forces in professional youth soccer players T2 - ISBS Proceedings Archive N2 - Soccer is one of the most popular sports all around the world. It is an injurious type of sport with a focus on lower extremities and high psychological pressure during matches. The stressor is linked with injuries and an increased musculoskeletal loading. This study investigates the influence of cognitive stress on the load profile of the knee joint. Twelve professional youth soccer players performed highly dynamic runs with and without additional cognitive stress. The runs were analysed with a musculoskeletal simulation software. The data analysis shows no difference in knee joint reaction loading under additional mental stress compared to the baseline. Yet running times are significantly lower in the baseline. While there is no increase in the joint loads, the running times indicate an altered movement behaviour when the subjects are exposed to additional mental demand. KW - Kniegelenk KW - Körperliche Belastung KW - Stress KW - Computersimulation Y1 - 2020 UR - https://commons.nmu.edu/isbs/vol38/iss1/28 VL - 38 IS - 1, Art. 28 ER - TY - JOUR A1 - Auer, Simon A1 - Kurbowitsch, Simone A1 - Süß, Franz A1 - Renkawitz, Tobias A1 - Krutsch, Werner A1 - Dendorfer, Sebastian T1 - Mental stress reduces performance and changes musculoskeletal loading in football-related movements JF - Science and Medicine in Football N2 - Purpose: Football players have a high risk of leg muscle injuries, especially when exposed to mental stress. Hence, this study investigated the musculoskeletal response of elite youth football players during highly dynamic movements under stress. The hypothesis is that mental stress reduces performance and changes the muscular forces exerted. Materials & methods: Twelve elite youth football players were subjected to mental stress while performing sports-specific change-of-direction movements. A modified version of the d2 attention test was used as stressor. The kinetics are computed using inverse dynamics. Running times and exerted forces of injury-prone muscles were analysed. Results: The stressor runs were rated more mentally demanding by the players (p = 0.006, rs = 0.37) with unchanged physical demand (p = 0.777, rs = 0.45). This resulted in 10% longer running times under stress (p < 0.001, d = −1.62). The musculoskeletal analysis revealed higher peak muscle forces under mental stress for some players but not for others. Discussion: The study shows that motion capture combined with musculoskeletal computation is suitable to analyse the effects of stress on athletes in highly dynamic movements. For the first time in football medicine, our data quantifies an association between mental stress with reduced football players’ performance and changes in muscle force. KW - Biomechanics KW - muscle injury KW - attention KW - musculoskeletal simulation Y1 - 2020 U6 - https://doi.org/10.1080/24733938.2020.1860253 VL - 5 IS - 4 SP - 323 EP - 329 PB - Taylor & Francis ER - TY - GEN A1 - Auer, Simon A1 - Niebler, Michael A1 - Eiglsperger, Josef A1 - Kubowitsch, Simone A1 - Renkawitz, Tobias A1 - Achenbach, Leonard A1 - Krutsch, Werner A1 - Dendorfer, Sebastian T1 - Cognitive stress increases muscle forces in dynamic football specific movements T2 - European Society of Biomechanics meeting 2019, Vienna, Austria Y1 - 2019 UR - https://owncloud.tuwien.ac.at/index.php/s/dovqqcj02VeZHze ER - TY - GEN A1 - Auer, Simon A1 - Reinker, Lukas A1 - Dendorfer, Sebastian T1 - Evaluation of muscle recruitment and muscle models in musculoskeletal simulation of dynamic motion T2 - 26th Congress of the European Society of Biomechanics, July 11-14, 2021, Milan, Italy N2 - Musculoskeletal simulation plays an increasingly important role in sports biomechanics. In the last years, the field of application widened from orthopaedics and ergonomics to sports [1]. A muscle recruitment algorithm with a quadratic objective function is usually used to calculate muscle activity in dynamic movements. The agreement of calculated and measured thigh muscle activity has already been investigated [2]. They found a strong agreement for sprinting and running, while the correlation decreased for side-cutting manoeuvres. Nevertheless, the influence of different muscle recruitment criteria on muscle activity in dynamic musculoskeletal simulations is currently unknown. Hence, this study aimed to analyse the effect of different muscle recruitment criteria and muscle models on the correlation of numerical and measured muscle activity in highly dynamic movements. KW - esb KW - biomechanics KW - muscle recruitment Y1 - 2021 UR - https://esbiomech.org/conference/archive/2021milan/Contribution_1719.pdf CY - Milan ER - TY - GEN A1 - Auer, Simon A1 - Reinker, Lukas A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - Comparing calculated and measured muscle activity of thigh muscles in dynamic motion. T2 - 27th Congress of the European Society of Biomechanics, 26 - 29 June 2022, Porto, Portugal Y1 - 2022 UR - https://drive.google.com/uc?id=1RBguxyHZE-Wr2y6ktOWK06_3lQg2M9Rb&export=download&confirm=t SP - 640 ER - TY - VIDEO A1 - Auer, Simon A1 - Reinker, Lukas A1 - Süß, Franz A1 - Kubowitsch, Simone A1 - Krutsch, Werner A1 - Weber, Markus A1 - Renkawitz, Tobias A1 - Dendorfer, Sebastian T1 - Webcast: Effect of mental demand on leg loading in highly dynamic motion N2 - Football players have a high risk of leg muscle injuries, especially when exposed to mental stress. Injuries to muscles of the thigh are common in amateur and professional football, representing almost a third of all injuries. These injuries occur primarily in non-contact situations and from overuse. They can lead to a range of costs, including financial costs associated with treatment as well as those associated with long-term recovery, and absence from training and/or competition. Further, there is a high risk of injury recurrence and subsequent injury. KW - Webcast KW - AnyBody KW - Stress KW - Football KW - Speedcourt Y1 - 2020 UR - https://www.youtube.com/watch?v=uSc_9XlnkaA ER - TY - JOUR A1 - Auer, Simon A1 - Schiebl, Jonas A1 - Iversen, Kristoffer A1 - Subhash Chander, Divyaksh A1 - Damsgaard, Michael A1 - Dendorfer, Sebastian T1 - Biomechanical assessment of the design and efficiency of occupational exoskeletons with the AnyBody Modeling System JF - Zeitschrift für Arbeitswissenschaften N2 - Exoskeletons were invented over 100 years ago but have only become popular in the last two decades, especially in the working industry as they can decrease work-related loads significantly. The most often used exoskeletons are for the lower back and shoulder since these are commonly affected body regions. All devices have in common that their purpose is to reduce internal loads of vulnerable body regions. Nevertheless, there is still little understanding on how biomechanical loading in the human body changes when exoskeletons are used. Therefore, further analyses are needed. A promising candidate for these are musculoskeletal models, which are based on an inverse dynamics approach and can calculate external parameters such as ground reaction forces or other interaction forces as well as internal parameters such as joint reaction forces or muscle activities. The various examples in the literature show that these models are increasingly used for assessing the biomechanical effects of exoskeletons on the human body. Furthermore, musculoskeletal models can calculate biomechanical loadings of humans with and without exoskeletons for all kinds of applications and allow an evaluation of their purpose. Practical Relevance: This article highlights the possibilities of musculoskeletal models for assessing the design and efficiency of occupational exoskeletons. Several practical use cases are described along with distinct descriptions of common implications of musculoskeletal and exoskeleton modeling. KW - Biomechanics KW - Ergonomics KW - Motion capture KW - Inverse dynamics Y1 - 2022 U6 - https://doi.org/10.1007/s41449-022-00336-4 N1 - Corresponding author: Sebastian Dendorfer VL - 76 IS - 4 SP - 440 EP - 449 PB - Springer Nature ER - TY - CHAP A1 - Aurbach, Maximilian A1 - Jungtäubl, Dominik A1 - Spicka, Jan A1 - Dendorfer, Sebastian T1 - EMG-based validation of musculoskeletal models considering crosstalk T2 - World Congress Biomechanics, 28-30 June 2018, Dublin N2 - BACKGROUND: Validation and verification of multibody musculoskeletal models sEMG is a difficult process because of the reliability of sEMG data and the complex relationship of muscle force and sEMG. OBJECTIVE: This work aims at comparing experimentally recorded and simulated muscle activities considering a numerical model for crosstalk. METHODS: For providing an experimentally derived reference data set, subjects were performing elevations of the arm, where the activities of the contemplated muscle groups were measured by sEMG sensors. Computed muscle activities were further processed and transformed into an artificial electromyographical signal, which includes a numerical crosstalk model. In order to determine whether the crosstalk model provides a better agreement with the measured muscle activities, the Pearson correlation coefficient has been computed as a qualitative way of assessing the curve progression of the data sets. RESULTS: The results show an improvement in the correlation coefficient between the experimental data and the simulated muscle activities when taking crosstalk into account. CONCLUSIONS: Although the correlation coefficient increased when the crosstalk model was utilized, it is questionable if the discretization of both, the crosstalk and the musculoskeletal model, is accurate enough. Y1 - 2018 U6 - https://doi.org/10.1109/BIOMDLORE.2018.8467211 ER - TY - JOUR A1 - Aurbach, Maximilian A1 - Spicka, Jan A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - Evaluation of musculoskeletal modelling parameters of the shoulder complex during humeral abduction above 90° JF - Journal of Biomechanics N2 - Based on electromyographic data and force measurements within the shoulder joint, there is an indication that muscle and resulting joint reaction forces keep increasing over an abduction angle of 90°. In inverse dynamics models, no single parameter could be attributed to simulate this force behaviour accordingly. The aim of this work is to implement kinematic, kinetic and muscle model modifications to an existing model of the shoulder (AnyBody™) and assess their single and combined effects during abduction up to 140° humeral elevation. The kinematics and the EMG activity of 10 test subjects were measured during humeral abduction. Six modifications were implemented in the model: alternative wrapping of the virtual deltoid muscle elements, utilization of a three element Hill model, strength scaling, motion capture driven clavicle elevation/protraction, translation of the GH joint in dependency of the acting forces and an alteration of the scapula/clavicle rhythm. From the six modifications, 16 different combinations were considered. Parameter combinations with the Hill model changed the resultant GH joint reaction force and led to an increase in force during abduction of the humerus above 90°. Under the premise of muscle activities and forces within the GH joint rising after 90° of humeral abduction, we propose that the Hill type muscle model is a crucial parameter for accurately modelling the shoulder. Furthermore, the outcome of this study indicates that the Hill model induces the co-contraction of the muscles of the shoulder without the need of an additional stability criterion for an inverse dynamics approach. KW - Shoulder joint KW - Musculoskeletal modelling KW - EMG KW - Glenohumeral joint reaction force KW - Muscle model KW - Schultergelenk KW - Bewegungsapparat KW - Biomechanik KW - Simulation Y1 - 2020 U6 - https://doi.org/10.1016/j.jbiomech.2020.109817 VL - 106 IS - June PB - Elsevier ER - TY - GEN A1 - Aurbach, Maximilian A1 - Spicka, Jan A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - Musculoskeletal modelling of the shoulder – effects on muscle recruitment and joint reaction force T2 - European Society of Biomechanics meeting 2019, Vienna, Austria Y1 - 2019 UR - https://owncloud.tuwien.ac.at/index.php/s/dovqqcj02VeZHze ER - TY - GEN A1 - Aurbach, Maximilian A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - The impact of the hill type muscle model on the glenohumeral joint reaction force T2 - 16th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering (CMBBE) 2019, New York City, USA Y1 - 2019 ER - TY - CHAP A1 - Aurbach, Maximilian A1 - Wagner, Kilian A1 - Süß, Franz A1 - Dendorfer, Sebastian ED - Badnjevic, Almir T1 - Implementation and Validation of Human Kinematics Measured Using IMUs for Musculoskeletal Simulations by the Evaluation of Joint Reaction Forces T2 - CMBEBIH 2017, Proceedings of the International Conference on Medical and Biological Engineering 2017, Sarajevo, Bosnia and Herzegovina N2 - The gold standard for the analysis of human kinematics and kinetics is a camera-based motion capture system in combination with force measurement platforms. Alternatively, inertial measurement units can be utilized to obtain human kinematics, while ground reaction forces are computed from full body dynamics. This setup represents a system independent from the spatial confinement of a gait laboratory. The aim of this study is the comparison of the two methods by the investigation of lower limb kinematics and the resulting joint reaction forces within the ankle-, knee- and hip joints. For this purpose, human motion during gait was captured simultaneously by both measurement techniques. 13 trials from 8 different test subjects were evaluated in total. IMU data was processed with a quaternion based Kalman Filter. The data sets were implemented into a musculoskeletal simulation program in order to drive a virtual human body model. Each sensor was aligned to the gravitational and magnetic field vectors of the earth. The angles of flexions, extensions and rotations were analyzed to determine kinematic differences. Joint reaction forces defined kinetic dissimilarities. The overall kinematic differences of both models yielded root mean square errors of 7.62°, 6.02°, 4.95°, 2.79°, 2.38° and 3.56° for ankle flexion, subtalar eversion, knee flexion, hip external rotation, hip abduction and hip flexion, respectively. The proximo-distal differences in force peaks between the models yielded overall for the ankle, 57.33 %Bodyweight(BW) ± 46.86 %BW (16.66 %(Maximum peak to peak) ± 13.62 %) for the knee 37.09 %BW ± 29.33 %BW (17.65 % ± 15.44 %) and 32.03 %BW ± 24.33 %BW (15.6 % ± 12.54 %) for the hip. The overall outcome of this work investigated an approach independent of the common setup of the gait laboratory, thus enabling a cheaper and more flexible technology as an alternative. However, kinematic and thus kinetic differences remain rather large. Future work aims to improve the contact criterion for the calculation of the ground reaction forces and the implementation of a full-body calibration algorithm for the IMU system in order to counteract magnetic field disturbances. KW - Inertial Measurement Units KW - Multibody Simulation KW - Musculoskeletal Simulation KW - AnyBody KW - Motion Capture KW - Bewegungsapparat KW - Biomechanik KW - Motion Capturing KW - Mehrkörpersimulation KW - Ground Reaction Force Prediction KW - Gait KW - IMU KW - Joint Reaction Forces Y1 - 2017 U6 - https://doi.org/10.1007/978-981-10-4166-2_31 VL - Vol. 62 SP - 205 EP - 211 PB - Springer CY - Singapore ER - TY - JOUR A1 - Aurbach, Maximilian A1 - Špička, Jan A1 - Süß, Franz A1 - Vychytil, J. A1 - Havelková, Leonard A1 - Ryba, T. A1 - Dendorfer, Sebastian T1 - Torus obstacle method as a wrapping approach of the deltoid muscle group for humeral abduction in musculoskeletal simulation JF - Journal of Biomechanics N2 - Musculoskeletal models of the shoulder complex are valuable research aids to investigate tears of the supraspinatus and the resulting mechanical impact during abduction of the humerus. One of the major contributors to this motion is the deltoid muscle group and for this, an accurate modeling of the lines of action is indispensable. The aim of this work was to utilize a torus obstacle wrapping approach for the deltoids of an existing shoulder model and assess the feasibility of the approach during humeral abduction. The shoulder model from the AnyBody™ modeling system was used as a platform. The size of the tori is based on a magnetic resonance imaging (MRI) approach and several kinematic couplings are implemented to determine the trajectories of the tori during abduction. To assess the model behavior, the moment arms of the virtual muscle elements and the resultant glenohumeral joint reaction force (GHJF) were compared with reference data from the literature during abduction of the humerus in the range 20°–120°. The root mean square error for the anterior, lateral and posterior part between the simulated muscle elements and reference data from the literature was 3.9, 1.7 and 5.8 mm, respectively. The largest deviation occurred on the outer elements of the muscle groups, with 12.6, 10.4 and 20.5 mm, respectively. During abduction, there is no overlapping of the muscle elements and these are in continuous contact with the torus obstacles, thus enabling a continuous force transmission. This results in a rising trend of the resultant GHJF. The torus obstacle approach as a wrapping method for the deltoid muscles provides a guided muscle pathing by simultaneously approximating the curvature of the deltoid muscle. The results from the comparison of the simulated moment arms and the resultant GHJF are in accordance with those in the literature in the range 20°–120° of abduction. Although this study shows the strength of the torus obstacle as a wrapping approach, the method of fitting the tori according to MRI data was not suitable. A cadaver study is recommended to better validate and mathematically describe the torus approach. KW - Muscoloskeletal model KW - AnyBody Modeling System KW - MRI KW - Shoulder joint complex KW - Muscle trajectory KW - Torus KW - Wrapping Y1 - 2020 U6 - https://doi.org/10.1016/j.jbiomech.2020.109864 VL - 109 IS - August PB - Elsevier ER - TY - JOUR A1 - Baldwin, Andrew A1 - Hartl, Maximilian A1 - Tschaikowsky, Mathaeus A1 - Balzer, Bizan N. A1 - Booth, Brian W. T1 - Degradation and release of tannic acid from an injectable tissue regeneration bead matrix in vivo JF - Journal of biomedical materials research, part B - Applied Biomaterials N2 - The development of multifunctional biomaterials as both tissue regeneration and drug delivery devices is currently a major focus in biomedical research. Tannic Acid (TA), a naturally occurring plant polyphenol, displays unique medicinal abilities as an antioxidant, an antibiotic, and as an anticancer agent. TA has applications in biomaterials acting as a crosslinker in polymer hydrogels improving thermal stability and mechanical properties. We have developed injectable cell seeded collagen beads crosslinked with TA for breast reconstruction and anticancer activity following lumpectomy. This study determined the longevity of the bead implants by establishing a degradation time line and TA release profile in vivo. Beads crosslinked with 0.1% TA and 1% TA were compared to observe the differences in TA concentration on degradation and release. We found collagen/TA beads degrade at similar rates in vivo, yet are resistant to complete degradation after 16 weeks. TA is released over time in vivo through diffusion and cellular activity. Changes in mechanical properties in collagen/TA beads before implantation to after 8 weeks in vivo also indicate loss of TA over a longer period of time. Elastic moduli decreased uniformly in both 0.1% and 1% TA beads. This study establishes that collagen/TA materials can act as a drug delivery system, rapidly releasing TA within the first week following implantation. However, the beads retain TA long term allowing them to resist degradation and remain in situ acting as a cell scaffold and tissue filler. This confirms its potential use as an anticancer and minimally invasive breast reconstructive device following lumpectomy. KW - Antioxidant KW - APOPTOSIS KW - biomaterial KW - cancer KW - Cancer-cells KW - collagen KW - EARLY OSTEOARTHRITIS KW - HYDROGELS KW - IMMEDIATE BREAST RECONSTRUCTION KW - MECHANICAL PROPERTIES KW - MEDICINAL PLANTS KW - POLYPHENOLS KW - tannic acid KW - tissue regeneration Y1 - 2021 U6 - https://doi.org/10.1002/jbm.b.34990 SN - 1552-4981 VL - 110 IS - 5 SP - 1165 EP - 1177 PB - Wiley ER - TY - JOUR A1 - Bartsch, Alexander A1 - Beham, Daniela A1 - Gebhardt, Jakob A1 - Ehrlich, Ingo A1 - Schratzenstaller, Thomas A1 - Monkman, Gareth J. T1 - Mechanical Properties of NdPrFeB Based Magnetoactive Bisphenol-Free Boron-Silicate Polymers JF - Journal of Nanomedicine and Nanotechnology N2 - Following a ban on many materials containing bisphenol-A, new bisphenol-free Boron silicates have been found as substitutes. The purpose of this study is to describe the mechanical properties of these bisphenol-free magnetoactive borosilicate polymers containing hard magnetic particles. Samples of 0%, 33% and 66% by wt. were loaded for compression using a universal testing machine. The maximum forces occurring for different travel speeds were compared before and after post-magnetization treatments. The post-magnetization included 2 stages. In addition, the change in mechanical properties within 24 hours after the post-magnetization process was investigated. Furthermore, the influence of speed and particle content were investigated. In general, there is a correlation between the required compressive force and, the level of post-magnetization stress, the increase in travel speed and particle content in the boron silicate. Comparison of the non-post-magnetized and post-magnetized samples using two-tailed t-tests shows that the p-values for all weight fraction changes in NdPrFeB particles and travel speeds are less than 0.001. Also, a comparison between tests in which the traverse speed was varied also showed significant changes in the resulting compression forces. The same is valid for changes in the weight ratio of the NdPrFeB particles in the samples. For post-magnetized samples, no significant difference can be observed in the first 24 hours following magnetization. In summary, the material presents viscoelastic, plastic force-displacement behavior, which can be well recognized by its bi-linear curve shape. The investigation shows that borosilicate polymers based on NdPrFeB can have their mechanical behavior modified and controlled by post-magnetization processes. This opens new possibilities for many future applications. Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:898-opus4-67425 UR - https://www.walshmedicalmedia.com/open-access/mechanical-properties-of-ndprfeb-based-magnetoactive-bisphenolfree-boronsilicate-polymers-124385.html SN - 2157-7439 N1 - Corresponding author: Alexander Bartsch VL - 14 IS - 6 PB - Walsh Medical Media ER - TY - JOUR A1 - Belli, Renan A1 - Kreppel, Stefan A1 - Petschelt, Anselm A1 - Hornberger, Helga A1 - Boccaccini, Aldo R. A1 - Lohbauer, Ulrich T1 - Strengthening of dental adhesives via particle reinforcement JF - Journal of the Mechanical Behavior of Biomedical Materials N2 - The bond between methacrylic polymer adhesives and dental restoratives is not perfect and may fail either in the short or in the long term. This study aims to evaluate the effects of particle incorporation in a self-etch model adhesive on mechanical and physical properties that are relevant during application and service. Filled adhesives containing 5, 10, 15 or 25 wt% glass fillers were compared to their unfilled counterpart in terms of water sorption and solubility; viscosity and dynamic viscosity during polymerization were recorded using rheological measurements and compared to FTIR analysis of the real-time degree of cure. Elastic modulus and ultimate tensile strength measurements were performed in uniaxial tension; the energy to fracture was used to calculate the fracture toughness of the adhesives. Finally, the experimental adhesives were applied on dentin substrate to test the bond strength using the microtensile test. Results showed that the incorporation of 5–10 wt% nanofiller to self-etching dental adhesives is efficient in accelerating the polymerization reaction and increasing the degree of cure without compromising the film viscosity for good wettability or water sorption and solubility. Fillers increased the elastic modulus, tensile strength and fracture toughness to a plateau between 5 and 15 wt% filler concentration, and despite the tendency to form agglomerations, active crack pinning/deflection toughening mechanisms have been observed. The bond strength between resin composite and dentin was also improved when adhesives with up to 10 wt% fillers were used, with no additional improvements with further packing. The use of fillers to reinforce dental adhesives may therefore be of great practical benefit by improving curing and mechanical properties. KW - Nanoparticles KW - Bond strength KW - Elasticity KW - Adhesives KW - Dentin Y1 - 2014 U6 - https://doi.org/10.1016/j.jmbbm.2014.05.007 VL - 37 IS - 9 SP - 100 EP - 108 ER - TY - JOUR A1 - Benditz, Achim A1 - Auer, Simon A1 - Spörrer, J.F. A1 - Wolkerstorfer, S. A1 - Grifka, Joachim A1 - Süß, Franz A1 - Dendorfer, Sebastian T1 - Regarding loads after spinal fusion, every level should be seen separately: a musculoskeletal analysis JF - European Spine Journal N2 - The number of spinal fusion surgeries is steadily increasing and biomechanical consequences are still in debate. The aim of this study is to provide biomechanical insights into the sagittal balance of the spine and to compare spinal load before and after spinal fusion. METHOD: The joint reaction forces of 52 patients were analyzed in proximo-distal and antero-posterior direction from the levels T12-L1 to L5-S1 using musculoskeletal simulations. RESULTS: In 104 simulations, pre-surgical forces were equal to post-surgical. The levels L4-L5 and T12-L1, however, showed increased spinal forces compression forces with higher sagittal displacement. Improved restauration of sagittal balance was accompanied by lower spinal load. AP shear stress, interestingly decreased with sagittal imbalance. CONCLUSION: Imbalanced spines have a risk of increased compression forces at Th12-L1. L4-L5 always has increased spinal loads. These slides can be retrieved under Electronic Supplementary Material. KW - AnyBody Modeling System KW - Musculoskeletal analysis KW - Sagittal balance KW - Spinal fusion KW - Spine biomechanics KW - Biomechanische Analyse KW - Wirbelsäulenversteifung KW - Vergleichende Anatomie Y1 - 2018 U6 - https://doi.org/10.1007/s00586-018-5476-5 VL - 27 IS - 8 SP - 1905 EP - 1910 PB - Springer-Verlag ER - TY - CHAP A1 - Billing, A. A1 - Götz, J. A1 - Weber, Tim A1 - Dendorfer, Sebastian T1 - Positionsanalyse von winkelstabilen Plattenosteosynthesesystemen zur Versorgung von Metatarsalfrakturen mit Hilfe von patientenspezifischen biomechanischen Modellen T2 - Vereinigung Süddeutscher Orthopäden und Unfallchirurgen Jahrestagung 2015, Baden-Baden, Germany Y1 - 2015 ER - TY - GEN A1 - Birkenmaier, Clemens A1 - Dornia, Christian A1 - Lehle, Karla A1 - Krenkel, Lars T1 - Feasibility of detecting thrombotic deposits in membrane oxygenators using micro computed tomography T2 - 25th Congress of the European Society of Biomechanics, July 7-10, 2019, Vienna, Austria Y1 - 2019 UR - https://esbiomech.org/conference/archive/2019vienna/Contribution_129.pdf ER - TY - JOUR A1 - Birkenmaier, Clemens A1 - Dornia, Christian A1 - Lehle, Karla A1 - Müller, Thomas A1 - Gruber, Michael Andreas A1 - Philipp, Alois A1 - Krenkel, Lars T1 - Analysis of Thrombotic Deposits in Extracorporeal Membrane Oxygenators by High-resolution Microcomputed Tomography: A Feasibility Study JF - ASAIO Journal / American Society for Artificial Internal Organs N2 - Coagulative disorders, especially clotting during extracorporeal membrane oxygenation, are frequent complications. Direct visualization and analysis of deposits in membrane oxygenators using computed tomography (CT) may provide an insight into the underlying mechanisms causing thrombotic events. However, the already established multidetector CT1 (MDCT) method shows major limitations. Here, we demonstrate the feasibility of applying industrial micro-CT (μCT) to circumvent these restrictions. Three clinically used membrane oxygenators were investigated applying both MDCT and μCT. The scans were analyzed in terms of clot volume and local clot distribution. As validation, the clot volume was also determined from the fluid volume, which could be filled into the respective used oxygenator compared to a new device. In addition, cross-sectional CT images were compared with crosscut oxygenators. Based on the μCT findings, a morphological measure (sphericity) for assessing clot structures in membrane oxygenators is introduced. Furthermore, by comparing MDCT and μCT results, an augmentation of the MDCT method is proposed, which allows for improved clot volume determination in a clinical setting. Y1 - 2020 U6 - https://doi.org/10.1097/MAT.0000000000001089 SN - 1538-943X VL - 66 IS - 8 SP - 922 EP - 928 PB - Lippincott Williams & Wilkins ER - TY - CHAP A1 - Birkenmaier, Clemens A1 - Krenkel, Lars ED - Dillmann, Andreas ED - Heller, Gerd ED - Krämer, Ewald ED - Wagner, Claus T1 - Convolutional Neural Networks for Approximation of Blood Flow in Artificial Lungs T2 - New Results in Numerical and Experimental Fluid Mechanics XIII: Contributions to the 22nd STAB/DGLR Symposium N2 - Blood flow in channels of varying diameters <500μm exhibits strong non-linear effects. Multiphase finite volume approaches are feasible, but still computationally costly. Here, the feasibility of applying convolutional neural networks for blood flow prediction in artificial lungs is investigated. Training targets are precomputed using an Eulerian two-phase approach. To match with experimental data, the interphase drag and lift, as well as intraphase shear-thinning are adapted. A recursively branching regression network and convolution/deconvolution networks with plain skip connections and densely connected skips are investigated. A priori knowledge is incorporated in the loss functional to prevent the network from learning non-physical solutions. Inference from neural networks is approximately six orders of magnitude faster than the classical finite volume approach. Even if resulting in comparably coarse flow fields, the neural network predictions can be used as close to convergence initial solutions greatly accelerating classical flow computations. KW - Deep learning fluid mechanics KW - Multiphase blood flow Y1 - 2021 SN - 978-3-030-79560-3 U6 - https://doi.org/10.1007/978-3-030-79561-0_43 IS - 1. Auflage SP - 451 EP - 460 PB - Springer International Publishing CY - Cham ER - TY - GEN A1 - Birkenmaier, Clemens A1 - Krenkel, Lars T1 - Towards a realistic model of blood viscosity and coagulation in membrane oxygenators T2 - 6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) - ECCM 6; 7th European Conference on Computational Fluid Dynamics - ECFD 7 : Glasgow, Scotland, UK, June 11-15, 2018 N2 - Modelling blood flow an shear induced coagulation in membraene oxygenators (MO) is challenging. The relevant geometry of oxygenator fibers (OF) and chaining threads is complex and spans several length scales. In relevant scales and regimes blood shows several significant non-Newtonian effects. Existing models are only capable of accounting for some, but not all relevant effects. Additionally, coagulation processes are influencing fluid properties and geometry significantly. Due to the enormous size of the discretised geometries highly detailed viscosity and coagulation properties of blodd flow in MOs. First step is to find a gemoetry dependent viscosity representation on basis of parametric micro channel experiments with anti-coagulated blood. Next step is a statistic coagulation model, based on micro channel experiments with human (re-calcified citrated) whole blood an evaluation of clinically used osygenators. Since shear rate dependent (i.e. viscosity dependet) coagulation in return influences the viscosity, a combined model with suitable implementation in a RANS framework is necessary. Towards this end, micro channel experiments with new and used single OFs triggering coagulation are performed. Structures of multimeric von Willebrand fibers (vWF), as indicator for shear induced coagulation, are compared to computed and measured flow conditions, using immunofluorescence microscopy, RANS-computations and µPIV, respectively. Preliminary examinations in clinically used MOs show good agreement between occurring structures of vWF, cell depositions and computed flow patterns (geometry form µCT-Scans). However, computed shear rates might be to low to actually trigger activation of vWF. The complex geometry of MOs results in huge meshes, which makes RANS with statistical modelling of viscosity and coagulation a reasonable approach. Towards this end, experimental data on micro channel level with evaluation on real application level is crucial. Especially regarding clotting processes, micro fluidic experiments are powerful research tool. KW - Blood Viscosity KW - Shear Raed Induced Coagulation KW - Membrane Oxygenator Y1 - 2018 ER - TY - CHAP A1 - Birkenmaier, Clemens A1 - Krenkel, Lars ED - Chinesta, F. ED - Abgrall, R. ED - Allix, O. ED - Kalistke, M T1 - Convolutional Neural Networks for Approximation of Internal Non-Newtonian Multiphase Flow Fields T2 - 14th World Congress on Computational Mechanics (WCCM), ECCOMAS Congress 2020: 19–24 July 2020, Paris, France N2 - Neural networks (NNs) as an alternative method for universal approximation of differential equations have proven to be computationally efficient and still sufficiently accurate compared to established methods such as the finite volume method (FVM). Additionally, analysing weights and biases can give insights into the underlying physical laws. FVM and NNs are both based upon spacial discretisation. Since a Cartesian and equidistant grid is a raster graphics, image-to-image regression techniques can be used to predict phase velocity fields as well as particle and pressure distributions from simple mass flow boundary conditions. The impact of convolution layer depth and number of channels of a ConvolutionDeconvolution Regression Network (CDRN), on prediction performance of internal non-Newtownian multiphase flows is investigated. Parametric training data with 2055 sets is computed using FVM. To capture significant non-Newtownian effects of a particle-laden fluid (e.g. blood) flowing through small and non-straight channels, an Euler-Euler multiphase approach is used. The FVM results are normalized and mapped onto an equidistant grid as supervised learning target. The investigated NNs consist of n= {3, 5, 7} corresponding encoding/decoding blocks and different skip connections. Regardless of the convolution depth (i.e. number of blocks), the deepest spacial down-sampling via strided convolution is adjusted to result in a 1 × 1 × f · 2nfeature map, with f = {8, 16, 32}. The prediction performance expressed is as channel-averaged normalized root mean squared error (NRMSE). With a NRMSE of < 2 · 10-3, the best preforming NN has f = 32 initial feature maps, a kernel size of k = 4, n = 5 blocks and dense skip connections. Average inference time from this NN takes < 7 · 10-3s. Worst accuracy at NRMSE of approx 9 · 10-3is achieved without any skips, at k = 2, f = 16 and n = 3, but deployment takes only < 2 · 10-3s Given an adequate training, the prediction accuracy improves with convolution depth, where more features have higher impact on deeper NNs. Due to skip connections and batch normalisation, training is similarly efficient, regardless of the depth. This is further improved by blocks with dense connections, but at the price of a drastically larger model. Depending on geometrical complexity, spacial resolution is critical, as it increases the number of learnables and memory requirements massively. KW - Deep Learning KW - Convolutional neural networks KW - Non-Newtonian multiphase flow Y1 - 2021 U6 - https://doi.org/10.23967/wccm-eccomas.2020.107 PB - CIMNE ER - TY - GEN A1 - Birkenmaier, Clemens A1 - Krenkel, Lars A1 - Lehle, Karla T1 - Linking flow conditions in membrane oxygenators to arrangements of multimeric von-Willebrand-factor as indication for coagulation T2 - World Congress of Biomechanics 2018, Convention Centre Dublin, 8.-12. Juli 2018 N2 - Introduction Shear induced multimerisation of von-Willebrand-factor (vWF) is supposed to play an important role in coagulation inside extracorporeal membrane oxygenators. However, there is no proof that links observed vWF structures to computed or measured flow conditions. Methods The structures of multimeric vWF fibers, observed in clinically used membrane oxygenators is examined using immunofluorescence microscopy (IFM) using Carstairs’ staining method (positive ethics committee vote). The flow around the membrane fibres inside the oxygenator is investigated in terms of shear rate, wall shear velocity and streamlines by using CFD (RANS, Carreau-Yasuda viscosity, geometry remodelled after high-resolution µCT-scans). By interpreting the histological and numerical results in this common context, indications for shear induced coagulation mechanisms can be identified. Results The fibre structures of multimeric vWF build regular but not exactly symmetric formations around the contact face (CF) between the crosswise stacked oxygenator fibres (OF), see fig.1B, vWF marked red. Annular around the CF arranged, cells are likely to be found, see fig.1B, nuclei marked blue. The computed streamlines around the OF show attached flow around the circular fibres. However, the irregular arrangement of real OF produce considerable cross flow between the interconnected neighbouring channels, in contrast to previous 2D-simulations. Thus, the CF are washed around closely by blood, also from neighbouring channels. The wall shear velocity streamlines form regular, slightly asymmetric shapes around the contact faces. The occurring maximum shear rates are in the range of 1,000 1/s. Discussion The shapes of vWF structures found in clinically used oxygenators match the computational results in terms of wall shear velocity and streamlines well. The accumulation of cells close to the CF can also be explained by fluid mechanics, as there are small shear gradients and slow velocities. However, occurring shear rates between OFs are too low to trigger multimerisation of vWF. That raises the question where in the circuit the actual activation of vWF is started and how, at least partly chained, vWF multimeres are attracted towards the OF surface. A next step will be the investigation of the actual shear rate triggered (or mediated) multimerisation of vWF. Towards this end, microfluidic experiments with shear triggered coagulation will be performed. Also of big interest is the computation of the flow situation in the oxygenator in proximity to chaining threads, which have been ignored in computations so far. However, first a realistic representation of the effective viscosity in computations is needed, which is not available yet. Y1 - 2018 ER - TY - CHAP A1 - Birkenmaier, Clemens A1 - Steiger, Tamara A1 - Philipp, Alois A1 - Lehle, Karla A1 - Krenkel, Lars T1 - Flow-induced accumulations of von Willebrand factor inside oxygenators during extracorporeal life support therapy T2 - Proceedings of 12th International Conference BIOMDLORE 2018, June 28–30, 2018, Białystok, Poland N2 - BACKGROUND: Shear-induced conformational changes of von Willebrand factor (vWF) may be responsible for coagulation disorder and clot formation inside membrane oxygenators (MOs) during extracorporeal membrane oxygenation (ECMO) therapy. OBJECTIVE: The aim was to identify vWF structures inside clinically used MOs and employ computational fluid dynamics to verify the corresponding flow conditions. METHODS: Samples from gas exchange membranes (GEM) from MOs were analysed for accumulations of vWF and P-selectin-positive platelets using immunofluorescence techniques. Streamlines and shear rates of the flow around GEMs were computed using a laminar steady Reynolds-Averaged-Navier-Stokes approach. RESULTS: Most samples were colonized with equally distributed leukocytes, integrated in thin cobweb-like vWF-structures. Only 25 % of the samples showed extended accumulations of vWF. Computed streamlines showed considerable cross flow between interconnected neighbouring channels. Stagnation points were non-symmetric and contact faces were washed around closely. The occurring maximum shear rates ranged from 2,500 to 3,000 1/s. CONCLUSIONS: If pronounced vWF structures are present, shape and extent match the flow computations well. Computed shear rates bear a critical degree of uncertainty due to the improper viscosity model. If flow conditions inside the MO were sufficient to affect vWF, a more consistent distribution of vWF across the samples should be present. KW - Blood Viscosity KW - Shear Rate Induced Coagulation KW - Hemodynamics KW - Membrane Oxygenator KW - von Willebrand factor Y1 - 2018 SN - 978-1-5386-2396-1 U6 - https://doi.org/10.1109/BIOMDLORE.2018.8467205 PB - IEEE CY - Piscataway, NJ ER - TY - JOUR A1 - Chatterjee, Subhomoy A1 - Kobylinski, Sabine A1 - Basu, Bikramjit T1 - Finite Element Analysis to Probe the Influence of Acetabular Shell Design, Liner Material, and Subject Parameters on Biomechanical Response in Periprosthetic Bone JF - Journal of Biomechanical Engineering N2 - The implant stability and biomechanical response of periprosthetic bone in acetabulum around total hip joint replacement (THR) devices depend on a host of parameters, including design of articulating materials, gait cycle and subject parameters. In this study, the impact of shell design (conventional, finned, spiked, and combined design) and liner material on the biomechanical response of periprosthetic bone has been analyzed using finite element (FE) method. Two different liner materials: high density polyethylene-20% hydroxyapatite-20% alumina (HDPE-20%HA-20%Al2O3) and highly cross-linked ultrahigh molecular weight polyethylene (HC-UHMWPE) were used. The subject parameters included bone condition and bodyweight. Physiologically relevant load cases of a gait cycle were considered. The deviation of mechanical condition of the periprosthetic bone due to implantation was least for the finned shell design. No significant deviation was observed at the bone region adjacent to the spikes and the fins. This study recommends the use of the finned design, particularly for weaker bone conditions. For stronger bones, the combined design may also be recommended for higher stability. The use of HC-UHMWPE liner was found to be better for convensional shell design. However, similar biomechanical response was captured in our FE analysis for both the liner materials in case of other shell designs. Overall, the study establishes the biomechanical response of periprosthetic bone in the acetabular with preclinically tested liner materials together with new shell design for different subject conditions. KW - Acetabulum/physiology KW - Biomechanical Phenomena KW - Body Weight KW - Finite element analysis KW - GAIT KW - Hip Prosthesis KW - Humans KW - Linear Models KW - Mechanical Phenomena KW - Prosthesis Design KW - Stress, Mechanical Y1 - 2018 U6 - https://doi.org/10.1115/1.4040249 SN - 1528-8951 VL - 140 IS - 10 PB - ASME ER - TY - JOUR A1 - De Pieri, Enrico A1 - Atzori, Federica A1 - Ferguson, Stephen J. A1 - Dendorfer, Sebastian A1 - Leunig, Michael A1 - Aepli, Martin T1 - Contact force path in total hip arthroplasty: effect of cup medialisation in a whole-body simulation JF - HIP International N2 - Background: Cup medialisation down to the true acetabular floor in total hip arthroplasty with a compensatory femoral offset increase seems to be mechanically advantageous for the abductor muscles due to the relocation of the lever arms (body weight lever arm decreased, abductor lever arm increased). However, limited information is currently available about the effects of this reconstruction type at the head cup interface, compared to an anatomical reconstruction that maintains the natural lever arms. Through a whole-body simulation analysis, we compared medialised versus anatomical reconstruction in THA to analyse the effects on: (1) contact force magnitude at the head cup interface; (2) contact force path in the cup; and (3) abductor activity. Methods: Musculoskeletal simulations were performed to calculate the above-mentioned parameters using inverse dynamics analysis. The differences between the virtually implanted THAs were calculated to compare the medialised versus anatomical reconstruction. Results: Cup medialisation with compensatory femoral offset increase led to: (1) a reduction in contact force magnitude at the head cup interface up to 6.6%; (2) a similar contact force path in the cup in terms of sliding distance and aspect ratio; and (3) a reduction in abductor activity up to 17.2% (gluteus medius). Conclusions: In our opinion, these potential biomechanical gains do not generally justify a fully medialised reconstruction, especially in younger patients that are more likely to undergo revision surgery in their lifetime. Cup medialisation should be performed until sufficient press fit and bony coverage of a properly sized and oriented cup can be achieved. KW - Cup medialisation KW - femoral offset KW - hip contact force KW - total hip anthroplasty KW - total hip replacement KW - Hüftgelenkprothese KW - Kontaktkraft KW - Biomechanische Analyse KW - Simulation Y1 - 2020 U6 - https://doi.org/10.1177/1120700020917321 VL - 31 IS - 5 SP - 624 EP - 631 PB - Sage ER - TY - JOUR A1 - Dendorfer, Sebastian T1 - Älterwerden muss auch mal wehtun! JF - Gesunde Hochschule, OTH Regensburg, 4.7.2016 Y1 - 2016 ER - TY - CHAP A1 - Dendorfer, Sebastian T1 - The effect of multifidus muscles atrophy following disc herniation on disc loading T2 - Deutsche Gesellschaft für Biomechanik, Murnau, 2011 Y1 - 2011 ER - TY - GEN A1 - Dendorfer, Sebastian T1 - The influence of modeling parameters in the AnyBody Modeling System on muscle and joint loading in the shoulder T2 - International Shoulder Group Meeting Y1 - 2021 VL - 05 ER - TY - GEN A1 - Dendorfer, Sebastian T1 - Biomechanische Aspekte bei Sportverletzungen T2 - OT World Leipzig, Internationale Fachmesse und Weltkongress für Orthopädie und Rehatechnik, 10.-13. Mai 2022 Y1 - 2022 ER - TY - GEN A1 - Dendorfer, Sebastian T1 - KI-basierte mechanische Modelle für Prävention, Diagnostik und Rehabilitation T2 - Serien-Webmeeting zu AI - KI-basierte Bildanalyse zur computer-unterstützten Frakturerkennung, 09.11.22 Y1 - 2022 ER - TY - CHAP A1 - Dendorfer, Sebastian T1 - Virtuelle Menschmodelle – von der Bewegung zur Belastung T2 - Medbo Bezirksklinikum Regensburg, April 2016 Y1 - 2016 ER - TY - CHAP A1 - Dendorfer, Sebastian T1 - Biomechanik des Alterns T2 - Kolpingfortbildung Lambach, April 2016 Y1 - 2016 ER - TY - CHAP A1 - Dendorfer, Sebastian T1 - Einführung in die Mechanik T2 - Biomechanik Workshop, Klinikum Bad Abbach, Nov. 2013 Y1 - 2013 ER - TY - CHAP A1 - Dendorfer, Sebastian T1 - Innovationen in der Medizintechnik T2 - Oberpfalztag Weiherhammer, Nov. 2013 Y1 - 2013 ER - TY - GEN A1 - Dendorfer, Sebastian T1 - Virtuelle Modelle der oberen Extremität T2 - 22. Interdisziplinäres Symposium Medizin-Physiotherapie-Sportwissenschaften, 22.-23.11.2019, Regensburg, Germany Y1 - 2019 ER - TY - GEN A1 - Dendorfer, Sebastian T1 - The influence of mental stress on the musculoskeletal system Y1 - 2020 ER - TY - CHAP A1 - Dendorfer, Sebastian T1 - Mechanobiology – Impact on regeneration and degradation T2 - Translations in Regenerative Medicine, TIRM and FIFA Symposium, Regensburg, 2015 Y1 - 2015 ER - TY - CHAP A1 - Dendorfer, Sebastian T1 - How much iron to pump? The determination of muscle forces for activities of daily living T2 - DGU, Berlin, 2008 Y1 - 2008 ER - TY - CHAP A1 - Dendorfer, Sebastian T1 - Biomechanical evaluation and optimisation of countermeasure exercises T2 - ESA/ESTEC Bedrest Strategy Workshop, Noordwijk, NL, 2009 Y1 - 2009 ER - TY - GEN A1 - Dendorfer, Sebastian T1 - Patientenindividuelle biomechanisch optimierte Rehabilitation T2 - Primär- und Revisionsendoprothetik des Kniegelenks. Trends und zukünftige Herausforderungen. Regensburg 2023 Y1 - 2023 ER - TY - GEN A1 - Dendorfer, Sebastian T1 - Muskuloskelettale Simulation - Implikationen für die Hüftendoprothetik T2 - Primär- und Revisionsendoprothetik des Hüftgelenks Trends und zukünftige Herausforderungen, 11.-12.11.2022, OTH Ostbayerische Technische Hochschule, Regensburg Y1 - 2022 ER - TY - GEN A1 - Dendorfer, Sebastian T1 - Diagnostische Genauigkeit und klinische Anwendungen tragbarer Bewegungssensoren für die Kniegelenksrehabilitation Y1 - 2024 CY - Nürnberg ER - TY - CHAP A1 - Dendorfer, Sebastian A1 - Carbes, S. A1 - Rasmussen, John T1 - The influence of muscle forces on biomechanical fracture fixation simulations – from in-vivo forces to tissue strains T2 - World Congress on Medical Physics and Biomedical Engineering, 7 - 12, 2009, Munich Y1 - 2009 ER -